
Experiment 2.5: The Diffusion Equation

Introduction

Many physical processes fall into the category of diffusion. Diffusion is a very broad
concept, and occurs in a wide variety of situations. It is the progressive drift of some
quantity in space away from a region of higher concentration, to a lower. It is due
to a tendency of particles to move away from the region of high density inhibited by
collisions either with some background fluid or gas, or indeed between the particles
themselves. The phenomenon is characterised by a high collision rate, such that the
mean free path is much smaller than the characteristic distance associated with the
concentration gradient. The particles therefore undergo rapid collisions and execute
a random walk. The diffusion of the particles is governed by a diffusion coefficient
which may depend on the concentration of the particles. Under these circumstances
the diffusion equation governing the time evolution of the concentration becomes non-
linear. In this experiment you will develop a finite difference solution to the normal
(linear) diffusion equation and test this by comparison with the equilibrium (t = ∞)
solution.

Objectives

• To construct the diffusion equation and obtain a form for the equilibrium solution.

• Develop a scaled form for the diffusion equation convenient for numerical calcu-
lations.

• To develop code for the simulation of diffusion in a potential.

• To test the results of the code against the equilibrium solution.

• To use the code to study the time dependence of the concentration in a colloidal
dispersion.

Diffusion in a potential

Consider an ensemble of particles of mass m suspended in a fluid of viscosity ξ. Initially
there is a uniform distribution of the particles throughout the height h of the column.
Due to the gravitational force the particles will drift downwards with a drift velocity v.
This will give rise to a concentration gradient and a net diffusion from the higher to the
lower concentration regions. Thus we have 2 opposite currents or fluxes of particles.
In equilibrium these currents will be equal and the concentration at a given point will
become static. Consider first the flux due to diffusion. This is given by Fick’s law

~Γdiff = −D∇n (1)

where n is the concentration and D is the diffusion coefficient. ~Γ is the flux, which is
the number of particles per second crossing unit area. Fick’s law just represents the
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process of a transfer of particles away from regions of high concentration (-ve sign), by
a diffusional process resulting from the random walk.
In the presence of a potential, there is also a force on the particles, which gives rise to
a ’drift’ current. In the case of the gravitational field the force is mg. If the particle is
travelling at a velocity v in a medium of viscosity ξ, then the force is

F = mg − ξv. (2)

Here, ξ is the viscous drag on the particle, given by

ξ = 3πηd, (3)

where d is the particle diameter and η is the viscosity of the fluid.
The velocity will increase until the particle reaches its terminal or drift velocity, at
which point the force vanishes and thus the drift velocity can be taken as

v = mg/ξ (4)

It is straightforward to show that the flux arising from the drift velocity is

Γdrift = nv (5)

It is easy to show that, since the quantity n is conserved (the net flux from a closed
volume is balanced by a change of n),

∂

∂t

∫
v

ndV = −
∫
S

~Γd~S, (6)

and using Gauss’ law (
∫
S
~Ad~S =

∫
V
∇. ~AdV ) on the RHS we get that

∂n

∂t
= −∇~Γ = ∇.(D∇n) (7)

Exercise

1. Construction of the Diffusion equation. For a column of particles settling
under gravity derive an expression for the rate of change of concentration at a
given height z, assuming that D is constant. We do this by constructing the
expression for the flux and using equ 7. For the 1-D case we are considering,
the diffusive flux is −D∂n/∂z and the flux due to the downward drift in the
gravitational field is −nv. Therefore the total flux is

Γ = −D∂n
∂z
− nv, (8)

so we have
∂n

∂t
= D

∂2n

∂z2
+ v

∂n

∂z
. (9)
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2. Equilibrium solution. In equilibrium (as the time t→∞), ∂n/∂t→ 0. Under
these circumstances use the fact that the flux at any height must be zero to
show that the variation of n with z is identical to the expression derived from
the Boltzmann energy distribution, which states that the probability of a level
with energy E being occupied is p(E) ∝ exp(−E/kT ). By comparison derive
an expression for the Diffusion Coefficient D for particles moving in a fluid of
viscosity ξ.

3. Scaled form of the PDE. It is often very convenient for computational and
analytical purposes to cast a PDE in scaled or dimensionless form. In this case
the scaling can be carried out based on parameters arising from the equlibrium
solution. In this case show that the diffusion equation can be written in the
following scaled form

∂ñ

∂τ
=
∂2ñ

∂z̃2
+
∂ñ

∂z̃
, (10)

where the parameters ñ = n/n0 with n0 the average concentration, z̃ = γz with
γ = mg/kT with m the effective mass of the particle (taking into account the
density of the background fluid), and τ = t/t0 with t0 = 1/(γ2D) = kT/mgv.
Note that this analysis has produced a characteristic lengthscale z0 = 1/γ and
timescale t0.

