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Summary

• Lecture 1:
• The timescale and lengthscale problem

• Stocastic single spin models

• Multispin models; micromagnetics and atomistic theories

• Spin excitations in ferromagnets and antiferromagnets

• Lecture 2:
• Introduction to pulsed laser processes

• New (linear) magnetisation reversal mechanism

• Linear reversal is calculated to give reversal times as fast as 300fs !

• Dynamics and the Landau-Lifshitz- Bloch (LLB) equation of motion

• LLB-micromagnetics and dynamic properties for large-scale simulations at 
elevated temperatures

• Heat Assisted Magnetic Recording (HAMR); experiments and LLB-
micromagnetic model

• Opto-magnetic reversal – the ultimate speed record?
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Writability
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The need for atomistic/multiscale approaches 

• Micromagnetics is based on a continuum formalism 
which calculates the magnetostatic field exactly but 
which is forced to introduce an approximation to the 
exchange valid only for long-wavelength 
magnetisation fluctuations.

• Thermal effects can be introduced, but the limitation 
of long-wavelength fluctuations means that 
micromagnetics cannot reproduce phase transitions.

• The atomistic approach developed here is based on 
the construction of a physically reasonable classical 
spin Hamiltonian based on ab-initio information.
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Atomistic model

• Uses the Heisenberg form of exchange

• Spin magnitudes and J values can be obtained 
from ab-initio calculations.

• We also have to deal with the magnetostatic
term.

• 3 lengthscales – electronic, atomic and 
micromagnetic – Multiscale modelling.
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Model outline

Ab-initio information (spin, 
exchange, etc)

Classical spin Hamiltonian

Magnetostatics 

Dynamic response 
solved using 
Langevin Dynamics 
(LLG + random 
thermal field term)
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Laser Pump-probe experiments

• High energy laser beam (pump) causes rapid heating of 
a magnetic film

• Part of the beam is split off and used to measure the 
magnetisation of the film using the Magneto-Optic Kerr 
Effect (MOKE)

• Magnetisation changes on the sub-picosecond timescale 
can be demonstrated experimentally

• Very important physics

• Also, potentially important because of the possible use 
of Heat Assisted Magnetic Recording (HAMR)
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2 temperature model



Computational 
Magnetism Group

Multiscale approaches to sub-picosecond heat driven magnetisation reversal 11

Ultrafast demagnetisation

• Experiments on Ni (Beaurepaire et al PRL 
76 4250 (1996)

• Calculations for peak temperature of 
375K

• Normalised M and T. During 
demagnetisation M essentially follows T 0.0 0.5 1.0 1.5 2.0
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Excitation modes during ultrafast heating

• Approach:

• Spatial and temporal Fourier transforms

• Gives the dispersion relation

• Can also calculate a ‘mode occupancy’ from the 
power/mode normalised by the total power

• We have studied the excitations in both 
ferromagnets and antiferromagnets
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Analytical dispersion relations

Ferromagnet

Antiferromagnet
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Analytical vs numerical

• Solid lines; analytical, symbols; numerical
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Response to step temperature change: 
ferromagnet



Computational 
Magnetism Group

Multiscale approaches to sub-picosecond heat driven magnetisation reversal 16

Antiferromagnet

• (Staggered) magnetisation equilibrates more 
rapidly than FM
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Response to pulse temperature change: 
ferromagnet
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Antiferromagnet

• Much faster response

• Consistent with faster demagnetisation of the AF
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Pump-probe simulations –
continuous thin film

• Rapid disappearance of the magnetisation

• Reduction depends on l (coupling constant)

l

l

l
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Dependence on the pump fluence

• Note the slow recovery of the magnetisation for the 
higher pump fluence
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Experiment (J. Hohlfeld)
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Slow recovery due to disordered magnetic state

• Snapshots of the magnetisation distribution after 19ps for  l = 
0:02 (left) and l = 0:2 (right).

• Fast recovery if there is some ‘memory’ of the initial magnetic 
state.

