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Abstract

In this thesis I will present a method of crystal structure prediction which is
based upon Genetic Algorithms, which allows for truly ab initio crystal struc-
ture prediction. This method is outlined by presenting results on systems us-
ing the Lennard—Jones potential. An extension to this method is then derived
which improves convergence to the minimum enthalpy structure using the
Structure Factor in a method which allows the discrimination of structures as

the calculation is progressing.

The technique is then extended to systems where the cell of the structures is not
known, in the study of 4-atom carbon polymorphs using Density Functional
Theory. This technique is then applied to study the high—pressure phases of
the Dzugutov potential, finding three new phases that have not previously
been reported. Future avenues of research and extensions to this method are

then discussed.
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Chapter 1

Introduction

1.1 What is a Potential Energy Surface?

There are many problems for which it may be easy to determine a good so-
lution, but in where it is difficult to find the best solution. What is the best
configuration of atoms? What is the best route for an encyclopedia salesman
to take between cities? What is the optimal configuration of transistors on
a microchip? These problems will have many solutions that will exist, only
one (or a small number) of which will be optimal. For each solution there
will be a measure of how good that solution is. This measure can be used to
define a potential energy, V (r), of the system which is a function of the sys-
tem co-ordinates. For a system of N atoms the potential energy surface is a 3N—
dimensional object embedded in a 3N + 1-dimensional space, where the extra
dimension is the value of the potential energy at each point [Wales, 2003].

Genetic Algorithms fall into a class of optimisation algorithms that are de-
signed for the global optimisation of systems. There are a large number of
very efficient strategies for locally optimising a structure (some of which will
be described in section 2.2). In local optimisation the system is “relaxed” until
there are no net forces on any of the atoms. The resulting configuration will
be a valid “solution” which exists in the space defined by the potential en-
ergy function, however there is no guarantee that it is the lowest energy (and
hence the “best”) configuration of all the possible configurations. Global op-
timisation methods are techniques in which the lowest energy solution can be
found. Some methods are deterministic and will search the whole of the po-
tential energy surface exhaustively, and others are stochastic and search in a
random manner. Genetic Algorithms fall into this latter category — although
they retain a memory of previous parts of the potential energy surface that

have already been searched.
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Chapter 1 Introduction

1.2 Application to Crystallography

Maddox [1988] stated that “one of the continuing scandals in the physical sci-
ences is that it remains in general impossible to predict the structure of even
the simplest crystalline solids from a knowledge of their chemical composi-
tion”. Eighteen years later the situation is much the same. While there are
many efficient techniques that can be used to relax a configuration of atoms,
there is no guarantee that this is the most stable configuration. A systematic
search of the potential energy surface in not feasible in the 3N-dimensional
energy landscape for more than a handful of atoms.

For larger systems, a stochastic approach is useful. Simulated Annealing meth-
ods (see section A.2) are very good for small systems, involving the determina-
tion of the minimum energy configuration of atomic clusters. However, sim-
ulated annealing rapidly becomes unfeasible as the system size increases (see
section A.2.2). Comparable results have been shown in similar systems for
Genetic Algorithms (see section A.3), but in this technique as the system size
increased the method was still able to determine the global minimum solution
(see section A.3.1). If this method gives good results for non—periodic atomic
systems, perhaps it would show similar scaling and results in periodic systems

as well.

Chapter 2 describes the work done on solid state systems using Genetic Al-
gorithms and chapter 3 outlines some different techniques for calculating the
energy of the system. After the basics of these previous Genetic Algorithm
methods have been explained the new method developed that is suitable for
use on periodic systems will be outlined in chapter 4. The work described in
chapter 6 will explain how this method can be applied to systems where the
cell of the crystal of interest is unknown, and apply this method within an ab
initio framework. I will also explain some subtleties that need to be considered
when using Genetic Algorithms in this first principles approach.

Following on directly from the work in chapter 4, I will derive in, chapter 5, an
expression that can aid the differentiation of structures during the course of a
calculation. I have also applied this method to search for phases of materials at
different pressures and the results of these calculations can be seen in chapter
7. I will make conclusions on the technique that I have developed in chapter
8, and in chapter 9 I will describe some ways in which the technique could be
extended. In appendix A I present results I obtained early on in my PhD when
I compared the Simulated Annealing method with Genetic Algorithms. The
contents of appendix B are left to the reader to digest at their own leisure.
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Chapter 2

The State of the Art

2.1 Introduction

Before I can describe what developments to genetic algorithm (GA) techniques
have been made in the field of solid—state physics and chemistry, I shall first
describe what a genetic algorithm is, both as it has been developed historically

and in its application to solid—-state systems.

I will then describe the previous advances made in this area, and the systems
that have been studied by these techniques. Following this, I will also outline
some other global optimisation techniques that have been utilised to study
similar problems to which genetic algorithms have also been applied. Due to
some computational issues that must be addressed when performing calcu-
lations using this method I must also outline the basics of density functional
theory (DFT).

Firstly however, I will describe some methods of local optimisation. Some GA
techniques require a local optimiser to be used within the GA framework.
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2.2 Local Optimisation

The potential energy surface can be thought of as a multi-dimensional system
of hills and valleys with saddle points connecting them. If you placed a ball on
one of the slopes at random it would roll downhill until it reached the bottom
of a valley. This valley is the “local basin of attraction” for the ball on the
potential energy surface. A direct minimiser will minimise the energy of the
structure to the minimum of the local basin of attraction, which may or may

not be the global minimum (see figure 2.1).

0 T T T

basin of attraction basin of attraction

\/\
] /

potential energy surface
] ]

195}
N

0 1 2 3 4 5) 6

Figure 2.1: A 2-Dimensional representation of a potential energy surface, with
two basins having minimum energy solutions of §; and $. Four initial struc-
tures exist on the PES, S} and S/ (which minimise to S;), and S, and S (which
minimise to $). After minimisation this reduces the number of structures to
two.

2.2.1 Line Minimisation — Golden Section Search

The line minimisation step is very important in local minimisation techniques.
The local minimisation step chooses the search direction (different methods
choose this direction more intelligently than others), but the line minimiser
finds the minimum in the direction chosen. I will describe the golden section
search algorithm Polak [1971], which uses the Fibonacci fractions to improve
efficiency over the similar method of bisection search. There are other line

minimisation methods that can be used.

The procedure is described in Algorithm 1. The energy tolerance & and the
end—-point of the search p must be supplied from the local minimiser. This
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(1)

Figure 2.2: Golden Section search

method makes use of two important parameters, F; = (3 — \/5) /2 ~0.38, and
F> = (v/5—1)/2 ~ 0.618. These values of these numbers are chosen such that
they give F1 and F; the properties that F, =1—F; and F; = (Fz)z. The value 1
is returned, which minimises the function 6 (u) = f (u+Ah(u)) — f (1), where

h(u) is the search direction (see figure 2.2 for a graphical description).

2.2.2 The Method of Steepest Descents

One of the simplest direct minimisation techniques is steepest descents. The
minimisation starts at the initial configuration xg), and a step direction is cho-
sen in which f (x(j)) decreases the quickest, which is opposite to Of (x). The
function in this direction is minimised by a line minimisation search (see previ-
ous section), and then —[If (x(i)) is recalculated and the function is again min-
imised in the search direction. This continues until (by a convergence criterion
being reached, usually on the change in energy of the system, or a change in
forces on the system) it is decided that the function is at the bottom of the basin

of attraction.

2.2.3 The Conjugate Gradient Algorithm

The method of conjugate gradients is a direct minimisation method which
chooses the search direction more intelligently than steepest descents. I will
describe the Polak—Ribiere method as described in Polak [1971] (as outlined in
Algorithm 2).
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Algorithm 1 Golden Section Search
calculate 6(p) and 6(0)

2: if 8(p) > 6(0) then
3:  setag=0,bp=pand go tostep 13
4: end if

5: seti=0, up=0
6

7

8

9

—_

cset hip1=Hi+p

: calculate 6(Li+1)

. if O(Hi+1) > O(Y;) then

:  setag= Hi—1, bp = Hi+1 and go to step 13
10: else
11: seti=i+1and go to step 6

12: end if

13: set j=0

14: setlj = (bj —aj)

15: if |; < € then

16:  go to step 24

17: end if

18: set vj :aj+F1I,-,wj :aj+F2Ij

19: if B(vj) < B(w;j) then

20:  setajiq =aj, setbj; 1 =wj,set j=j+1and go to step 14
21: else

22:  setaj;1 =Vj,setbj 1 =Dbj,set j=]+1and go tostep 14
23: end if

24: set I = (a; +Dbj)/2 and STOP

This method may need restarting when the method has difficulty choosing a
new direction. If so, setting yi = 0 will achieve this, and is the equivalent of
performing one steepest descent step. It should be noted that another simi-
lar method, the Fletcher-Reeves conjugate gradient method, is identical to the
Polak-Ribiere method, except y has the form

(Gi+1,9i+1) ‘

=g

where the (g;,bj) notation describes taking the dot—product between vectors a
and b.

2.24 The BFGS Algorithm

The method that shall be used in this study is that of Pfrommer et al. [1997]
which has advantages over other methods because the cell symmetry is pre-
served, whilst allowing the relaxation of both the atomic co-ordinates and the

cell shape. This is an extension to the original BFGS algorithm.
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Algorithm 2 Polak-Ribiere Conjugate Gradient Method

1:

10:
11:
12:

13:

selecta zg € R"
if 0f (zp) =0 then
STOP
end if
seti =0and set go = hg = —0Of ()
calculate Aj > 0 such that
f(z+Ahi)) =min{f(z+Ah)|A >0}
using a line minimisation technique such as described in section 2.2.1.
set
Z1=127+Aih;
calculate Of (z41)
if Of (z11) =0 then

STOP
else
set
Oiv1=—-0f(z41)
~ (Gi+1—Gi,Gi+1)
VI —
(9i,9i)
hit1=0it1+yhi
then seti =i+ 1and go to step 6
end if

The BFGS algorithm is a quasi-Newton method that accumulates information

about H, the inverse of the Hessian matrix A, and uses this information to

determine the search direction on the potential energy surface.

The full state of the system is defined by the matrix of lattice vectors, h= [a, b, c]

and the fractional co-ordinates of the atoms in the cell, s, i = 1,...,N which

are defined in terms of the h matrix. The volume of the cell is Q = det (Q)

Pfrommer et al. [1997] chooses the finite strain tensor € as a free variable instead

of h. It stretches a reference configuration hp to h = <]l + g) ho. This method

allows € to be asymmetric.

With an applied pressure, p, it is the enthalpy, 3 = E + pQ, in the (3N+9)-
dimensional space which we are attempting to optimise <where H=H <§ 'S, ,SN>> :

A point in configuration space is given by a column vector X where the first

nine components are the strain tensor, and the rest are the fractional atomic

co-ordinates. The force vector of the system is defined as

0H

F="x

2.1)

P

The first nine components in F from equation 2.1 are
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&) = _ (g4 pQ) <1+§T> o (2.2)

where

o= - (2.3)

£=0

The other 3N components of F are obtained by multiplying the forces on the
atoms, fq,..., fn, with the metric tensor g= QTQ so that

F= <f(s),gf1,...,ng) (2.4)

If we are sufficiently close to the minimum Xmjn then the change in enthalpy

can be approximated by

5 = = (X — Xerin) L - A+ (X — Xerin) (2.5)

NI =

If we were close to Xmin then the knowledge of the Hessian matrix, A would
mean that the exact minimum of the local basin of attraction would be found
in one step. However A is unknown, and the basis of quasi-Newton schemes
is to start with an initial guess for A and improve on this guess as knowledge
of the potential energy surface is determined as the algorithm proceeds. To
aid computational matters it is in fact the inverse of the Hessian matrix that is

approximated, H = A~1. The update step is

Xis1 =% +ADX (2.6)
AX =HiF (2.7)

where F; is F evaluated at X; and A is the step length along the step direction AX;
that could have been determined by any line minimiser such as that described

in section 2.2.1.

The BFGS scheme only requires an initial guess, Ho, for H and updates this
guess by
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+ [(FI —F_1)-Hi—1(F — H_l)} UuoUu (2.8)
where
_ (X —Xi—1 B Hi-1(F—F_1)
V= (X —Xi_1)-(F—F_1) (F—F_1)-H_1(F—F_1) (2.9)

If the enthalpy was perfectly quadratic in X — Xin then H — A1 after the num-
ber of steps is the same as the number of degrees of freedom in the system.
Pfrommer et al. [1997] provides details as to how to initialise Ho. There is a de-
bate as to the advantage of conjugate gradient methods (section 2.2.3) over
quasi-Newton methods (a disadvantage is the amount of storage required
in quasi-Newton methods). Quasi-Newton methods have been around for

longer and, as such, are more developed.

Algorithm 3 The BFGS algorithm
1: Initialise Hessian Matrix Hg

2: Evaluate forces Fy of initial positions Xg from equation 2.4

3: Update positions using equations 2.6 and 2.7 and line minimisation proce-
dure such as one described in section 2.2.1

4: Evaluate forces on new positions X;

5: Update the Hessian matrix Hj using equation 2.8

6: Continue until a convergence criterion is reached. If not, goto step 3.

29



Chapter 2 The State of the Art

2.3 Genetic Algorithms

Genetic Algorithms (GAs) were first suggested by John H. Holland in his book
Adaption in Natural and Artificial Systems [Holland, 1992], first published in
1975. He had noticed that simple representations (in his case, bit strings)
could encode complicated structures, and that simple transformations could
improve these structures. A basic outline of a genetic algorithm is shown in

figure 2.3, where “crossover” defines performing a mating operation.

Generate Initial Random Population

'
Calculate Fitness of Population

1

Select Population Members for Crossover

1

Perform Crossover

Y
Perform Mutation

'
Select Population Members for Update

1
Update the Population

Y

Figure 2.3: A basic outline of a genetic algorithm. One passage though the loop
represents one generation.

It is a stochastic global optimisation method based on “survival of the fittest”.
This is a computational technique which is used to solve problems in which

there are many potential solutions, only one of which is optimal.