4. Coding. Write code to solve the diffusion equation you have developed, using a
finite difference representation. To do this you can use the Finite difference ex-
pressions for the gradient and second derivative given in Appendix 1. This allows
calculation of the RHS of Eq. 10, and the value of ñ is updated using a simple
Euler scheme (Also given in Appendix 1). Calculate the variation of concentra-
tion with height and time and show that in the limit of t → ∞ the numerical
variation of n with z obeys the analytical expression. NB Code developments
in computational physics will normally involve studying simple cases
for which analytical solutions exist so that numerical schemes can be
tested.

5. Initial and boundary conditions. You should simulate the gravitational set-
tling of a colloid consisting of nanoscale particles dispersed in some background
fluid. Often these are produced by chemical deposition techniques, giving par-
ticles of some solid phase in a solvent. The particles are initially uniformly
distributed throughout the height of the vessel, so the relevant initial condition
is ñ(τ = 0) = 1.0. The colloid is constrained by the walls of the vessel, and we
can consider 1-D diffusion since the particles are settling under gravity. We also
assume that the particles are not allowed to escape from the top of the fluid col-
umn. This means that if the column is of height h, there can be no flux through
the planes at z = 0, h. Show that this requirement leads to a condition for the
value of ∂ñ

∂z̃
at z = 0, h. How to introduce this into the code? These are referred

to as Neumann boundary conditions (constant gradient) and the computational
technique is described in the year II continuum mechanics course, reproduced in
appendix 1.
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Show that this gives rise to ñ(0) = ñ(1) 1
1−∆z

at the lower boundary and derive
the equivalent boundary condition for the upper boundary.

The boundary conditions can alternatively be implemented by appending an
extra site to each end of the system. The evaluation of the density proceeds
identically for each site in the system, including the two end sites. Any diffusion
that occurs across the system boundaries is necessarily into the two additional
simulation sites. At the end of each time-step, the fluid density at these extra
sites is set to zero, and an equivalent density is added to the adjacent site within
the system.

That is after having done the time evolution for that time step we correct the
system by carrying out ñ(1) = ñ(1) + ñ(0) and reset ñ(0) = 0, with equivalent
behaviour required for the top.

6. Experiments. Use the code to study the time evolution of the concentration
profile,ie ñ(z̃, τ). This should be done as a function of the height h. Show that the
expected equilibrium profile is achieved as τ →∞, What are the corresponding
times involved? Calculate the scaling parameters for the settling of a dispersion
of Cobalt particles in a fluid of density 1kgm−3 and a viscosity of 0.001kgm−1 ,
and a column height of 10cm. Use your model to predict the equilibrium profile
and the timescale for the settling for particle sizes of 5nm and 10nm. NB, an
important test of your code arises from the fact that the imposed boundary
conditions should conserve the number of particles, ie your solution should obey
the condition

(γh)−1

∫ hγ

0

ñ(τ)dz̃ = ñ(0). (11)

You should use this as a test of the accuracy of your integration scheme.
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Appendix 1: Finite difference representation

In terms of the finite difference representation the first derivative can be written as

∂y

∂x
= (yi+1 − yi−1)/(2∆x) (12)

and the second derivative as

∂2y

∂x2
= (yi+1 − 2 ∗ yi + yi−1)/(∆x2) (13)

where ∆x is the finite interval in the independent variable.

Euler integration scheme.

This is the simplest way to integrate a differential equation. If we expand a function
y(t) about t = t0, this gives

y(t) = y(t0) + y′(t0)(t− t0) +O((t− t0)2), (14)

where y′ is the first derivative. To first order,

y(t0 + ∆t) = y(t0) + y′(t0)∆t, (15)

in other words the function is updated based on the value at the previous timestep
and the gradient of the function. In the case of the solution of Eq 10,

ñ(τ0 + ∆τ) = ñ(τ0) +
∂ñ

∂τ
∆τ, (16)

with∂ñ
∂τ

calculated from Eq. 10.

Boundary conditions.

The nature of the boundary conditions influences our choice of mesh, i.e. where we
place the physical boundary with respect to the mesh.

Gradient (Neumann) conditions: Since the finite difference value of the gradient is
formed by the difference at two adjacent mesh points, say 0 and 1, the boundary will
lie at the midpoint 1/2.
The gradient at the left boundary is equated to (N1 − N0)/∆x. Given that the gra-
dient and N1 are known, this fixes the value for N0 to be used in the finite difference
calculation. Similarly, if the number of mesh points is I, the right boundary is placed
at (I + 1/2) and the value of the gradient there used to obtain NI+1.
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