• For the fully demagnetised state the recovery is frustrated by 
many nuclei having random magnetisation directions. 
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Comment on the use of the LLG equation 
and Langevin Dynamics

•What is ? Transfer of energy via complicated channels

•Very challenging. But interesting physics and important 
applications

•Are thermal fluctuations really uncorrelated? Next we look at the 
effects of correlated noise
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Coloured noise

• Simulations so far used white noise

• Assumes uncorrelated noise source

• Here we introduce exponentially correlated 
noise and investigate the effect on the relaxation 
time of the magnetisation.
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Exponentially correlated (Ornstein-
Uhlenbeck) noise

• Gaussian noise with zero mean and 
exponential correlation function.

• Correlation time t

• Variance s2 = <e2> = D/t
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Basis of the simulation – Miyazaki- Seki equation
Atxitia et al Phys. Rev. Lett. 102, 057203 (2009)

c=/(2tcm)

NB (very crude) direct simulation of the heat bath properties.
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Single-spin calculations – probability distributions
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Multispin calculations –
equilibrium properties
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Correlations increase the longitudinal 
relaxation time
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Multiscale calculations and 
the LLB equation

• Large scale (micromagnetic) simulations 
essentially work with one spin/computational 
cell

• Single spin LLG equation cannot reproduce 
ultrafast reversal mechanisms at elevated 
temperature (conserves |M|)

• Pump- probe and HAMR simulations require 
an alternative approach

• Landau-Lifshitz-Bloch (LLB) equation?
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LLB equation

Transverse (LLG) term
Longitudinal term introduces 

fluctuations of M
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• Precessional dynamics for atomistic model (left) and (single spin) LLB 
equation (right)
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Relaxation times

•Effective a increases with T (observed in FMR experiments) 

•Critical slowing down at Tc

•Longitudinal relaxation is in the ps regime except very close to Tc

•Atomistic calculations remarkably well reproduced by the LLB equation

•Makes LLB equation a good candidate to replace LLG equation in 
micromagnetics.

‘LLG ’

Relaxation of M
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LLB parameters

• Important parameters are;
• Longitudinal and transverse susceptibility
• K(T), M(T)

• These can be determined from Mean Field 
theory.

• Also possible to determine the parameters 
numerically by comparison with the Atomistic 
model.

• In the following we use numerically determined 
parameters in the LLB equation and compare the 
dynamics behaviour with calculations from the 
atomistic model. 
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Comparison with (macrospin) LLB equation

• Single LLB spin cannot reproduce  the slow recovery with a single longitudinal 
relaxation time.

• State dependent relaxation time?

• Big advantage in terms of computational efficiency.

• LLB equation is an excellent candidate approach to complete the multiscale
formalism
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Slow recovery – multispin LLB

• Essentially micromagnetics with LLG replaced 
by LLB to simulate the dynamics.

• Exchange between cells taken as  M2 (mean-
field result)

• Capable of simulating the uncorrelated state 
after demagnetisation.
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Comparison of atomistic and 
LLB-mmag model

• Calculations with the LLB-mmag model agree 
well with atomistic calculations, including the 
slow recovery
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Magnetisation precession during
all-optical FMR
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Our simulation results

K(T=0)=5.3 106 erg/cm3
Ms(T=0)= 480 emu/cm3
Tc=630 K
Hext=0.2 T
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Experimental studies of Heat Assisted Reversal and 

comparison with LLB-micromagnetic model

• Experimental set-up (Chris Bunce, York)
• Uses hard drive as a spin-stand to alternate between reset field and reversal field 
• Sample used – specially prepared CoPt multilayer (G Ju, Seagate)
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Results

• Reversal occurs in a 
field of 0.52T (<< 
intrinsic coercivity of 
1.4T

• Note 2 timescales. 
Associated with 
Longitudinal (initial 
fast reduction of M) 
and transverse (long 
timescale reversal 
over particle energy 
barriers) relaxation 
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The computational model

• Film is modelled as a set of grains coupled by exchange and 
magnetostatic interactions.