A GA has five main parts, representation, fitness, selection, crossover and mutation.
The method proceeds through generations until it is determined that the global
minimum has been reached. The size of the population is usually fixed, and
each member of the population contains a complete set of parameters for the

function being searched.

A set of candidate solutions to the problem being studied are generated at
random and are grouped together into a population, with each solution being
a member of this population. This randomness is important, since we do not

wish to bias the solution in any way, and it is also this randomness that makes
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this method a truly ab initio search technique.

There needs to be a way of determining the fitness of each member, i.e. some
way of telling which members are better or worse solutions to the problem
than the other members. It is this fitness function which defines the problem.
For some problems the fitness function is quite complicated, but for others
it can be quite a simple form. This function may have some form of absolute
measure of the fitness of a member, but usually in solid—state physics problems

it is a relative measure between all the members of the population.

Population members will be chosen or selected, based on their fitness, to be-
come parents to produce offspring in a breeding procedure known as crossover.
Crossover involves creating one or more offspring which are a combination of
features from their parents. The selection process is quite important in pre-

venting the system stagnating through the generations.

Stagnation occurs when one good but not optimal structure will be found which
biases the system away from the global minimum solution and the population
becomes “trapped” in this local minima. I will discuss solutions to prevent
stagnation in more detail in chapter 5. The form of the fitness function is im-
portant in this, but the way that members are selected is also important and

will be discussed in more detail in section 2.3.3.

Each population member needs to be encoded or represented in some way such
that crossover can be performed in a systematic way. The form of this rep-
resentation is very important since it can affect how stable salient features of
members are during the crossover procedure. A representation that is most
efficient for crossover steps may be less efficient when considering fitness cal-
culation. Representation will be discussed further in section 2.3.1.

The offspring may be mutated after crossover, which involves making changes
to offspring in a random way which could introduce new, and possibly bene-
ficial, aspects into the population.

Using each member’s fitness the population is updated by only allowing some
population members to survive into the next generation; the rest of the pop-
ulation members will be discarded. After this step the process begins again.
The system evolves as new members are created and bred. While there is no
guarantee of reaching the global minimum solution, good local minimum so-
lutions should be found, and there are some tricks that can be played to aid
convergence to the minimum energy solution which shall be discussed later in

chapter 5.

While I describe the methodology of GAs I will describe the general binary
(bit-string represented) approach, and also the approach as applied to real
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space systems, which is my area of interest. There are not enough pages al-
lowed for this thesis to do a full study of the minutiae involved in genetic
algorithms in particular, or evolutionary algorithms in general, so I will focus
on how genetic algorithms have been used in solid—state problems, in partic-
ular to show the logical progression of concepts that resulted in the technique
that was developed for this thesis.

2.3.1 Representation

Traditionally, the values of GA population members have been represented by
bit-strings directly, although this is no longer necessary for all systems, such
as the solid—state physics systems that I shall describe. This representation
method is analogous to that of DNA, and gives many advantages in terms of
crossover and mutation (which shall be discussed below). However, it is often

complicated to decode these strings to determine the fitness of the structure.

A bit string representation is very simple; strings of ones and zeroes would
be randomly generated, e.g. 11010011, 01011001 etc., and these would form
the initial population. The strings may be of fixed length or, more rarely, be
of variable length [Harvey, 1992]. This string is also termed a chromosome with
each individual bit also being called a gene.

A different representation system, a real-space approach suggested by Deaven
and Ho [1995], was applied to clusters of atoms. In this method, the mem-
bers were defined by the Cartesian co—ordinates of their atoms. This approach
made fitness calculation very straightforward, as described below, but made
crossover much more difficult. When using the real-space representation, a
population member would be initially generated by randomly placing the re-
quired atoms inside a given volume. The system would then be locally min-
imised so that the structure is relaxed. Wales and Doye [1997] showed that
working within this structurally relaxed space simplifies the problem by sim-
plifying the search space without changing the relative positions of the global
minima, or the relative positions of the local minima, and the search method

proceeds by moving from one basin of attraction to another.

2.3.2 Fitness

This step evaluates the function being searched, and assigns a measure of how
“tit” the individual member of the population is, upon which selection for
reproduction is based. There are a large number of ways of scaling the fit-
ness function to attempt to prevent early good (but not global) structures from
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dominating.

The fitness is entirely dependent on the system being studied. In the real-space
approach of Deaven and Ho [1995] the fitness was purely determined by the
relative energy of the cluster, the fittest member having the lowest energy in
that generation. This meant that the fitness of each member would need to be
re—calculated in each generation and the population evolved.

There is an excellent review article by Johnston [2003] which covers the field
of atomic cluster optimisation using GAs. I will give a brief overview of his

approach.

Since the global minimum structure (and hence the global minimum energy) is
not known (this is what the algorithm will be searching for), dynamic scaling
of the fitness is required. Any cluster with a potential energy > 0 will have
its fitness set to zero. All potential energies given are therefore negative, and
the more negative the value, the fitter the population member. A normalised

value of the energy is used in the fitness calculations:

Vi —Vn‘in

B Vmax—Vm'n

b (2.10)
It should be noted that in this equation it doesn’t matter if Vipax is positive or
negative, however setting these positive potential energy values to zero re-
duces the likelihood of the corresponding population member being selected

for crossover or update.

There are a number of different scaling functions that can then be used to map
this normalised energy value to fitness, three possible forms are exponential,
linear and hyperbolic tangent, as suggested by Johnston [2003]. The fitness of
each population member, fj, can then be calculated:

Exponential: f; =exp(—3p;) (2.11a)
Linear: fi=1—-0.7p; (2.11b)
[1—tanh(2p; —1)]

Hyperbolic Tangent: fj = (2.11¢c)

2

A “better” structure (i.e. one with a low energy) will have a pj close to 0. When
its fitness is calculated it will have fj close to 1. Conversely a high energy (or
“bad”) structure will have f; close to 0. The different schemes dictate how

much emphasis is placed on very fit or very unfit structures.
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Figure 2.4: Comparison of the three different fitness schemes mentioned

As can be seen from figure 2.4 these scaling functions give different weight
to different members of the population. The exponential function will bias
strongly towards members that have a fitness close to the lowest in that gen-
eration. Linear scaling has a nice regular fall-off, and hyperbolic-tangential
scaling weights the lowest section of members more equally, and so increases
the spread of energies of members chosen, so increasing the probability that
less fit members would proceed though to the next generation. This may help

prevent stagnation.

2.3.3 Selection

The members of the population are selected for reproduction or update based
on their fitness. Again, there are a large number of methods of selection that
vary in complexity. A method with low selectivity accepts a large number
of solutions, while high selectivity will allow a few or even one to dominate.
However, a balance needs to be reached to try to prevent the solution from

becoming trapped in a local minimum.

The simplest method of selecting members is through elitist selection. The
“super—-population” of all parents and offspring are sorted by fitness and then
the fittest half is chosen, all of which would then become parents in the next

generation. This process may lead very quickly to stagnation.

One simple selection method that should help prevent stagnation is roulette
selection: the probability of selection is now proportional to fitness. The prob-
ability of an individual i being selected from its fitness fj is
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fi

P=—_ "
le\lzl fi

(2.12)
A uniform random number would then be generated in the range 0 to 1. If this
number is between the cumulative probabilities of the it" and (i 4 1)!" individ-
uals, then the it" individual is selected. This means that even though the fitter
members are more likely to be selected, less fit members can still make it into
the next generation. There is no guarantee that the fittest member will proceed

through to the next generation using this method.

There are further selection schemes that can be used, such as tournament selec-
tion. In this case the population is broken up by randomly picking members
whose fitnesses are directly compared, the winners from each group being se-
lected for crossover.

There is also a hybrid scheme which involves picking msjt members by elitist
selection, and the remaining M — m¢jy members by roulette selection, where
M is the size of the population. This method can be used to ensure that the
fittest member will proceed to the next generation while keeping the benefits

of roulette wheel selection.

2.3.3.1 Selection for Reproduction

The above sections describe general methods for selecting a number of mem-
bers that can be used for a number of purposes. If you are selecting members
for reproduction then you would usually be picking only two members for
each crossover procedure, and would want a range of different parents to bet-
ter explore the potential energy surface, so selection using the roulette method
(or similar) is to be preferred. The choice of fitness function is also important in
this step. There is no requirement to use the same selection method or fitness

function in selection for crossover and selection for update.

2.3.4 Crossover

Crossover in the binary string formulation is very simple, two parents, 11010011
and 01011001 may be split in half and recombined to make two new offspring
11011001 and 01010011 (where the boldness of the text is merely an aid to the
eye). They may be split at any point on the string, or may be split in a number

of places. This form of crossover is very quick to calculate.
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2.3.4.1 The Schema Theorem

The Schema Theorem [Holland, 1992] goes some way to explain why GAs are
such a powerful technique. It demonstrates how crossover (and to an extent,
mutation) forces the system to find robust and fit solutions in a binary repre-
sentation.

A string can be thought of as being made up of building blocks, or “sub-
strings”. In this bit-string, a schema (plural schemata) is defined as the subset
of strings with similarities over a given number of positions, and a similarity
template is a string taken over the underlying string alphabet together with a
wild—card character (e.g. *) that matches any of the string characters.

So, the similarity template 000 * + has schema 00000, 00001, 00010 and 00011.
In general for binary strings of length I there are 2' unique strings and 3'

schemata.

The number of fixed positions, H, in any schema is known as its order, o(H), so
0(*%011%1x) =4, 0k xxx Lxx) = 1 etc.

If we have a string A=0111000, the schema H1 = %1% %% %0 and Hp = # % %10 %
are represented within A. However, if a random crossover were to take place
between positions 3 and 4 (defined by the notation [), such that

A=011|1000
Hy = %1% |*%%x0
Ho = s |10% %

In this case H1 would have been destroyed in the crossover step, while Hp will

have survived.

The defining length, 6(H) is defined as the position of the last fixed bit minus
the position of the first fixed bit, i.e. d(H1)=5 and d(Hz)=1. We can use the
defining length to determine the probability of any schema being destroyed in

crossover

Py=—-~ (2.13)
From the example above, Py(H1) =5/6 and Py(H2) = 1/6. The survival rating

will then be Ps = 1 — Py, or, if the crossover itself is made by random choice,
with probability P, then
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1—-P.-0(H)
o

where the “>" symbol takes into account the fact that H could be re—created

(2.14)

after crossover from components of both parents.

If we consider that at a given generation, ¢, there are m(H,t) examples of schema
H in the population A(t), we known the probability of any string A; being se-
lected from (2.12), so we can calculate the number of representatives expected
in generation (t+1)

H,t)-N-f(H)
>

where f(H) is the average fitness of the strings representing H in generation

m(H,t+1) = ™ (2.15)

t. If the average fitness of the entire population is f = ¥ f;/N then the above
equation can be simplified

M, LRI o1

i.e. a schema grows as the ratio of its fitness to the average fitness of the pop-
ulation. If a schema has a fitness greater than the average fitness of the pop-
ulation it will have more samples in the next generation. If its fitness value is
below the population average then it will receive a decreasing number of sam-

ples. Above-average schema will propagate and below—-average ones will die
off.

2.3.4.2 The Hamming Cliff and Gray Codes

Binary codes have a number of disadvantages. One of these is the so—called

Hamming cliff named for mathematician Richard W. Hamming.

Say we have two binary numbers, A = 011 and B = 100 (with decimal values
3 and 4 respectively). When considering the use of binary strings in a genetic
algorithm the values of A and B may represent two solutions that are quite
similar — B could be the global minimum, and A could be a local minimum
that is very close in the potential energy landscape to this global minimum.
However, there is no way in the crossover or mutation steps to move between
these minima. A mutation on the most significant bit of A would turn 3 into 7,
while a mutation on B would turn 4 into 0. In this last case, the value has fallen
off the Hamming cliff [Hayes, 2001].

One solution is to use Gray codes, named after Frank Gray of Bell Labs but
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have been used since Emile Baudot, an early pioneer of French telegraphy
[Hayes, 2001]. In this coding system, which is still of a binary nature, the Gray—
encoded numbers differ by only one bit in the sequence (see Table 2.1).

In this way 7 can also cycle back to 0 again. This method of counting is slightly
counter—intuitive, but Gray codes are easy to set up for a particular size. When
combined with the Schema Theorem (section 2.3.4.1) Gray codes seem to be a
more efficient way of encoding most problems in a genetic algorithm context
given the perils associated with the Hamming cliff.

2.3.4.3 Real-Space Crossover

However, the binary-string (or even Gray—encoded string) method of encod-
ing and crossover is not practical for use with continuous variables such as the
spatial positions used in the atomic cluster problem. In this case there may
be some slight numerical error in position which, while small, when the sys-
tem is switched from real-space co-ordinates to a binary—encoded system for
crossover may become larger. Binary—encoded strings also have a finite resolu-
tion for real space problems. One solution is to fix the atoms onto grid—points,
and these points have an absolute value in the binary—encoded system. How-
ever, fixing atoms to grid—points could restrict the system in a number of ways.
It may impose certain symmetries which will put an unintended bias into the
system. It also reduces the accuracy in which the positions of the atoms are
defined. While these real numbers are eventually binary encoded for storage
purposes, this is at the machine precision, rather than a precision defined by
the algorithm.

A solution to these issues was proposed by Deaven and Ho [1995], and is a
much more “physical” way of dealing with the problem. The clusters are rep-
resented by an array of the atomic position vectors in xyz format, and crossover

is done by taking a random plane through the centre of mass of the two parent

Number Binary Gray

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Table 2.1: Comparison of binary and Gray codes.
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Figure 2.5: Crossover

clusters, and then swapping the halves. This is represented diagrammatically
in figure 2.5.

The simplest way of defining this plane is to generate a random unit vector on
the surface of a sphere [see, for example, Allen and Tildesley, 1987, appendix
G.4, p349.]; this vector defines the normal to the plane, which always passes
through the origin. If the centre of mass of the cluster is the same as the origin
of the atomic position vectors, taking the dot product of the position vectors
with the unit sphere vector will yield a scalar number a. If a is positive then
the atom is defined as being above the plane, if a is negative then the atom
is defined as being below the plane. The number of atoms in the offspring
clusters must be the same as those in the parent clusters, so the plane may
have to be moved to conserve atom number, the number of atoms in each half

being recalculated each time the plane is moved.

