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Experiment 2.6: One-Dimensional Schroedinger Equation

I ntroduction

At the core of quantum mechanics lays the dualism betwesditlegrand waves, by which
a particle — e.g. an electron — will display particle or wawehaviour according to the
characteristics of the system (e.g. its typical lengthsl)the quantities we want to measure.
The Schroedinger Equation (SE) is the fundamental equatiqquantum mechanics, and
its solutions provide us with the wave description of pdesc their time evolution when
interacting among each other or with external potentiatstheir — quantised or not — cor-
responding energies.

In this experiment we will consider the time-independerirSedinger Equation — a second
order differential equation — for a single particle in onendnsion, in an external confining
potential given by a square box. The modulus square of theisnolto this equation — the
wave function — will give the probability that the particlefound at certain point x in space
in an experimental measurement.

This SE equation is given by
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Y(z) the quantum mechanical wave function, m the mass of thecfmend E its energy.
The boundary conditions are given byx — +oco) = 0. The potential/(x) is sketched in

Fig.1. We will consider the dimensionless urilis /7 = 1.

In this experiment we shall use the “shooting method” to wal®e the correct particle en-
ergy E and the (2,2) Runge-Kutta method, as developed inriexpet 2.2 to integrate the
Schroedinger equation.

Objectives
¢ to solve computationally an eigenvalue problem, i.e. adgffitial equation of the form
d2
[—@ + V(@)y(z) = Ey(x), )

which presents multiple solutions and where both the smh(s)v (z) and the num-
ber(s)E are unknown.

e to analyse computationally how the behaviour of the soh#tio(z) and the energies
E changes as V(x) is varied

e to compare the numerical solution with an exact limitingecas



Experiment

The confining potential’(x) presents a square-well structure characterised by itshwidt
L = 4 and its height/}, (see Fig.1).

1. Find the lowest bound enerdy; when1j = 10. Plot the corresponding wave func-
tion ¢, (x) (renormalise your plot so that its maximum or its integralermalisation
condition —is equal to 1) and the derivative of the logaritbiithe solution (DLS) you
have used to find the corregt;.

2. Are there any other bound solutiofs, Fjs...for this system? If so, estimate their
values by plotting the corresponding DLS.

3. Study howFE; andy, (z) change a%j is increased. Plot your results fél versusl
and the wavefunctions, (x) for some representative valuesigf. Renormalise your
plot so that the wave functions are comparable, e.g. theggmal is always equal to 1
(normalisation condition).

4. Compare your numerical solutios and; (=) obtained for largé/, with the exact
solutions for an infinite square welV{ = oc), which is given by:

E, = (4)

Uala) = \@ sin(~-). (5)

Plot the comparison between the exact and the numetigal). How largel;, must
be such that; andy, (z) can be approximated by these limiting exact solutions?

and

5. How largel, must be such that alsb, (E3) andis(z) (v3(x)) can be approximated
by the limiting exact solutions, WithZ,, ;... — Ey ezact|/ En ezact Of the order of few
percent? Plot the DLS used to support your answer and the aasop between the
exact and the numerical wavefunctions.

(hint: to find the correct solutions you will have to integrdahe SE over a box of width
[ > L, imposing the boundary conditions at its borders. The pregiof your solution will
depend on the size | of this box and on the interval dx you veé to integrate the SE with
the Runge-Kutta method).

Shooting method

This method finds the solutions to a differential equatiorewthe value of a parameter as
well as the solution to the differential equation must benat the same time.

In the case of Eqg. (1) the parameter is the energy E and, fgrahesle in the box, solutions
will be allowed only for specific, discrete values of E, ife., Es,....

Main idea: Eq. (1) will be solved many times by varying thewesbf E and only the values
which will satisfy the boundary conditions and provide ¢oabus solutions will be accept-
able energies.



Figure 1: Confining potentidl (z)

b v(x) b vx)
E= Etrial 3 E=Ecorrect '

Figure 2: shooting method

In our case, since the boundary conditions are set at theebofdhe box, we will solve
Eq. (1) from left ¢, (z; F)) and right ¢z (z; F)) using the Runge-Kutta method. The correct
energies E will be the values for which the solutions andrtikeiivatives match at the centre
z = 0. This is described in Fig.2, with the notatienz) = ¥ (z) andzy(x) = dy/dx.
Boundary conditionsy, gp(z — o00) = 0; dipp(x — o0)/dx = s, dyg(z — 0)/dr = —s.
(hint: you can choose = 1; if your box is very large, you may want to reduce the value of
s)

Since both)(x) anda)(x) are solutions of the SE, the matching conditieng0) = z1z(0)
andzy., (0) = z2£(0) reduce to a single condition

ZQL(O) _ ZQR(O)
ZlL(O) ZlR(O) ’
i.e. the derivative of the logarithm of the solution (DLS) shumatch at the centre. By

plotting DLS for the R and L solutions versus the paramétatris then possible to find the
solutions to Eq.6 and to our problem.

(6)

(2,2) Runge-Kutta method

Eqg. (1) can be rewritten as a system of two coupled diffea¢Bjuations

d
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The time interval of interest is then discretisednirsteps of widthh. This parameter will
determine the accuracy of the solution, the error being déns(h?).



The solutions to Eq. (7) and (8) at tlie+ 1)-th step are given by

K1+ K
Yiiv1r = Yrit e 5 = 9)

Ky + K
Y2,i+1 = Y2, % (10)

with

Kin = hfi(ti, y1i,92:) = Kn (11)
Koy = hfolti,yri,y2,) = Kio (12)
Ky = hfa(ti+h,yri + Ko, y2, + Koo) (13)
Ky = hfi(ti+ hyyii + Ki,y2 + Ki2). (14)

To initialise the calculation it is sufficient to provide thalues ofy; andy, at the chosen
initial time ¢.

To test the method it is convenient to consider, as a first siggstem of differential equa-
tions whose solution is known. In any case it is importantteak if the value chosen far
is appropriate for the precision required by the problem.