• The dynamic behaviour of the grains is modelled using the 
Landau-Lifshitz-Bloch (LLB) equation.

• The LLB equation allows fluctuations in the magnitude of M. 
This is necessary in calculations close to or beyond Tc.

• The LLB equation can respond on timescales of picoseconds via 
the longitudinal relaxation time (rapid changes in the 
magnitude of M) and hundreds of ps - transverse relaxation 
over energy barriers.

• LLG equation cannot reproduce the longitudinal relaxation

• The film is subjected to a time varying temperature from the 
laser pulse calculated using a two-temperature model.
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Calculated results

• Simulations show rapid demagnetisation followed by recovery on the short timescale. 
Over longer times the magnetisastion rotates into the field direction due to thermally 
activated transitions over energy barriers.

• This is consistent with experimental results

Demagnetisation/recovery 

of the magnetisation of 

individual grains
Superparamagnetic

reversal
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Effect of the magnetic field

• Also qualitatively in agreement with experiments
• LLB equation is very successful in describing high temperature dynamics
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Opto-magnetic reversal

• What is the reversal mechanism?
• Is it possible to represent it with a spin model?
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Fields and temperatures

• Simple ‘2-temperature’ model 

• Problem – energy associated with the laser pulse (here expressed as an 
effective temperature) persists much longer than the magnetic field.

• Equlibrium temperature much lower than Tc
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Magnetisation dynamics (atomistic model)

• Reversal is non-precessional – mx and my remain zero. Linear reversal mechanism
• Associated with increased magnetic susceptibility at high temperatures
• Too much laser power and the magnetisation is destroyed after reversal
• Narrow window for reversal
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Linear reversal

New reversal mechanism via a strongly non-uniform (demagnetised) state.
VERY fast (timescale of longitudinal relaxation)
Micromagnetics with LLG equation cannot reproduce behaviour
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Analytical calculations of relaxation times 
using LLB equation

Large fields required for ps reversal (Kazantseva et al, EPL, in press)
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‘Reversal window’

• Well defined temperature range for reversal

• Critical temperature for the onset of linear reversal

• BUT atomistic calculations are very CPU intensive

• LLB micromagnetic model used for large scale calculations
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Reversal ‘phase diagram’ 
Vahaplar et al Phys. Rev. Lett., 103, 117201 (2009)

• Note the criticality of the experimental results
• Characteristic of linear reversal

52



Computational 
Magnetism Group

Multiscale approaches to sub-picosecond heat driven magnetisation reversal 53

End of the story? Not quite!

• Calculations suggest a thermodynamic contribution 
(linear reversal).

• But
• Energy transfer channels are not well represented

• What is the origin of the field – Inverse Faraday Effect?

• Electron/phonon coupling plays a role

• Role of the R-E – is this important?

• These require detailed studies at the ab-initio level – the 
multiscale problem still remains!

53



Computational 
Magnetism Group

Multiscale approaches to sub-picosecond heat driven magnetisation reversal 5454

Conclusions

•Atomistic model has been developed using Heisenberg 
exchange.
•The Landau-Lifshitz-Bloch (LLB) equation incorporates 
much of the physics of the atomistic calculations
•LLB-micromagnetics is proposed, essentially using the 
LLB equation in a micromagnetic formalism.
•LLB-micromagnetics is shown to be successful in 
simulating ultrafast dynamics at elevated temperatures. 
Important for pump-probe simulations and models of 
HAMR. Also thermally assisted MRAM?
•New (linear) reversal demonstrated with sub-picosecond
reversal times
•Demonstrates the probable thermodynamic origin of 
Opto-Magnetic reversal.
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Future  developments

• Micromagnetics will continue as the formalism of 
choice for large scale simulations under normal 
conditions of temperature and timescale

• However, atomistic and multiscale calculations 
are vital for ultrafast dynamics

• Challenges
• Picosecond dynamics
• Damping mechanisms
• Introduction of spin torque
• Link between magnetic and  transport models
• Models of atomic level microstructure are necessary. 

(The ultimate problem of magnetism vs microstructure?)
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