There is a problem with this method as it stands. When one cluster is bred with
another cluster, two or more atoms may find themselves very close to each
other, and as such the offspring might have a large potential energy. A solution
to this is to minimise every new structure that is generated at any stage so that
it is now at the bottom of its local minimum, and as such all crossovers and
mutations would produce viable structures [Wales and Doye, 1997; Johnston,
2003].

This method can be compared to the Schema Theorem. Due to the fact that the
cut is being made in real-space, it is less likely to disrupt the structure of the
population member, thereby allowing the local structure to be maintained dur-
ing crossover, but also allowing good localised structure to be shared between

different members.
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2.3.5 Mutation

In the binary string case mutation usually involves changing a small percent-
age of the bits on the string. This can actually have quite a large effect — if the
most significant bit is mutated it could affect the member a great deal. Muta-
tion rates for binary strings are quite low because of this, typically 0.07% — 1%.

Mutation can be thought of as being either static, where the value of the quan-
tity being mutated is assigned a completely new value independently (i.e. the
new value of the bit could either be 0 or 1, with no reference to the old value),
or dynamic, where the original value is altered by a random amount (i.e. if the
bit were a 0 it would become a 1 and vice versa) [Johnston, 2003]. Mutation is
also important in preventing stagnation by introducing new features into the

population that may have a beneficial effect.

Mutation in a real-space atomic cluster sense involves the random changing of
some, or all atomic positions. For each population member a random number
is generated and is compared against the mutation rate (which, in this frame-
work, are typically on the order of 0.1, i.e. 10%). If the random number is less
than the mutation rate then that population member is mutated. Two possible

mutations are:

o A reflection of one atom through the origin (centre of mass)

e A random “vibration” of atomic positions.

The mutation rates of real-space encoded GAs are generally an order of magni-
tude higher than those of a bit-string encoded GA. The low rate for bit-strings
is due to the fact that changing the most significant bit on the string will have
a dramatic effect on the population member. Mutation in real-space systems
is usually dynamic, meaning that the new location of an atom is dependent on
its old location. This change in location will typically affect a volume of ~ 10A°
of the population member; the member itself would typically have a volume
2 100A°. This means that a mutation would only effect < 10% of the structure
of the member when it is performed. A 10% mutation rate introduces approx-
imately the same amount of disruption as in the bit-string approach. The use
of a local minimiser in the real-space case also means that mutations them-
selves may have very little effect, since the local minimiser may “undo” any

mutation.

The way that the vibration is performed is also important. This is controlled by
two quantities, mgr and ma. The mutation rate is mg € [0, 1], and this determines
the probability that each atom will be mutated or not after crossover, before the
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local structure minimisation procedure. In this study once an atom has been
selected for mutation then it is randomly placed in a cubic box with sides of
length 2ma (where ma > 0 A is the mutation amplitude) which has been centred
on the atom’s original position.

After mutation the cluster is minimised using a direct minimisation method.
Also, because the local structure is well maintained during crossover, mutation

is essential to aid the search of the potential energy surface.

2.3.6 Updating the Population

After the crossover/mutation steps have been performed the population needs
to be updated. There are now at least double the number of members that were
in the original population and so a cull of members needs to be performed. As
in the selection stage, the updating process can be as simple or as complicated

as required.

The use of elitist selection tends to lead to stagnation. While it will work
well for small systems with relatively simple potential energy surfaces (see
appendix A, section A.3), for larger systems the GA will find it increasingly
difficult to move out of local minima. It is better to allow some variation in the

update procedure.

If the ground state is being sought then hybrid selection is a good method to
use. It means that the fittest individual is maintained as breeding stock, but
that the other members of the new generation are allowed more variation. The
fitness function used will also affect this, with an exponential fitness function

still weighting the fitter members highly.

In contrast, pure roulette selection might be a good method if you were not too
interested in the global minimum structure, but merely wanted to drive the

population to a number of fit but different viable structures.

After update the knowledge of which population members were parents and
which were offspring is lost and some members may survive for many gener-
ations. After the population is updated, the process starts again with selection
for reproduction, onto crossover, mutation and finally updating. This cycle

constitutes one generation.

2.3.6.1 Convergence

The loop shown in figure 2.3 could technically go on indefinitely — so some
form of convergence criterion must be included. This is one of the trickier parts
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of a GA. How can you tell if the solution is converged, i.e. that the solution has
found the global minimum? In testing the GA the global minimum solution
may be known, but in practise the global minimum solution for the system
being studied will be unknown, so the GA must have a way of judging that
the population is sufficiently converged to end the calculation.

In the original formulation, the GA not only found the global minimum basin
in the potential energy surface, but also minimised within the basin. It was
realised that locally minimising the structure simplifies the work that the GA
(or any global minimisation technique that operates in this search space) has
to do [Wales and Doye, 1997].

With no minimiser, the algorithm would bounce around in the bottom of the
global minimum basin, but might never reach the minimum structure. Genetic
Algorithms are very good at homing in on the global minimum basin, but will
have difficulty in getting to the bottom of it. The use of the local minimiser

means that the GA is only searching viable, relaxed, solutions to the problem.

However, determining if the population has converged is not as easy as it
sounds. Due to the direct minimiser, all structures will be local minima, if
not the global minimum. It may make sense to have the program check and
see how long the lowest minimum has been the lowest energy structure found,
and when it has been the lowest structure found for, say, t generations. This
could then define that the GA is converged.

However, if t is too low, then the program will exit early and will be stuck
in a local minimum. If t is too large then the algorithm may stay in the loop
too long and waste resources. The length of time required may also depend
on the complexity of the system — a simpler system would only need a smallt,
whereas a system with a complex potential energy surface may require a larger

value.

Often during a GA calculation the population will remain with the same fittest
member for a number of generations before falling into another basin. It may
appear that the population has converged, when in fact it has just stagnated.
In chapter 5, I will demonstrate one method that can be used to help prevent

stagnation.

I will now describe the different flavours of genetic algorithm that have been
used in solid-state physics problems. I have split these into four sections, as
defined by the periodicity of the systems being studied. The reason for this
should be made obvious when I outline the extension made to this method in
chapter 4.
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24 Zero-Dimensional Systems

2.4.1 Binary Encoded Solutions

Binary encoded GA studies of clusters have focused both on single-species
systems [Hartke, 1993, 1996] and on conformations of polymers [Brodmeier
and Pretsch, 1994], molecules [McGarrah and Judson, 1993] or relative orien-
tations of larger clusters such as benzene [Xiao and Williams, 1993].

The work by Bernd Hartke initially used a binary encoded approach to study
silicon clusters [Hartke, 1993, 1996]. Later, as the method proposed by Deaven
and Ho [1995] grew in popularity, he also used real-space encoded methods.

In the case of polymers and molecular clusters, the binary string was made up
of a binary representation of the torsion angles in the polymer [Brodmeier and
Pretsch, 1994], or the (X, Y, z) positions and (8, @, /) angles of one molecule with
reference to another fixed molecule at the origin [Xiao and Williams, 1993].

Local minimisation was also used in these cases.

There are also studies which used lattice sites to define the positions of atoms,
and these sites are encoded into the chromosome, with a 0 indicating an empty
site, and a 1 an occupied one. In the study of Xiang et al. [2004] on large
Lennard-Jones clusters, there was no crossover involved, but instead new
members were found by pure mutation alone. Searches had to be performed
on a number of different lattice types, and after new structures had been found

the structure was locally minimised to relax the surface of the cluster.

2.4.2 Real-Space Encoded Solutions

There are two classes of real-space encoded solutions: pure real-space formu-
lations where the crossover procedure is also performed in real-space, with
reference to the relative difference between the atoms in space, and one in
which the positions of the atoms are encoded in real space, but the crossover
operation is performed by swapping sections of an array of atomic positions
(and possibly angles, in the case of molecular clusters).

2.4.2.1 Real-Space Crossover

The original Deaven and Ho [1995] paper focused on the optimisation of var-
ious fullerene clusters. Having investigated the above methods they instead
opted to develop their own method, which is essentially the real-space ap-

proach described in section 2.3.4.3.
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This method has been applied to a large number of different systems. In a
follow—up to the above paper, Lennard—Jones clusters were also investigated
[Deaven et al., 1996]. Lennard-Jones clusters are an ideal test system due to
the computational ease in which the potential can be calculated, and the fact
that they have a complicated potential energy surface [Wales and Doye, 1997].
Pullan [1997] gives a good summary as to why binary encoding for the cluster
problem is inefficient. Binary strings are ideal when the parameters defining a
particular problem can be defined as short, low—order schema which are also
unrelated to schema at other fixed positions [Goldberg, 1989]. Pullan [1997]
calculated that for a 100-atom Lennard—Jones cluster the potential energy sur-
face would have of the order of 10 local minima; however for binary strings
a 30-atom cluster with a precision of 3 decimal places would require a binary

string of 1260 bits, which has a search space of 1040 elements.

Wolf and Landman [1998] used an etching technique to improve the search-
ing of the potential energy surface. They combined the Deaven and Ho [1995]
method with an add-and-etch technique which involved adding atoms to the
cluster size that they were interested in, and then removing them in subse-
quent generations. This study also used a seeding technique where instead of
beginning from a totally random start, small idealised clusters were used to
seed larger ones to reduce the time taken in the local minimisation step. While
the use of a seeding technique may improve convergence, it also biases the

answer from the outset.

Hartke has switched from using binary strings to using a Deaven and Ho
[1995] based algorithm, with some changes, such as a fixed plane of crossover,
rather than a random plane. He has published results on Lennard-Jones clus-
ters [Hartke, 1999], mercury clusters [Hartke et al., 2001] and water clusters
[Hartke, 2002].

The review article by Johnston [2003] covers a large number of different sys-
tems studied using these methods. It also covers the general formalism for the
real-space encoded GA.

2.4.2.2 Array Crossover

The work of Niesse and Mayne [1996] uses real-space co—ordinates for the po-
sitions of the cluster, stored in an array Xj = (X1,Y1,21, - - -, %n, Yn, Zn). At each po-
sition is a molecule, defined by the (X,y,z 68, @, ) values corresponding to the
location of a fixed point on the molecule and the rotation angles of the molecule
defined with respect to that point. A second string, Yi = (61, @1, 1, ..., 6n, ¢h, ¥n)
contains these angles. Operations are carried out on these strings separately.
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Zeiri [1995] defined six operators that could be used for updating the popula-
tion when using this representation:

1. n-mutation: One parent producing one offspring.
One of the fitter chromosomes is mutated by a dynamic mutation using

a random number evaluated from a Gaussian distribution.

2. Inversion: One parent producing one offspring.

The order of a random part of the parent chromosome is inverted.

3. 2—point cross link: Two parents producing two offspring. Standard crossover
—asingle crossover point is chosen and array elements are swapped, sim-

ilar to binary crossover.

4. n—point cross link: Two parents producing two offspring.
Each array element from each parent is either given to offspring 1 or off-

spring 2 depending on a uniform random number.

5. Arithmetic average: Two parents producing one offspring.
The arithmetic average of each of the array elements in the two parents
is used to form the offspring.

6. Geometric average: Two parents producing one offspring.
The geometric average of each of the array elements in the two parents is

used to form the offspring.

This set of operators is more flexible than the Deaven and Ho [1995] approach.
The study of Niesse and Mayne [1997] did a comparison of the Deaven and
Ho [1995] method with that of Zeiri [1995] and found that the Deaven and Ho
[1995] method was comparable to inversion and 2-point cross link, but was

inferior to the averaging operators for small Lennard—Jones clusters.

2.5 One-Dimensional Systems

There have been some studies done on nanowires, using the Deaven and Ho
[1995] formalism. Studies have been done on gold [Wang et al., 2001b], tita-
nium [Wang et al., 2001a] and zirconium [Wang et al., 2002]. The relationship
of the periodicity of the system to the use of the crossover operation is not dis-
cussed. These results show the appearance of a bulk-like character within the

wire as its thickness is increased.
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2.6 Two-Dimensional Systems

There have been a number of surface studies that have utilised the GA formal-

ism, using both binary and real-space encoded methods.

2.6.1 Binary Encoded Solutions

The work of Fu et al. [1997] used a tight binding scheme to study the Si(001)
surface. Only the top layer undergoes the GA process and the system was
periodic in X and y. The co-ordinates were mapped onto binary strings for
crossover and mutation and the system was relaxed into the local minimum
through quenched molecular dynamics (600 time-steps covering 0.6 ps). The
minimum energy configuration found was from the 21st generation, and re-

mained so until the 65th (the length of the calculation).

Miyazaki and Inoue [2002] used a GA to study the deposited structure of atoms
in a Lennard-Jones potential. The system was set up as a 219 x 210 x 210 megh,
and used 30 bit long strings. A seeding technique was used to determine struc-
tures, and the LJi3 cluster was used as a test method. They also used a low
mutation rate of 0.0003, and recombination rate (a binary analogue of n—point
cross link as defined above) of 0.2. The substrate was 10 layers thick with a

FCC(001) surface. No periodic boundary conditions were imposed.

GAs have also been applied to surface structure determination from surface
diffraction data [Landree et al., 1997]. In this case the fitness function was a
comparison to the experimental data, and the genes of the chromosome repre-

sented phase information.

The parameters used in the GA chromosome need not be atomic positions or
torsion angles. The work of Doll and Vanhove [1996] used layer spacings as the
values to be optimised in a GA study of Ir (110) — (1 x 2) surface by comparing
with low energy electron diffraction (LEED) data. The fitness function in this

case used the Pendry R—factor, Rp, in its calculation.

2.6.2 Real-Space Encoded Solutions

Sun et al. [2004] used a Deaven and Ho [1995] based GA to study the structure
of adatom clusters on a Ag(111) surface. The GA component only operates
on the adatom clusters, and not the surface itself. The local-minimisation step
also only takes place on the frozen surface. Elitist selection was used in the
update stages.
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The work of Chuang et al. [2004] was the first real-space represented GA de-
signed for surface structure calculations. The surface of Si(105) was investi-
gated using an empirical potential. The system was periodic in X and y, with
no periodicity in the z-direction. Only atoms in the top 5 A of the slab undergo
the genetic algorithm.

