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Experiment 2.6: One-Dimensional Schroedinger Equation

Introduction

At the core of quantum mechanics lays the dualism between particles and waves, by which
a particle – e.g. an electron – will display particle or wave behaviour according to the
characteristics of the system (e.g. its typical lengths) and the quantities we want to measure.
The Schroedinger Equation (SE) is the fundamental equationin quantum mechanics, and
its solutions provide us with the wave description of particles, their time evolution when
interacting among each other or with external potentials and their – quantised or not – cor-
responding energies.
In this experiment we will consider the time-independent Schroedinger Equation – a second
order differential equation – for a single particle in one dimension, in an external confining
potential given by a square box. The modulus square of the solution to this equation – the
wave function – will give the probability that the particle is found at certain point x in space
in an experimental measurement.
This SE equation is given by

d2ψ(x)

dx2
+ k2(x)ψ(x) = 0, (1)

with

k2(x) =
2m

~2
[E − V (x)], (2)

ψ(x) the quantum mechanical wave function, m the mass of the particle and E its energy.
The boundary conditions are given byψ(x → ±∞) = 0. The potentialV (x) is sketched in
Fig.1. We will consider the dimensionless units2m/~2 = 1.
In this experiment we shall use the “shooting method” to calculate the correct particle en-
ergy E and the (2,2) Runge-Kutta method, as developed in experiment 2.2 to integrate the
Schroedinger equation.

Objectives

• to solve computationally an eigenvalue problem, i.e. a differential equation of the form

[−
d2

dx2
+ V (x)]ψ(x) = Eψ(x), (3)

which presents multiple solutions and where both the solution(s)ψ(x) and the num-
ber(s)E are unknown.

• to analyse computationally how the behaviour of the solutionsψ(x) and the energies
E changes as V(x) is varied

• to compare the numerical solution with an exact limiting case.
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Experiment

The confining potentialV (x) presents a square-well structure characterised by its width
L = 4 and its heightV0 (see Fig.1).

1. Find the lowest bound energyE1 whenV0 = 10. Plot the corresponding wave func-
tion ψ1(x) (renormalise your plot so that its maximum or its integral – normalisation
condition – is equal to 1) and the derivative of the logarithmof the solution (DLS) you
have used to find the correctE1.

2. Are there any other bound solutionsE2, E3. . . for this system? If so, estimate their
values by plotting the corresponding DLS.

3. Study howE1 andψ1(x) change asV0 is increased. Plot your results forE1 versusV0

and the wavefunctionsψ1(x) for some representative values ofV0. Renormalise your
plot so that the wave functions are comparable, e.g. their integral is always equal to 1
(normalisation condition).

4. Compare your numerical solutionsE1 andψ1(x) obtained for largeV0 with the exact
solutions for an infinite square well (V0 = ∞), which is given by:

En =
n2π2

L2
(4)

and

ψn(x) =

√

2

L
sin(

nπx

L
). (5)

Plot the comparison between the exact and the numericalψ1(x). How largeV0 must
be such thatE1 andψ1(x) can be approximated by these limiting exact solutions?

5. How largeV0 must be such that alsoE2 (E3) andψ2(x) (ψ3(x)) can be approximated
by the limiting exact solutions, with|En,num − En,exact|/En,exact of the order of few
percent? Plot the DLS used to support your answer and the comparison between the
exact and the numerical wavefunctions.

(hint: to find the correct solutions you will have to integrate the SE over a box of width
l > L, imposing the boundary conditions at its borders. The precision of your solution will
depend on the size l of this box and on the interval dx you will use to integrate the SE with
the Runge-Kutta method).

Shooting method

This method finds the solutions to a differential equation when the value of a parameter as
well as the solution to the differential equation must be found at the same time.
In the case of Eq. (1) the parameter is the energy E and, for theparticle in the box, solutions
will be allowed only for specific, discrete values of E, i.e.E1, E2,. . . .
Main idea: Eq. (1) will be solved many times by varying the value of E and only the values
which will satisfy the boundary conditions and provide continuous solutions will be accept-
able energies.
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Figure 1: Confining potentialV (x)
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Figure 2: shooting method

In our case, since the boundary conditions are set at the border of the box, we will solve
Eq. (1) from left (ψL(x;E)) and right (ψR(x;E)) using the Runge-Kutta method. The correct
energies E will be the values for which the solutions and their derivatives match at the centre
x = 0. This is described in Fig.2, with the notationz1(x) = ψ(x) andz2(x) = dψ/dx.
Boundary conditions:ψL,R(x → ∞) = 0; dψL(x → ∞)/dx = s, dψR(x → ∞)/dx = −s.
(hint: you can chooses = 1; if your box is very large, you may want to reduce the value of
s)
Since bothψ(x) andαψ(x) are solutions of the SE, the matching conditionsz1L(0) = z1R(0)
andz2L(0) = z2R(0) reduce to a single condition

z2L(0)

z1L(0)
=
z2R(0)

z1R(0)
, (6)

i.e. the derivative of the logarithm of the solution (DLS) must match at the centre. By
plotting DLS for the R and L solutions versus the parameterE it is then possible to find the
solutions to Eq.6 and to our problem.

(2,2) Runge-Kutta method

Eq. (1) can be rewritten as a system of two coupled differential equations

dy1

dt
= f1(t, y1, y2) (7)

dy2

dt
= f2(t, y1, y2). (8)

The time interval of interest is then discretised inn steps of widthh. This parameter will
determine the accuracy of the solution, the error being of ordero(h3).
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The solutions to Eq. (7) and (8) at the(i+ 1)-th step are given by

y1,i+1 = y1,i +
K11 +K2

2
(9)

y2,i+1 = y2,i +
K22 +K1

2
(10)

with

K11 = hf1(ti, y1,i, y2,i) = K21 (11)

K22 = hf2(ti, y1,i, y2,i) = K12 (12)

K1 = hf2(ti + h, y1,i +K21, y2,i +K22) (13)

K2 = hf1(ti + h, y1,i +K11, y2,i +K12). (14)

To initialise the calculation it is sufficient to provide thevalues ofy1 andy2 at the chosen
initial time t0.
To test the method it is convenient to consider, as a first step, a system of differential equa-
tions whose solution is known. In any case it is important to check if the value chosen forh
is appropriate for the precision required by the problem.
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