Crossover was performed with a plane perpendicular to the surface, and then
the whole of the structure (15-20 A deep) is relaxed. This study allowed the
number of atoms to vary during the crossover stage, and did not hold a con-
stant atom number during the course of the calculation. Less than 200 mating
operations were required to give the lowest structure. This group have contin-
ued their work on GAs for surface studies and have also published a study on
the Si(114) surface [Chuang et al., 2005]. There is some excitement about this
method from other surface scientists [Zandvliet, 2005].
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2.7 Three-Dimensional Systems

There have been a number of publications attempting to do truly ab initio
crystal structure determination using genetic algorithms, as well as those that
are comparing results to powder diffraction data. Studies based on powder
diffraction data have been encoded in both binary string and real-space (array—
strings). Rather than cataloguing these by the type of representation used, I

will instead categorise by the application.

2.7.1 Binary Alloys

Smith [1992] used a GA to create starting configurations of atoms in binary
alloys for use in Molecular Dynamics (MD) calculations. He used a binary en-
coded approach of a 50-50 mixed configuration of atoms to get the minimum
enthalpy configuration before starting the MD run.

The more recent work of Johannesson et al. [2002] used an encoding scheme
which used the atomic type as the gene, and its position in the chromosome
determined its position in a FCC or BCC lattice.

2.7.1.1 Cluster Expansion

A recent approach developed by Hart, Blum, Walorski, and Zunger is a binary
encoded approach which combines the method of cluster expansion [de Fontaine,
1994] with those of GAs [Hart et al., 2005; Blum et al., 2005]. The chromosome
in this case represents a chosen subset of 1-, 2—, 3—, 4-, 5- and 6-body interac-
tion terms that exist within the chosen lattice structure. The search space of the
system is a set of n-body terms; the optimisation determines which terms are
important. One draw-back of this method is that the lattice type of the system
needs to be fixed in this method.

The problem with these binary alloy studies is the assumption of the lattice
type of the system. Unless all lattice types are considered (which will be time
consuming) the system is biased in a particular direction. It is better if the

lattice could be also determined ab initio, i.e. during the course of a calculation.
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2.7.2 Powder Diffraction Studies
2.7.21 Binary Encoded Solutions

The work of Woodley and others has also presented a method of crystal struc-
ture determination using powder diffraction data using a binary string ap-
proach by mapping the real-space atomic coordinates onto a lattice [Woodley
et al., 1999; Woodley, 2004b]. He has also investigated zeolite structures by
incorporating exclusion zones into his method and preventing atoms from oc-
cupying sites on the lattice in these areas [Woodley et al., 2004b,a; Woodley,
2004c]. A review article on this method can be found in Woodley [2004a].

2.7.2.2 Real-Space Encoded Solutions

Research by Harris, Johnston and others uses a real-space array—string en-
coded representation similar to that described in section 2.4.2.2 [Kariuki ef al.,
1997]. Local minimisation is also used in this technique, and a large number of
systems have been studied using this method. Their work has involved stud-
ies on para—-methoxybenzoic acid, formylurea and ortho—thymotic acid [Harris
etal., 1998a,b]; L-glutamic acid [Turner et al., 2000]; and peptides [Tedesco et al.,
2001; Cheung et al., 2002; Harris et al., 2004].

2.7.3 Other Systems studied using Real-Space Encoding

Bazterra et al. [2004] used a similar encoding method to that described in sec-
tion 2.4.2.2, but in this case the six degrees of freedom that defined the unit cell
(a,b,c,a,B,y) were also included in the chromosome. This allowed the cell to
be optimised at the same time as the atomic co-ordinates. The structures of
molecular crystals of L-alanine and DL-alanine were investigated using this
method.

There is also the work by Artem Oganov and Colin Glass at Zurich, who are
developing a code called USPEX [Oganov et al., 2006; Oganov and Glass, 2006];
however, no details of their method have been published as yet, although they
have presented some results. They appear to be a using real-space method
which uses planar cuts and fractional co-ordinates, and is capable of optimis-
ing the unit cell using a local minimiser. However, they have not yet published
a detailed description of their method or comparison with current methods

and so no further comment can be made on the validity of their method.
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2.8 A Brief Overview of Other Global Optimisation

Techniques

While there are a large number of global optimisation techniques I will list

some that have been applied to similar problems to those discussed earlier.

2.8.1 Stochastic Methods

Early work was done on the Lennard—Jones cluster problem by Hoare and Pal
[1971a,b, 1972] where a seeding technique, in combination with relaxation of
the cluster, was used to grow new minima. Other work on Lennard-Jones
clusters was done using simulated annealing [Wille, 1987] (for a full descrip-
tion of this method, please see section A.2) for N < 25. A related technique,
Gaussian Density Annealing [Tsoo and Brooks, 1994] also gave good results
for this range of cluster sizes. In the Hoare and Pal [1971a] technique it is hard
to see how this method could be extended effectively to bulk systems, and
the work on Simulated Annealing becomes less effective as the dimensionality
of the potential energy surface increases (see section A.2). This may happen
partly because the simulated annealing algorithm also has to perform the local
optimisation as well as the global.

The work of Wales and others has mainly used the technique of Basin Hop-
ping [Wales and Scheraga, 1999], which is a Monte—Carlo based method but
explores the same potential energy surface as a real-space encoded GA us-
ing local minimisation. This is similar to the Simulated—Annealing method
described above (except where the temperature, T, is merely an adjustable pa-
rameter and is not used for cooling) with a very large atomistic perturbation
combined with local optimisation. The perturbation on the system needs to be
larger, so as to move it from the current basin of attraction into a neighbouring
one. This work found all the minima up to 110 atoms for the Lennard-Jones
cluster problem. This group has also made use of genetic algorithms in the
Deaven and Ho [1995] formulation [Wales, 2003].

Doye and Wales [1997] have also used the technique of Eigenvector Follow-
ing to explore the potential energy surface. The Hessian matrix (the matrix of
second—derivatives) of the system is determined and is used to choose search
directions; once a new basin has been found a Metropolis [Metropolis et al.,
1953] criterion is used to determine if moving to that basin should be accepted

or rejected.

A similar technique to Basin Hopping is Minima Hopping which has shown
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promising results for bulk systems [Goedecker, 2004]. In Minima Hopping the
accept/reject ratio is continually adjusted to ensure that the potential energy
surface is explored more thoroughly than it might otherwise be in a thermo-

dynamically based method that is dependent on a “temperature”.

Good results can also be found by simply creating a large number of random,
highly disrupted structures and then locally minimising them. Pickard and
Needs [2006] have used this method to examine the high—pressure phases of
silane. This method will soon fall into problems as the number of atoms in the
structures increases due to the exponentially increasing size of the potential

energy surface, but for smaller numbers of atoms it is a useful technique.

Metadynamics, a technique developed by Laio and Parrinello [2002] has also
shown good results for a number of different molecular systems [Laio and
Parrinello, 2002; Laio et al., 2005]. This method works by filling in areas of
the potential energy landscape with Gaussian functions centred on areas pre-
viously searched, which then prevents the system returning to a state that has
been previously searched. It is also able to work at finite temperature, which
GA methods are currently unable to do.

Molecular Dynamics (MD) methods have been used to determine the structure
of Lennard—Jones [Honeycutt and Andersen, 1987] clusters. MD can also be
used to determine the bulk phases of other materials [Quigley and Probert,
2005a,b].

There has also been some work on Differential Evolution, another evolution-
ary technique, which was used to determine crystal structures from powder
diffraction data whilst also intelligently constraining the search space [Chong
and Tremayne, 2006]. Differential Evolution works by adding the difference of
two population members onto a third, producing offspring [Becerra and Coel-
loa, 2006]. In this study the members were represented as described in section
24.2.2.

2.8.2 Systematic Methods

Systematic methods are not widely used in this field due to the exponen-
tially increasing size of the potential energy surface with the number of atoms.
Graph theory has been used for small numbers of atoms to determine the pos-
sible polymorphs of up to 6 atoms of sp>~ [Winkler et al., 1999, 2001] and 4
atoms of sp>~ [Strong et al., 2004] hybridised carbon crystals. It is not possible
for both sp? and sp? structures to be found in the course of a single search using
this method.
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It should be noted that this list is not exhaustive, and that there are many other
methods that can be employed in the field of crystal structure determination.

2.9 Conclusions

I hope that I have been able to show in this chapter how powerful Genetic
Algorithms are, especially when they are combined with local minimisation
methods. Genetic algorithms are flexible and can learn about and exploit fea-
tures of the potential energy surface, and are suitable for use in solid—state
physics problems.

There has been a large amount of study of Lennard—Jones systems, mostly clus-
ters due to the plethora of minima that exist in those systems, and due to the
ease of calculation with the Lennard—Jones potential. The GA method has been
shown to be a very useful technique in studying these zero-dimensional sys-
tems and recently real-space encoded methods for tackling this problem have
been expanded into more dimensions to study nanowires, surfaces and bulk
crystals. However, there are a large number of competing methods, none of
which allow for truly ab initio crystal structure determination, except possibly
that of Oganov et al. [2006]; Oganov and Glass [2006] whose method has yet to
be described in detail (and also for the non—-GA method of Pickard and Needs
[2006], but this method has yet to be proven for large systems).

While the Deaven and Ho [1995] approach is very “physical” in its approach
to the crossover operation, the methods proposed for array-represented clus-
ters are more flexible. However, some of these methods may not be as suit-
able in higher-dimensional systems. These methods have shown good results
for molecular crystals where the rotation of the molecules is also important,
but they are not as successful in pure, single species systems. I suspect that a
mixture of approaches may be the best when optimising systems made up of
molecules (i.e. the centroid positions of the molecules is mixed in a Deaven
and Ho [1995] crossover procedure, and the angles of the molecules are mixed
as in Zeiri [1995]).

I hope to describe in the following chapters a method that allows for ab initio
crystal structure determination both by using the empirical potentials and by
using the framework of DFT described in the next chapter. I will also describe
an extension to the fitness function which allows for the comparison of dif-
ferent structures during the course of a calculation and will therefore improve
convergence to the global minimum and will help prevent stagnation in local

minimum structures.
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Methods of Energy Calculation

3.1 Introduction

As was discussed in the previous chapter, any genetic algorithm method re-
quires some method of calculation of fitness, and in solid—state physics prob-
lems this measure is usually associated with the energy of the system. The
methods themselves have no bias as to how this energy is calculated. In ad-
dition to the energy, the local minimisers also require the forces on the system

when they relax a structure down to the bottom of its local basin of attraction.

In this chapter I will discuss the methods of energy calculation used in this
study. I will start with empirical potentials and then move on to the ab initio

method of density functional theory.

3.2 Empirical Potentials

3.2.1 Super—cells and the Minimum Image Convention

Due to computational necessity it is impossible to study a large enough system
of atoms that approaches that seen in true bulk solids, i.e. of the order of 1023~
atoms. However it is possible to simulate a larger number of atoms than would
otherwise be possible using a super—cell approach, as is described in diagram
3.1. In this diagram the central cell contains the atoms that are represented in
the calculation, and those atoms are then effectively tessellated across all space
using periodic boundary conditions to simulate a bulk crystal, fluid or gas.

This is the super—cell approach used in atomistic simulations.

In this diagram the central cell is the cell which is considered and stored. The

image cells surrounding it are there to simulate the infinite bulk surrounding
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Figure 3.1: Diagram showing the super—cell approach in computational simu-
lation. The central cell is the simulation cell, and the surrounding cells are the
periodic images of this cell.

the cell. Interactions occur through the walls of the cell, and if an atom moves
out of the central cell its periodic image will replace it as it moves in on the
other side of the cell.

This approach make no assumptions as to how the energy of and the forces on
the atoms are calculated. In an ab initio framework it is possible to simulate a
large bulk using only a small number of atoms, but when using an empirical
potential it is necessary to prevent self-interactions by using a larger number
of atoms.

Some empirical potentials have a long tail, which asymptotically approaches
the zero as r — o, and so effectively leads to interactions over large distances.
In a zero—dimensional cluster GA, the fact that there is a tail is unimportant,
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since there is no periodicity in the system, but once calculations are performed
using a super—cell it is necessary to truncate this tail. Also, if the simulation
super—cell is smaller than the maximum interaction (or cut—off) radius, Ry,
then it is possible for an atom to interact with itself. To prevent this from hap-
pening it is necessary to make the super—cell large enough to prevent self-
interaction. Normally atom i will interact with atom j and all its images, but
the minimum image convention defines that atom i will only interact with the

closest image of atom j.

3.2.2 The Lennard-Jones Potential

0.4

0.2 -

0

-0.2 -

-04 -

Vs (Rij) /e

-0.6 |-

-0.8 |-

1.2 | | | | | | | |
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Rij/O'

Figure 3.2: The Lennard—Jones Potential

The Lennard-Jones potential [Lennard-Jones and Ingham, 1925] shown in fig-

wesl@) @]

and is a potential that was originally used as an approximation to the energy

ure 3.2 has the form

surface experienced by the Noble Gases [Pollack, 1964b]. Due to its ease of
calculation it is now primarily used as a useful test case potential for compu-

tational methods.

The force felt by atoms moving in this potential can be easily determined by

av

(3.2)
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where R;jj is the vector connecting atom i to atom j. In this way the force is

() G

The potential has an infinitely long tail, so to prevent any calculation falling
foul of the minimum image convention (section 3.2.1) it is often truncated in
some way. The method that I shall use is the shifted—force formulation of Stod-
dard and Ford [1973]

Vs (Ri) =V (Re )—(M) Rj—Rut) Rj<R
VEF (Rij)= LJ( J) LJ \Feut dR;; (Rij—rcut)( ] ut) i ut
0 Rij > Reut
J (3.4)

which ensures that both the energy and force vanish at Rey.

The Lennard—Jones potential has a HCP ground state structure, with the FCC-
phase being nearly degenerate in energy with it. This is not the case with Noble
Gases, where FCC is the ground state structure [Pollack, 1964b].
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3.2.3 The Dzugutov Potential

The Dzugutov potential was developed by Mikhail Dzugutov [1992] as a sim-
ple pair potential that has polytetrahedral and icosahedral order [Doye et al.,
2003]. It is similar to the Lennard—Jones potential (section 3.2.2) but it has an
extra repulsive component as can be seen in figure 3.3. The potential is defined

as

A(R™-B)exp(g) R
P4 (R”) = {0 <RIJ )exp(R!l* ) R|J iz (3.5)
i=
4) R
® (Rj) = {BeXp<ij> Ry<b (3.6)
0 Rij>b
®(Rj) = 1 (Rj) + P2 (Ry) (37)

with the constants defined in table 3.1. It was originally formulated to simulate
liquid systems, however it has also been shown to have some interesting solid
phases [Roth and Denton, 2000], and can also be used to form quasi—crystals
[Dzugutov, 1993].

The force felt by atoms moving in the Dzugutov potential can be determined
by using equation 3.2. The phases of the Dzugutov potential will be discussed
in detail in chapter 7. A graph comparing the Lennard—Jones potential and the
Dzugutov potential is shown in figure 3.4

m A C a B d b
16 582 1.1 1.87 128 027 1.94

Table 3.1: Table of parameters used in the Dzugutov potential (equation 3.7).
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Figure 3.3: The Dzugutov potential (equation 3.7 using the values in table 3.1)
scaled with respect to the Lennard—Jones potential (equation 3.1). The values
of 0 and ¢ are the same between both figures.
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Figure 3.4: Graph showing both the Dzugutov potential (red) and the
Lennard-Jones potential (blue).
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3.3 Density Functional Theory

The GA method that has been developed, and will be described in detail in
chapter 4, has been incorporated into the ab initio plane-wave density func-
tional theory (DFT) code CASTEP [Segall et al., 2002]. I will give a brief de-
scription of what density functional theory is, and I will also touch on some
points that become important when the GA method is applied to DFT in a

variable cell optimisation.
3.3.1 Mathematical Framework

3.3.1.1 The Born-Oppenheimer Approximation

A time-independent system of N fully interacting electrons and 91 ions can be
described by

AW (Ry,....RyirL.... ) =U W (Re....Ryif,....1n)) (38)
where
|:|: h2 ‘)’I 2 ﬁ2 N N Zi
2MI g 2mez1 4neo &£ 1\R—r,|
1 1 e 2R zz

) 3.9
24n£02|;|r,—r,\ 24n802;|Ri—Rj] (39)

and U is the total energy of the system. The Born-Oppenheimer approxima-
tion [Born and Oppenheimer, 1927] allows the electronic problem to be sepa-
rated from the ionic problem. It states that due to the large mass of the nuclei
compared to the electrons the nuclear and electron motions are decoupled,
and the nuclear wave-functions can be treated as d—functions. In this case the

purely electronic Hamiltonian can be written as

. 1 N ) 1 N N ( )
H— [; 3.10
222 PP

where, for ease of computation the standard units to use are atomic units

where

h=e=me=4meg = 1.
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The first term on the right-hand side of equation 3.10 is the kinetic energy
of the electron, the second term is the electron—ion interaction, or the external
potential Ve (1), and the third term is the electron—electron interaction. This

means that the purely electron Hamiltonian can be written as

H|D(ri,...,rn)) = E|®(ri,....TN)) (3.11)

where @ is the wave—function of the electrons only and E is the total energy of

the electrons.

The approach that DFT takes is to say that ground-state properties are depen-
dent only on the ground-state density. The ground state energy is a unique
functional ! of the density of the system n.

The Hohenberg-Kohn theorem [Hohenberg and Kohn, 1964] states that the

ground-state density n(r) minimises the functional E [n].

Proof. Suppose that we have two different external potentials, Ve (r) and Vi (T)
which give the same ground state density, no (r). These potentials will give two
different Hamiltonians, H and H’, with different ground-state wave—functions,
® and @' (which both give the same ground state density of a non-degenerate
ground-state) with total energies E and E'. It therefore follows that

E

(®|H|P) < (P'|H| D) (3.12)

which will give the inequality
E < (®|H|0)+(¥|H-H'|d)
< E’+///d3r Nt (F) — Ve (F)] no (1) (3.13)

By using the exactly the same method for E’

E < E+///d3r V2 (F) —Ved (F)] no (F) (3.14)

Then adding equations 3.13 and 3.14 we get

E+E <E+F (3.15)

This inconsistency means that there can be no two external potentials (which

Ya functional maps a function from a certain domain and returns a number
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are different by more than a constant) which give rise to the same non—degenerate
ground state density [Hohenberg and Kohn, 1964; Martin, 2004].

If we consider the exact ground state Hamiltonian, I:lgs, constructed from the
ground-state density ng(r), then now say we have two wave-functions, ®
which will give the ground-state density, and ®' which will give a different

density n’ (r). Following on from equation 3.12 this gives

Eo = (®|Hgs|®) < (P'|Hgs|®') = E’ (3.16)

which means that the energy of the functional E [n] constructed using the ground-
state density is lower for the ground-state density ng than for any other den-
sity n’ [Martin, 2004]. If this functional were known, then minimising the total
energy of the system with respect to n(r) would give the exact ground state
density and energy. This theory only applies for ground state properties, and

cannot be applied to excited states. O

So the ground state density of a system will give the correct ground state en-
ergy. Kohn and Sham [1965] proposed this Hamiltonian to be written in terms
of non-interacting electrons, which still gives the same ground-state density

as a system of fully—interacting electrons

N
O(ri,...,rn) =) @(r) (3.17)
B
where the density of the system is
N
nn=a@mal) (3.18)
4

4

The kinetic energy functional of the system of non—interacting “single—particles’

is

1 N
Tsinn=-3 > (a(n|0f[a(r) (3.19)
i=
while the functional representing the classical Coulomb (or Hartree) potential

is

VH [n(r)] = %// n(r) drdr’ (3.20)

=]

the functional of the external potential is known to be
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= /drVM(r)n(r) (3.21)

The remaining unknown terms in H can then be placed into a functional known

as the exchange—correlation functional

Exc[N(N] = (T [n(n)] =Ts[n(r)]) + (Ve—e[n(r)] = Vi [n(r)]) (3.22)

where T [n(r)] is the kinetic energy functional and Ve—[n(r)] is the electron-
electron potential of the fully interacting system. These quantities are un-

known and so the form of Eyc[n(r)] must be approximated.

Now by use of the variational principle we can write equation 3.11 in terms of

a single—particle wave—function (or orbital) and the Kohn-Sham Hamiltonian,

Hks

Hisl@ (r)) = &l (r)) (3.23)

where g is the energy of the single—particle orbital and Hksis

HKS_——D2+V /dr e Ve (1) (3.24)
where
Vie (1) = OExc [nr() ) (3.25)

which is the functional derivative of Eyc[n(r)]. Due to the corrections made by
the use of Vyc, the density n(r) found using equation 3.23 will be the same as

that found using equation 3.11.

3.3.2 The Local Density Approximation

While this DFT is powerful it will be impossible to calculate unless the form
of Exc[n] can be found. It may be thought that the form of this functional must
be as complex as the system it describes. However it is possible to gain mean-
ingful results from a simple approximation to this functional. Kohn and Sham

[1965] made an approximate form of Eyc using the following approximation

ELPA[n // d®r n(r) e (n(r)) (3.26)
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where & (n) is the exchange—correlation energy per electron in a homogeneous
electron gas of density n. Despite being a very simple equation it gives surpris-
ingly good results and by using the methods described above a large number
of systems can be studied accurately [Segall et al., 2002]. The form of &y is made
by fitting to data from a Quantum Monte Carlo calculation performed on a ho-
mogeneous electron gas, such as that of Ceperley and Alder [1980], which has
been parameterised in some way, as in the work of Perdew and Zunger [1981].

There are other methods of calculating an approximation to Ey, by using in-
formation about the gradient of the density approximation. These methods are
known as Generalised Gradient Approximations (GGAs) [Perdew et al., 1992].
I will only be using the LDA functional for reasons that will be explained in
chapter 6.

3.3.3 Calculation of Forces: The Hellmann-Feynman Theorem

Although DFT gives a method for calculating the ground state energy of the
system, it does not describe the method in which the “forces” are calculated.
Since the local minimisation stages require forces as well as energies then the

following will describe how this can be done.

One brute force method is to calculate the energy of a configuration of atoms,
make a slight perturbation to this configuration and recalculate the energy, and
then repeat the process. This method allows a graph to be made of position
verses energy, and so the force can be calculated from this graph. The so-
called Hellmann-Feynman theorem [Feynman, 1939] gives a framework for
calculating the force without the need for repeated energy calculations. This

theorem is only valid for the steady-state case, i.e. for

Hlp) = E|¢) (3.27)

where the wave—function (@) is an eigenfunction of H. The energy of the sys-

tem can therefore be defined as

E = (g[H|p) (3.28)

If we differentiate with respect to a co—ordinate of the system, A, which could
be position, then

% _ /g1 {(2%h0) +
ar \?ax|®) T \ax TP T\®
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then due to the relation in equation 3.27 and that

(@H = (p|E (3.30)

(because H is Hermitian) equation 3.29 can be written as

dE / |oH op 2
0_)\_<(pd_)\(p>+E<0_)\ (p>—|—E<(pa—)\> (331)
These last two terms can be written as
29 dp\ _0
e(Grle) +E(o|58 ) —Ex; (ole) 632
and since (@|@) = 1 this term is zero. Therefore
JE oH
o <§0‘ﬂ §0> (3.33)
and so the force can be written as
JE oH
F:_d_)\:_<(p'd_)\ (p> (3.34)

The reason why this approach must be taken is that, unlike for energy, there is

no variational principle for forces.

3.3.4 k-points

Using DFT it is necessary to calculate certain reciprocal-space properties. In
a computational framework it also simplifies matters when certain quantities
are calculated in reciprocal space. While this thesis will not discuss the finer
points of electronic structure calculations I will briefly sketch over some points
that become relevant when combining DFT with genetic algorithms.

3.3.4.1 Reciprocal Lattice

My intention is to use the ideas of Genetic Algorithms described in chapter
2 to study periodic bulk crystals (and we are also using a super—cell approach
which is inherently periodic). In this case our cell can be defined by three lattice
vectors, a, b and ¢ which define the co-ordinate directions in our cell. We can

also define the primitive vectors of our reciprocal lattice from the primitive
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vectors of the crystal lattice

ar = Zn&
~ Ta-(bxc)
. cxa
b* = Zna-(bxc)
N axb
cr = ZITm (3.35)

where a- (b x ¢) = Q, the volume of the unit cell. These vectors have the prop-

erty

a-a*= 2m etc. (3.36)
a-b*= 0 etc (3.37)

and points on the reciprocal lattice are defined by these vectors

G = ha*+kb*+Ic* VYhkI| ez (3.38)

3.3.4.2 First Brillouin Zone

An important concept in solid—state physics is that of the first Brillouin zone. It
is formed by the Wigner—Seitz cell of the reciprocal-lattice (which is the small-
est volume repeatable unit in the reciprocal lattice). The reciprocal-space lat-
tice vectors {G} contained within the first Brillouin zone are important as de-

scribed by Bloch’s theorem below.

3.3.4.3 Bloch’s Theorem

In a crystal lattice, the potential that the electrons are moving in is periodic
with the lattice.

V(r) =V (r+L) (3.39)

When this is the case the wave—function of the single—particle states existing in
this potential can be written as a product of a function which is periodic with

the potential and a wave-like part
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@ (r) =ug (r)exp(ik-r) (3.40)

where

Uk (r+L) =ug (r) (3.41)

This function can be represented as a sum of plane-waves

ug (r) = gCKG exp(iG-r) (3.42)

where {G} are reciprocal lattice vectors and ¢y ¢ are the co—efficients of this

plane-wave set. Re-writing equation 3.40

@ (r) = Zcm exp(i(k+G)-r) (3.43)
G

so now the single—particle wave—functions, ¢ (r), can be written as a sum of
plane-waves, where K is a reciprocal vector from within the first Brillouin zone
of the system, since any k—vector from outside the first Brillouin zone can be
translated back inside the first Brillouin zone.

Proof. If we consider a reciprocal lattice vector g, which is from the set of {G}
vectors. Then we can modify equation 3.40 to become

@ (r) =ux(r)exp(ig-ryexp(i(k—q)-r) (3.44)

The function uk (r)exp (ig - r) is also a function which is periodic with the lattice,
Uk (r), and so now we have a new vector, k' = k — g, which is also a valid k-
vector. In this way it is possible to translate any k—vector until it is within the
first Brillouin zone O

If we consider the electron density, n(r),

n(r)= gnG exp(iG-r) (3.45)

such that

n(r+L)=gngexp(iG-r)exp(iG-L) (3.46)
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where

L=uva+Vvb+wc Yu,vywe 7 (3.47)

but

exp(iG-L)=exp(2m (hu+kv+Iw)) =1 (3.48)

since h,k,I,u,v,w € Z, therefore

n(r+L)=n(r) (3.49)

so the only non-zero Fourier components are those at the reciprocal lattice

points G. There will still be a large number of these points!

3.3.4.4 Number of k—-points

To accurately sample the first Brillouin zone it may be that a large number of
k—points are required. While there are some schemes that use cell symmetry
to reduce the number of k—points required [Monkhorst and Pack, 1976; Pack
and Monkhorst, 1977], in a general case there will not be any symmetry to take
advantage of.

The density of k—points needs to be chosen through a number of calculations.
When converging the energy of the system, the energy may oscillate as the
density of k—points is increased and so convergence must be ascertained before
the accuracy of a calculation can be accepted.

3.3.5 Plane—Waves

There are a number of different basis—sets that can be chosen for ¢ (r). Two of
the most popular are Gaussian Basis—Sets and Plane-Wave Basis—Sets. I will
not go into a detailed comparison of Gaussian Basis—Sets to Plane-Wave Basis—
Sets, but needless to say there are arguments for both sides. Plane-waves are

a good choice for periodic systems for the following reasons.

As can be seen from equation 3.43, the wave—functions of electrons moving
in a periodic potential can be represented as sums of plane-waves. To accu-
rately represent the system we would need a large number of plane-waves
and some way to determine how many plane-waves are enough. While the

wave—function in the space between ions can be represented by a small num-
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ber of plane-waves, the wave-functions close to the ionic cores will contain
a large number of short-range features and require a large basis—set of plane

waves to represent them.

The number of plane waves included in a calculation can be easily charac-
terised by a single parameter, the cut—off energy.

k+G|?
2

< Ecut (3.50)

By increasing the cut—off energy more and more plane-waves will be included
in the basis set. Eventually adding more plane waves will not alter the energy
of the system significantly. At this point the energy has been converged with
respect to the number of plane-waves. The energy will converge monotoni-

cally with increasing numbers of plane-waves.

3.3.5.1 Variable—cell calculations

As was shown in section 2.2.4 the cell of a structure can also be allowed to
vary during a calculation. At the start of a calculation the value of E¢y will
define the number of plane-waves required for the initial cell size. By changing
the cell size the reciprocal-lattice also changes, and so will change the size of
the Brillouin zone of this calculation and this in turn will change the effective
Ecut- If the number of plane-waves is kept fixed during a calculation then the
accuracy of the answer cannot be guaranteed. Allowing the number of plane-
waves to vary during a calculation means that the effective value of E¢yt can be
kept constant.

To be able to perform variable—cell calculations, an optimisation technique
such as the BFGS method described in section 2.2.4 needs to be used, since
this method is able to cope with an applied strain, g. This strain will alter the

unit cell by

h= (Hg) ho (3.51)
where h=[a,b,c]. The BFGS algorithm is able to evolve the unit cell along with
the atomic co—ordinates.

3.3.6 Convergence

As has been described in sections 3.3.4.4 and 3.3.5 to be sure of the accuracy of

a calculation, the number of k—points and plane-waves the system requires for

68



Chapter 3 Methods of Energy Calculation

a converged solution needs to be determined. When performing DFT calcu-
lations the first set of calculations should be single energy calculations on the
initial system configuration to determine the correct number of k—points and

energy cut—off to use.

The graphs shown in figure 3.5 show an example of convergence plots for a
4-atom diamond unit cell. From these graphs a suitable number of k—points
would be found by using a 0.05A°* sampling of reciprocal space and a suitable
number of plane-waves for our basis-set would be characterised by a 400eV

plane-wave cut-off energy.
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Figure 3.5: Graphs showing a) the convergence of the enthalpy of 4-atom di-
amond with increasing k-point density and b) the monotonic convergence of
the enthalpy of 4-atom diamond with increasing the cut-off energy used in the
calculation. The final values chosen for these parameters were a cut-off energy

of 400eV and a k—point sampling of reciprocal space of 0.054°%
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3.4 Enthalpy

While these methods above describe how to calculate the total energy of the
system, I will actually be using enthalpy, J{, in this study. Since all calculations
are being performed at zero temperature this is an appropriate free energy.
When at zero pressure it is the energy, U, that defines the potential energy
surface that the system explores. Adding the effects of an external pressure
will not affect the operation of the BFGS algorithm described in section 2.2.4,
since this has been taken into account in the stress term. Now the enthalpy
surface of the system,

H =U+PV, (3.52)

can be explored, where P is the pressure on the system and V is the volume of
the simulation super—cell. This has most relevance to chapter 7 when I will be

studying systems at different pressures.

3.5 Conclusions

There are many ways of defining empirical potentials so as to make simple
approximations to systems of interest that can be simulated in a reasonable
timescale, whereas Density Functional Theory is a much more rigorous ap-
proach to the calculation of the energy of system. However, in a Genetic Algo-
rithm approach the method only requires that an energy is returned, and the

method is independent of the energy’s calculation.
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A Genetic Algorithm with Periodic

Boundary Conditions

4.1 Methodology

In this chapter, I will demonstrate that for Genetic Algorithm studies with pe-
riodic boundary conditions using a periodic cut in the crossover operation is
superior to a planar one. The periodic cut is chosen to have the same period-
icity as the super—cell of the population member, and this reduces the discon-
tinuities produced in the crossover operation, which would cause extra work
for the local minimiser that is required in this GA scheme. Results show that a

periodic cut has a faster convergence than a planar one for large systems.

41.1 The Problem

As was discussed in the previous chapter, there have been a large number
of attempts at solving the minimum structure problem. While the method
proposed by Deaven and Ho [1995] is excellent at solving zero—-dimensional
systems such as clusters, as periodic boundary conditions are imposed in one-

, two—and three-dimensions the method could be improved.

By performing cuts in real-space, a version of Holland’s schema theorem (sec-
tion 2.3.4.1) was being utilised. It was the local structure of the members that
was being maintained in the crossover procedure. Any disruption caused in
the process is then relaxed by the local minimiser, as described in section 2.2.
In the cluster case the only disruption is caused along the cut itself. Relaxation
is required for the surface of the cluster, but this would already have been done

before crossover.
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When periodic boundary conditions are introduced, and the cut procedure
does not take them into account, then in effect at least fwo cuts are being made,
one along the cut itself, and the others along the periodic boundaries. These
extra cuts cause extra disruption to the local structure and so will hamper con-
vergence to the global minimum structure. This is not to say that the method
will not find the global minimum structure, but that this method could be
improved. Figure 4.1 shows the crossover operation using a planar cut in a
super—cell approach.

Figure 4.1: Diagram showing the crossover operation using a planar cut with
periodic images also shown. The red section is from one parent and the blue
from the other. Apart from the disruption caused along the cut there is also
disruption along the periodic boundaries.

41.2 The Solution

The solution to these extra discontinuities is to use periodic cuts in the crossover
operation. By forcing the cuts to be periodic with the super—cell then unwanted
disruption can be reduced.

There are also some extra improvements that can be added so that the method
can be made more flexible. Instead of the cuts being made in Cartesian co-

72



Chapter 4 A Genetic Algorithm with Periodic Boundary Conditions

ordinates as previous studies have done, the cuts are made in the fractional
co—ordinates of the ions, made with reference to the simulation super—cell, so
it does not “know” about the Cartesian shape of the cell. While this initially
sounds like an unnecessary complication, it allows for population members
with different cells to be bred during crossover, rather than being constrained
to both parents having the same super—cell. The technique also allows the
cell size and shape to be evolved along with the crystal structure (if the local
minimiser can also optimise the cell along with the ionic positions). This part
of the technique will be discussed in more detail in chapter 6.

X

cut,

cut atom

atom

c,n

Figure 4.2: Diagram showing crossover in a fractional representation. For each
(¢, n) = either (a,b), (b,c) or (c,a) then X = either ¢, a or b.

The crossover is performed in fractional coordinates, as described in figure
4.2. The cut is defined by any periodic function with the same periodicity as
the cell, f(séfg,@), where ngc’,'%) is the fractional position vector for each atom
along the ({,n) = (a,b), (b,c) or (c,a) directions. This function gives a vector
(in fractional coordinates) Scyt for each Sgom in the population member. The

metric tensor g = h'h, where h = [a,b, ] (in Cartesian coordinates), is used to

calculate the product

Ocut = (Scut — Satom)T QX (4.1)
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a pu—
where X=¢(b = in fractional coordinates (X = c when ({,n) = (a,b) etc.)

C =

1T 1T 1
ROO OO OO
I L 1L )

and with the criteri;)r{

>0 the atom is “above” (outside) the cut
Ocut (4.2)

<0 theatom is “below” (inside) the cut.

Figure 4.3: Real-space representation of the periodic cuts in the crossover op-
eration. Different wavelengths and amplitudes can be used for the cuts along
the different cell directions. The cuts are calculated in fractional coordinates
which allows crossover between parents with different cells. The dark grey
sections represent one part of the cell, the light grey the other, and it is these
parts that are swapped in crossover.

Figure 4.3 shows the crossover operation where two cuts are required in the
cell. The reason for using two cuts can be seen in figure 4.4. A single cut
would still have discontinuities at one of the periodic boundaries.

Every crossover operation performed has an equal probability of being cal-
culated with the cuts made in reference to either the a, b or ¢ directions. This
ensures that none of the three co—ordinate directions is preferred over the other
two, but also allows large areas of each of the population members to be undis-
turbed by the cut. To ensure that no one parent is preferred over the other, the
centre of each of the cuts should be made one—quarter and three-quarters up

the chosen cell axis which gives approximately even mixing.

In the Deaven and Ho [1995] formulation, the plane of the cut was defined
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by the creation of a random unit vector on the surface of a sphere which was
centred on the centre of mass of the cluster. In our method cuts made in dif-
ferent cell directions can have different random wavelengths and amplitudes,
although a maximum amplitude should be defined so that the cut is contained
within the simulation super—cell, and obviously the wavelength of the cut can-
not be longer than twice the cell vector in that direction, whilst any cut with a
wavelength of less than half the atomic separation will appear as a flat plane.

/\/
/\_/

/\/
/\/

/\/
/\/

/\/
/\_/

/\/
/\/

/\/
/_\/

Figure 4.4: Diagram showing the crossover operation using periodic cuts with
periodic images also shown. The red section is from one parent and the blue
from the other. The only disruption that occurs is along the cuts themselves.

Fitness is determined by the relative enthalpy per atom of the population mem-
bers, and each population member was chosen for crossover based on its fit-
ness using roulette wheel selection [Johnston, 2003]. Similar to Chuang et al.
[2004] the number of atoms in each individual population member can be var-
ied by accepting all solutions after crossover, or if the number of atoms needs
to be constrained then solutions are rejected until offspring are generated that

have the correct number.

Either elitist or hybrid selection (as defined in section 2.3.3) was used in the up-
date procedure, which determines which members of the original population
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should progress through to the next generation.

4.2 Validation on Empirical Systems

All calculations were performed by adding the above GA formulation to the
ab initio plane-wave DFT code CASTEP [Segall et al., 2002], which has also
been modified for ease of algorithm testing to allow the use of the empiri-
cal Lennard—Jones potential (section 3.2.2). This potential gives rise to a HCP
ground state structure [Pollack, 1964a] which is almost degenerate with the
FCC structure (energy difference from HCP +0.1% [Kane and Goeppert-Mayer,
1940]. The energy difference between the FCC and HCP super—cells used in
this study was +0.072%, due to the above formulation of the Lennard—Jones
potential). The value of 0 was set to 3.405 A, £ was set to 120K, and Ry was
set to 2.50. While the ground states are very close in energy, to switch from

FCC to HCP four out of every six layers require a stacking fault.

421 Results

For the Lennard—Jones results a fixed super—cell was used, but the number of
atoms could either be fixed for each of the population members, or be allowed
to vary. GA minimisation calculations were performed using either the planar
or periodic cuts. If a planar cut was taken then a unit vector on the surface of a
sphere was generated, as in the Deaven and Ho [1995] case, which defined the
cut.

4.2.1.1 Choice of initial conditions

The number of population members was fixed at M = 16, and the initial num-
ber of atoms in each population member was set to N = 150 using a hexagonal
super—cell, which is commensurate with both perfect FCC and HCP structures
without stacking faults. The initial configuration of the population members is
totally randomised, then minimised with the local minimiser before proceed-

ing. A total of 200 generations was run for each simulation.

To determine what the initial values of the mutation rate, mutation amplitude
were | set off a series runs with differing values of these parameters. Periodic
cuts and hybrid selection were chosen for these runs, and the initial starting
values of the mutation rate were mg = 0.05, 0.10 and 0.15. For each of these
value I set the value of ma = 1.0A, 2.5A, 5.0A and 10.0A. Of these runs, the
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Figure 4.5: Summary of the convergence times (in number of generations) for
each variation of the method presented. For each run, either periodic or planar
cuts were used, using either the hybrid or the elitist update scheme, and the
number of atoms could either be kept fixed, or be allowed to vary.

only set of values that returned an ordered minimised structure was with mg
set to 0.10 (10%) and my set to 2.5A.

In total 15 simulations were performed from a random start for each of the
eight combinations of either fixed or variable number of atoms, using either
the roulette wheel or simple update scheme, and with crossover performed
using either periodic cuts or a planar cut. A summary of the convergence times

is shown in figure 4.5.

4.2.1.2 Empirical Lennard-Jones bulk studies with a fixed number of atoms.

For these studies the number of atoms was kept fixed at 150 during the whole
of the simulation. However, none of the 60 calculations resulted in minimisa-
tion down to FCC or HCP stacking. The elitist update scheme was much faster
at reaching convergence, and using periodic cuts was much faster than using

a planar cut when using either update scheme.

As noted in the studies of Chuang et al. [2004] allowing the number of atoms

to vary helped convergence. In that study ordered structures were found even
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Figure 4.6: Summary of the enthalpies of the structures found for the results
shown in figure 4.5

in a fixed-N case. This may be due to the extra constraints imposed by surface
effects as opposed to performing a fully bulk calculation.

4.2.1.3 Empirical Lennard-Jones bulk studies with a variable number of

atoms.

The trend in the results obtained from varying the number of atoms agree with
the trend seen in the study of Chuang et al. [2004], where allowing the number
of atoms to vary during a calculation improved the convergence of the calcu-
lation. The use of periodic cuts using the hybrid update scheme, or the planar
cut using the roulette wheel or simple update scheme, allowed the system to be
minimised to a defect—free ground state structure !. Periodic cuts were faster

to convergence than a planar cut, as shown above.

We found that the system did not converge into a perfect lattice structure with-
out allowing for variable atom number. Figure 4.7 shows a typical set of re-
sults, using periodic cuts with roulette wheel selection for update. In this
case the system converged in 29 generations to the structure shown in fig-
ure 4.8. This configuration is an FCC-HCP hybrid with an energy difference

la structure with no vacancies, although there were stacking faults
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Figure 4.7: Typical results from a 150 atom (variable), 16 population mem-
ber calculation starting from an initial random configuration with a mutation
rate of 10% and mutation amplitude of 2.5A, using roulette wheel selection in
the update procedure. Periodic cuts were used and the system converged in
29 generations to a structure with 150 atoms and a local minimum enthalpy
+0.024% above the HCP minimum (see insert).

of +0.024% from the HCP ground state, which is due to a single FCC plane
stacking fault. Similar structures were also found using a planar cut, but with
longer convergence times. A pure HCP structure was found only once, in a

calculation performed with a planar cut in the the crossover procedure.

4214 Cell-Atom Coupling

It is also interesting to note that the planes of atoms have aligned themselves
with the cell axis, which was unexpected. The super—cell with periodic images
is a computational construct for ease of simulation, and the structure should
take any orientation that fulfils the periodicity. Indeed, the first occurrence of
an ordered structure such as that in figure 4.8 is usually at a random orientation
to the cell axis, but the periodic cuts, which are made in reference to one of the
three axes, provide a weak coupling to the atomic positions. This causes the
structure to rotate until it is aligned correctly. With the planes aligned this way
with the cell axes the crossover procedure will cause the minimum amount of

disruption to the structure.
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Figure 4.8: Side on view of the minimised structure from figure 4.7, looking
down the [011] direction. The colours show the mixture of FCC (grey) and
HCP (black) stacking.

4.3 Conclusions

Even though the structure found in this case was a defect—free structure (figure
4.8), there was one lower enthalpy configuration, that of pure HCP, which was
only found once, by using a planar cut with hybrid selection for update. Only
three defect—free structures were found using these options however, one HCP,
one structure similar to figure 4.7 and one pure FCC. By comparison six defect-

free structures were found using a periodic cut.

Although results from calculations performed with a fixed number of atoms
are not as encouraging as those presented by Chuang et al. [2004], results from
calculations performed with a variable number of atoms show that the use of
a periodic cut decreases the number of generations required to reach a well-
ordered structure, and the quality of the results are comparable between the

two crossover techniques.

The one exception to this last statement is the case of elitist selection with a
variable number of atoms using periodic cuts. These results show a higher
average energy than the planar cut case (figure 4.6). I believe that this can be
interpreted by referring back to the schema theorem (section 2.3.4.1) for binary
strings. The use of periodic cuts is very good at maintaining local structure
during crossover so that when only the fittest members are selected for update
(as in elitist selection) this system becomes too easily frozen in local minima.

By contrast, planar cuts are so bad at maintaining local structure in periodic
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Atom Update  Cut Type Pure HCP Intermediate Pure FCC

Number Type HCP-FCC
Variable Hybrid  Periodic 0 6 0
Planar 1 1 1
Elitist Periodic 0 0 0
Planar 0 3 1

Table 4.1: Table giving summarising the number of each ordered structure type
found for the different methods discussed. The results for fixed atom number
have not been included. Numbers given are out of a total of 15 calculations.

systems that even elitist selection cannot cause rapid stagnation because the

disruption is large enough to force the system out of local minima.

While this effect could be seen as beneficial, the size of this effect cannot be
controlled as easily as with the mutation rate and mutation amplitude. It is
better therefore to use periodic cuts and have more control through these pa-

rameters.

Table 4.1 summarises the results found with the variable atom number calcu-
lations. Although HCP was found by using a planar cut, the most successful
method was to use periodic cuts, especially when taking the time taken to
achieve convergence into account. I shall address the failure of the method to
find HCP in the next chapter.
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Chapter 5

The Structure Factor and its uses

5.1 Introduction: The Stagnation Problem

As could be seen figure 4.7, even though the system converged in 29 genera-
tions, no lower enthalpy structures were found. This is a common occurrence
in GA calculations, that of stagnation. The system will find itself in a local min-
imum, and is unable to find itself out of it, since mutation is unable to create
any new features that are beneficial. Over a long enough time frame the system
may work itself out of this local minimum, but this may take a large number

of generations.

What is needed is some way of determining, during the course of a calculation,
if two structures are similar. If this were possible then the selection procedure
could be modified so that dissimilar structures would be chosen over similar

ones. This should prevent stagnation and aid convergence.

One such method is that proposed by Kabsch [1976, 1978] which determines
the rotation matrix between two structures, along with a measure of how close
those two structures are. However, this method requires knowledge of the
ordering of the atoms within the arrays that define them. If the matching of
atoms is not known, the process to order the atoms and test all the possible
ordering is factorial. While the information given by this method would be
ideal it is unfeasible for any structures with more than a few atoms. Instead the
members structure factor can be used as a comparison, once a few difficulties

have been overcome.
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5.2 Definition

The structure factor is a mathematical description of how a crystal scatters
radiation which is incident upon it. It is defined as

F (k) = /p (r)ekrd3r (5.1)

where k = s —sg is the scattering vector, where sg is the wave—vector of the
incident radiation, and s is the wave—vector of the scattered radiation. These
vectors are at an angle of 20 to each other, and |[s| = [So| = % where A is the
wavelength of the incident radation.

If p(r) — p’(n) & (r —rn) where rp is the position of ion nand p’ (n) is the scat-

tering factor of that ion, the structure factor becomes

F(k)=V Zp’(n)exp(zmk-rn). (5.2)

n

The scattered intensity is

(k) = [F (k)P
= FY(K)F (k)
= V23 S o' (m)p' (m)exp (27K - rn) exp (—271k - )

n m

= V25 Y p'(n)p’ (m)exp (2mik- (rn —rm)) (5.3)

nm

Setting 'n — 'm = Rym now gives

() =V2Y S o' (0)p' (m)exp (271K Rom) 54

n -m

The dot—product term becomes

K-Rmm= 25;\” 0 RamC0S @ (5.5)
and setting
4rsin @
I
K = ; (5.6)

gives
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| (K) =V?2 Y > ' (m)p' (m)exp (iKRumcos @) (5.7)

n m

The probability of Rnm being at an angle ¢ with K is

(2rRamsin @) Ramde

and the total probability of Rnm being in any direction is 47RZ,

Taking the average of | (k') now gives

(1K) =V2Y S ' (mp'(m) /d(pexp (ik RumCos @) 2rRZ sing  (5.8)

nm 4an21

To solve this integral, let

y = exp(ikRymcos o)

dy = —ikRamsing@exp (ikRimcos@)de
so that
/ _ 2 / / p=n dy
w) = vy ye e m | e
2 / / -y e=n
- VIR0
Vs (P00
and using the identity
o eXp(iy) —exp (—iy)
siny = 5
this gives
/ / / sin (k/an)
{1 (K)) :VZZEP (np (m)w (5.10)

Where Ryn = |rnp—rm| and k' = ‘mﬁ\'ﬂ. Equation 5.10 can also be written as
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N I AL I / Sil’l(k’|l’n—l"m|)
(1 (K))=V? Nn;p2(n)+ ZH;man (n)p’ (m) Klrn— Tl (5.11)
This function,
sing
m = jo(Y)

is the zero'" order spherical Bessel function of the first kind. The important
property of equation 5.11 is that it is a function of inter-atomic distances within
the crystal, |rh — I'm|, and is therefore independent of origin. This is the Debye
Scattering Formula [Debye, 1915].

A function with similar properties is

N N N
A)=V? N5 p2(1)+2 ;zp'(n)p'<m>ao(ﬁnkrrrn—rmo] 512)

which instead uses the zeroth order Bessel function of the first kind. It is this
“structure factor” function which I shall use for this chapter. The function
A (kr) is positive definite.

5.2.0.5 Comparing Structure Factors

A function suitable for comparing two structure factors is [see Srinivasan and
Parthasarathy, 1976, chapter 6]

i lF (k) [ = [F (k) ]
R(F (k)) = (5.13)
SR A
which would give a value that would correctly identify translations, but not
rotations. However, I am using A(kr), not F (k) . Replacing this in equation

5.13 gives

Sk N (k) Ak
SN ()

which should still be suitable for use. Here A’ (k) is the structure factor of

R(A (k) (5.14)

the “known” structure, and A (k) is the structure factor of the structure being

compared against this structure.
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The behaviour of this function is different whether or not you are dealing with
a fixed or a variable cell case. In a fixed cell calculation the trend of R(A (k))

can be seen in figure 5.1

0.030 T T T T T T T T T

0.025 |~ m

0.020 _]
5
= 0.015 —
~

0.010 _

0.005 —

0.000 | | | | | | | | |

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ax (A)

Figure 5.1: Graph showing the trend of R(A(k;)) for a fixed cell calculation.
Behaviour calculated for a 4—atom carbon cell.

In contrast, the behaviour for variable cell calculations can be seen in figure
5.2.

In both these plots Ax is the random displacement from the original structure,
whose comparison function is given by A (k).

5.3 A Two-Part Fitness Function

The use of this structure factor comparison, given in equation 5.14, is incorpo-
rated into the fitness function such that fitness is now made up of two parts,
one part from the enthalpy as previously used, e.g., one of the definitions of f;
from equation 2.11, and the new value from equation 5.14, so now

£/ = (1—w)fi +WR(A (k) (5.15)

where f/ is the value of the fitness that will be used in the update and crossover
procedures, and w is a weighting factor which has a value between zero and

one.

Since we are using this routine to differentiate between like and unlike struc-
tures, rather than any form of comprehensive structural analysis, we can sim-

plify this comparison somewhat. If we are performing a variable number of
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Figure 5.2: Graph showing the trend of R(A(k;)) for a variable cell calcula-
tion. Behaviour calculated for a 4—atom carbon cell where the cell also had an
associated Ax modification.

atom calculation, we can guess that two structures with different numbers of
atoms are different, so we will have no need to compare these structures. We
also do not need to compare all structures with all other structures, since we
are merely trying to prevent stagnation, and so we can simply compare all
structures with the minimum enthalpy structure which has the same number
of atoms. We also want to keep the fact that lower enthalpy structures are “bet-
ter” than higher enthalpy ones, so we further weight the value of R(A (k;)) that
a structure has by the value of fj of the fittest member in that “set” which is
made up of members with the same number of atoms. So now the new fitness

function is

- - - 1 i = Mt
' = (1 —w) i +w!fgg _ _ (5.16)
R(A(k)) fi # it
Where the left-superscript j above denotes comparing between groups with
similar number of atoms only. This means that the fitness of the fittest member
of each group (/ffjt) will be unchanged from its enthalpy value, and all other
values in the group will be scaled accordingly. If the value of the fitness weight,
W, is set to 1 then the maximum value of 'f;’ that any member could have is the
same value of the fittest member of the group, it

Since in a fixed cell case the value of R(A(k;)) is between zero and one f/ will
remain between zero and one, as in the enthalpy case. However, as could be

seen in the trend from the variable cell case (figure 5.2) in this case R(A(k;))
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could become greater than one, in which case it would become more “fit” than
the fittest member with the same number of atoms. The solution to this is to
set any member with a value of R(A(k;))> 1 equal to one. Now the condition
that 0 < f/ < 1is satisfied.

5.4 Validation on Empirical Systems

5.4.1 Results
5.4.1.1 Results from the use of the Structure Factor Comparison

The use of the structure factor in the selection procedure has had a marked
effect on the quality of the results produced as seen in figure 5.3. The use of
the structure factor drives the system so that for a fitness weight of 0.75 finding

a HCP structure is much more likely.
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Figure 5.3: Summary of the enthalpies of the structures found for different
fitness weights, which controls how much the structure factor is considered
during selection for update and crossover. The values for w = 0.0 are those
from figure 4.6.

The effect on convergence is interesting however, as seen in figure 5.4. There is
little increase in the time to convergence, although there is a greater spread in
the values.

Figure 5.5 shows the results from a calculation performed with w=0.75. 1
have included these results in particular because it shows the system going
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Figure 5.4: Summary of the convergence times for the results shown in figure
5.3. The values for w = 0.0 are those from figure 4.5.

from a FCC structure to a HCP structure through two intermediate stacking
fault structures. All these structures can be seen in figure 5.6.

5.5 Conclusions

The effect that the use of the structure has on a calculation is not exactly as I
originally envisaged. I had hoped that the modified fitness function (equation
5.16) would prevent structures dominating and as such prevent stagnation.
I also thought that this may mean that time to convergence would have in-
creased, and although the maximum value is greater and the overall spread is
larger, as seen in figure 5.4, the average has not changed greatly, so the time
required for a calculation has not increased. The actual calculation of the struc-
ture factor (equation 5.12) does take time, but this time is much less than the

time take for an energy calculation in an ab initio DFT framework.

As can be seen from figure 5.5, “stagnation” of a type occurs. In this case the
structure that was the minimum enthalpy structure was in fact the global min-
imum configuration, but structural diversity was not maintained throughout
the rest of the population. In this, and in other calculations, a very well or-
dered structure such as structure “c” from figure 5.6 could dominate and this
structure would propagate through the population. When this occurs, and the

whole population is the same structure, the program will exit the calculation
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Figure 5.5: Plot showing convergence to HCP minimum structure for a calcu-
lation with w= 0.75. The stacking patterns of the minimum enthalpy solutions
are shown next to their appearance during the course of the simulation. The
system converged to a HCP structure in 55 generations, and by the 127th gen-
eration all members were the same. Structures a), b), ¢) and d) are shown in
figure 5.6

early.
Fitness Pure HCP Intermediate = Pure FCC
Weight HCP-FCC
0.00 0 6 0
0.25 3 3 0
0.50 3 6 0
0.75 6 3 0

Table 5.1: Table comparing the number of each ordered structure type found
for different values of the fitness weighting factor w. Numbers given are out of
a total of 15 calculations.

Table 5.1 summarises the success of the structure factor in the fitness function,
when compared with table 4.1 from chapter 4. The number of ordered struc-
tures increases, and the probability of finding the global minimum structure
also increases. Incorporation of the structure factor into the fitness function

can be seen as a useful addition to the method.
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Figure 5.6: The structures outputted from the calculation shown in figure 5.5
looking down the [011] direction. They are a) pure FCC from generation 48, b)
a stacking fault structure with lower enthalpy than FCC from generation 51, c)
another stacking fault structure with a lower enthalpy than b) from generation
54, d) pure HCP from generation 127 (the frames are guides to the eye and do
not represent the super—cell used in the calculation).
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Chapter 6

Ab Initio Carbon Polymorphs

6.1 Introduction

In the previous two chapters I described the basic framework of the GA, but
these studies were on systems with a fixed cell. To be a truly ab initio method
this method should also be able to work with systems where this is not a re-
striction. In this chapter I will show how to perform crossover in a variable—cell
case, and then apply this method to the search for carbon polymorphs using
Density Functional Theory. I will compare this technique with the scatter ap-
proach taken by Pickard and Needs [2006].

6.2 Variable Cell calculations

As was shown in section 2.2.4 local minimisation is capable of relaxing the cell
along with the atomic co-ordinates. To take advantage of this it is necessary
that the GA can also cope with having the cell size and shape change during
the course of the calculation. In fact this is an almost trivial change due to
the way that the GA was formulated in chapter 4. As was shown in figure 4.2
the cuts are made in fractional co-ordinates. This means that the cut itself has
no knowledge of the shape of the cell, the cut itself working in an orthogonal
space of fractional co-ordinates. After crossover, to interpret what these co—

ordinates mean, a set of lattice vectors must be imposed onto the cell.

Figure 6.1 shows how having different cells can still allow parents to have
offspring. When converted into fractional co-ordinates the red parent and the
blue parent exist in the same space, and therefore it is trivial to breed these two

structures.

After crossover a new cell must therefore be determined for the offspring. In
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Figure 6.1: Diagram showing how crossover in fractional co—ordinates allows
two parents with different cells to be compatible parents.

this study I have elected to randomly choose one cell from each parent to be
assigned to one of the two offspring generated in the crossover step. The cell
from the other parent is then assigned to the other offspring. Another scheme
for defining the cell of the offspring could be to average the two cells of the
parents and then give this to both offspring.

In the mutation step that follows the cell is also mutated with the same prob-
ability as an atomic mutation (although the amplitude of this mutation can be
different to that of an atomic mutation). After this step the whole structure is
locally minimised, along with the cell.

In the initialisation phase of the GA calculation, when the random population
members are created, it is also necessary to highly randomise the cell of each of
these members as well. After this the structures are minimised as usual before

being selected for crossover.

6.2.1 Extension with regards to Density Functional Theory

There are a number of considerations that need to be made when perform-
ing genetic algorithm studies in an ab initio framework, and specifically in the
plane-wave DFT framework of CASTEP [Segall et al., 2002]. By incorporating
the GA method within CASTEP, rather than using a scripting wrapper around
CASTEP, or another ab initio code as other methods do [Oganov et al., 2006;
Oganov and Glass, 2006], this allows these issues to be addressed more effi-

ciently as the calculation is progressing.
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6.2.1.1 How Many Plane Waves!

As was discussed in section 3.3.5 the accuracy of a calculation is in part de-
fined by the number of planes waves used in the basis set of the calculation.
The number of plane waves is defined by a single parameter, E¢y, and as was
described in section 3.3.5.1 in a variable cell calculation the number of plane-
waves must be allowed to vary to maintain an effective E¢x and so maintain

the accuracy of the calculation.

Within a GA framework this is doubly important since the enthalpies of differ-
ent population members will be used the calculate the relative fitnesses of each
of the population members, and these fitnesses will be directly compared. If
a fixed number of plane-waves is used in this case there is no guarantee that
the fitness value of each member, or the relative order of the members deter-
mined after the fitnesses have been calculated, is the correct one. It is vital
that these are correct for the selection for crossover or update procedures to

function correctly.

Prior to a GA calculation the value of E¢ will need to have been determined in
a fashion similar to that described in section 3.3.6 with some cell with the same
atomic species to that being investigated with the GA. After this value has
been found it is simply a matter of ensuring that the number of plane-waves

is allowed to vary during the calculation.

6.2.1.2 Consistent Number of k-points

In a similar fashion of plane-waves, the number of k—points used a calculation
must be consistent so that when the fitnesses are determined they are consis-
tent. It is necessary therefore when performing a variable—cell GA calculation
that instead of using a symmetry reduced grid of k—points [Monkhorst and
Pack, 1976; Pack and Monkhorst, 1977] a full, dense, mesh of points is required.
The necessary density of k—points is determined in the same way to that shown
in section 3.3.6. It is this spacing that is used during a calculation.

However, the cell may change in shape and volume drastically during a local
minimisation step. If this happens it is necessary to re-perform the local min-
imisation after re—calculating the required number of k—points to maintain this
sampling. This re-minimising will need to be done to convergence in num-
ber of k—points, and at this stage the energies of the different members in the

population can now be compared.

Since this GA method has been incorporated directly into the CASTEP code

this allows for some time-saving measures. Usually when calculating the
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initial wave—functions in the first step of the minimisation a random set are
chosen and then minimised using a conjugate—gradient minimiser (see section
2.2.3). In this case since the structure is already well minimised (just at the
incorrect kK—point density) using the final wave-functions from the previous
minimisation is a better first guess than a random one, and so may save some

time in calculation.

With the number of plane-waves allowed to vary, and the k—point density
kept constant, Genetic Algorithms and Density Functional Theory can be used
in conjunction to study systems truly “from first principles”. In this chapter I
will apply these methods to the study of carbon polymorphs. GAs are a good
technique for the stochastic study of polymorphs since these will appear as a
by—product of a GA calculation [Woodley, 2004a].
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6.3 Allotropes of Carbon

There are number of different carbon allotropes that are seen regularly, and
these have many different properties, with many different applications. While
this system has been well studied, it is a good test case for the GA method to
see how well it performs in searching for different polymorphs.

6.3.1 Diamond
6.3.1.1 Cubic Diamond

The structure of cubic diamond was first solved by Bragg and Bragg [1913a,b]
and was the first element whose structure was solved by the use of X-ray
diffraction techniques [Donohue, 1974]. Its space group is Fd3m (227) and it
has sp®>-bonding. It is this strong sp>~bonding that makes it the hardest known

substance. The structure of diamond can be seen in figure 6.2

Figure 6.2: Diamond.
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6.3.1.2 Hexagonal-Diamond: Lonsdaleite

This structure was first suggested by Ergun and Alexander [1962] as a com-
parison between the cubic zinc-blende structure and the hexagonal wurtzite
structure [Donohue, 1974]. Its space group is P63/mmc (194) and it has sp®-
bonding. It is named in honour of Kathleen Lonsdale. Its structure can be seen
in figure 6.3

Figure 6.3: Lonsdaleite.

6.3.2 Graphite

Van der Waals forces are responsible for the inter-sheet bonding in graphite,
and when performing DFT calculations on graphite-like structures, any lo-
cal or semi-local method of approximating the exchange—correlation poten-
tial Vi will not include these effects. It is possible to use the Local Density
Approximation, as opposed to any Generalised Gradient Approximations as
these are known to under-bind weakly interacting systems such as graphite
sheets. While the LDA does not accurately represent graphite, it does allow
for the sheets to be bound. In a GGA calculation the graphene sheets will not
be bound and they will separate during a geometry optimisation.
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6.3.2.1 Hexagonal Graphite

Graphite has been used for a number of different purposes since the 1780’s. It
is, unlike diamond, a good electrical conductor and is also used a lubricant.
The hexagonal form has a space group is P63/mmc (194) . Its bonding is sp?—
hybridised. This is the most common form of graphite, and its structure can be
seen in figure 6.4.

Figure 6.4: Graphite.

6.3.2.2 Buckled Graphite

It was originally thought that graphite was buckled, since some measurements
seemed to indicate this [Donohue, 1974]. The buckled form of graphite has a
space group of P6zmc (186) and it also has sp?>~hybridised bonding. A view
showing the buckling of the layers can be seen in figure 6.5.

It should also be noted that in the calculations presented below, the buckled
graphite phase is not stable and will minimise to hexagonal graphite.

6.3.2.3 Rhombohedral Graphite

This is another sp?>~hybridised structure, similar to hexagonal graphite, but in
this case the stacking is as shown in figure 6.6. The space group of this structure
is R3m (166) .
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Figure 6.5: Buckled Graphite.

Figure 6.6: Rhombohedral Graphite.
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6.3.3 Other Forms of Carbon
6.3.3.1 sp’— and sp’>-hybridised structures from graph theory

There have been some recent systematic studies on both sp?~ and sp3-hybridised
structures using graph theory. A study of 4 and 6 atom carbon polymorphs has
been performed using this method [Winkler et al., 1999, 2001], and showed a
range of structures and symmetry groups. Due to the nature of the method
only lattice structures could be predicted, so graphite was unable to be found
using this method. The sp®-hybridised study of Strong et al. [2004] focused
only on 4 atoms per unit cell, and found 8 other sp3structures as well as dia-
mond and Lonsdaleite. A summary of these structures can be found in table
6.1.

Structure Enthalpy (eV/Atom) Symmetry (Space Group)
Diamond -155.559 Fd3m (227)
Graphite -155.556 P63/mmc (194)
Rhombohedral Graphite -155.555 R3m (166)
Lonsdaleite -155.534 P63/mmc (194)
D* +0.198 I4/mmm (139)
E* +0.364 Imma (74)

F~* -+0.803 C2(5)

G* +1.101 P4,22 (91)

H* +1.138 Fddd (70)

I* +1.328 C2 (5)

J* +1.579 1212121 (24)

K* +1.677 1212121 (24)
4(3)1* +1.166 14,32 (214)
4(3)2¢ * +0.448 141 /amd (141)

* These structures are taken from Strong et al. [2004]. These calculations
used a GGA, with a plane-wave basis cut—off of 550 eV and a Monkhorst-
Pack sampling of reciprocal space corresponding to 0.05 AT

** These structures are taken from Winkler et al. [2001]. These calculations
used a GGA and a sampling of reciprocal space corresponding to 0.04 AT

Table 6.1: Summary of 4-atom carbon polymorphs; diamond, Lonsdaleite and
graphite, and structures from Strong et al. [2004] and Winkler et al. [2001]. The
data taken from the source material gives the enthalpies relative to diamond,
however, due to the computational differences between this study and these
published results, the equivalent values may be slightly different.
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6.3.3.2 Carbon Structures with 3— and 4-Member Rings

Schultz et al. [1999] showed that it is possible to form Sp3—hybridised carbon
structures which contain 3— and 4-member rings, as opposed to the 6-member
rings found in diamond, Lonsdaleite and graphite. The structure with 4-
member rings is in fact structure D from Strong et al., and is shown in figure

6.7. Its space group is I4/mmm (139) .

Figure 6.7: 4—-member ring structure.

The 3-member ring structure is shown in figure 6.8, and has space group
P63/mmc (194) . While the 4-member ring structure has 4 atoms in its unit
cell, this structure has 6 atoms, and so will not be accessible to this study.

Figure 6.8: 3—-member ring structure.
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6.3.3.3 Restrictions

There is a large amount of literature on different possible forms of carbon, in-
cluding Bucky-balls and carbon nanotubes. While these are interesting struc-
tures that warrant investigation, they do not display the three-dimensional
periodicity that this GA method was designed for. Their large unit cells would
also mean that any DFT calculations performed on these structures would be
expensive. I will focus this study on bulk carbon, with 4 atoms per unit cell.
The data shown in table 6.1 means that it will be possible to test the effective-
ness of the GA at finding structures other than diamond or graphite, although
the GA method has advantages over the graph-theory approaches since it does
not assume the type of bonding in a structure and so will allow both sp?- and
sp>-bonded structures to occur in the population concurrently. It is also able
to have sheeted structures such as graphite.

Restricting the search to 4-atom polymorphs means that the time taken for
calculations should be reasonable, even in an ab initio level of theory. A by-
product of this constraint is that some structures, like that of 8-atom glitter
[Bucknum et al., 2005] are inaccessible. There is also a proposed sp?~hybridised
metallic polymorph with 8 atoms per unit cell and a space group of 141 /amd
(141) , which should also be inaccessible [Hoffmann et al., 1983]. Bucknum et al.
[2005] also references large number of other proposed carbon polymorphs,
which I shall not discuss here.

6.4 Results

In these results I will present results from GA calculations with 8 population
members, as opposed to 16 in previous studies, but rather than just being in-
terested in the breeding population, it is necessary to consider all structures
found during the course of a calculation. Rather than starting using coarser
parameters it was also realised that running with fine tolerances from the start
of a calculation was necessary. While this may slow down the initial gathering
of results, in the end it gives better data. It is also important that all popu-
lation members have fully converged electron density and minimised atomic

structure in an ab initio case.

If an un—converged structure is allowed in the breeding population it increases
the likelihood that offspring from this member will also fail to converge. If this
happens it may end up with all population members being un—converged, and
in this case the results from a calculation may be meaningless. As was shown
in the convergence graphs in figure 3.5, a plane-wave cut-off energy of 400eV

102



Chapter 6 Ab Initio Carbon Polymorphs

and a k—point sampling of 0.05A " were chosen for these calculations.

When using the GA as a polymorph search technique, it is not necessary to
keep the fittest structure at the end of each generation, so for these calculations
a pure roulette-wheel update procedure was adopted. It is also only neces-
sary to consider the offspring produced, rather than the population members
themselves (i.e. the members determined after the update procedure which
are allowed to perform crossover). Since all structures produced are fully con-
verged and relaxed, they are all viable polymorphs, as has been discussed in
other GA studies [Woodley, 2004a].

All symmetries stated were found using Materials Studio, a Windows based
package by Accelrys [2001-] that includes a commercial version of CASTEP. It
has a very useful symmetry finder, and the “other possible symmetries” col-
umn in the tables presented are symmetries suggested using different levels of
tolerance in position. The symmetry given in the “Symmetry (Space Group)”
column is that found using a fine (0.01 A) tolerance, the symmetries listed in
the “Other Possible Symmetries” column are those found by reducing the tol-
erance. While this has not managed to replicate all the structures found in the
study of Strong et al. [2004] it was able to find a number of different sp?— and
sp3-bonded structures concurrently, and also found sheeted as well as lattice
structures. While the structures shown in section 6.3.3.2 were not found using
the GA, there were a large number of structures that displayed similar charac-

ter by having 3— and 4-member rings.

For the GA calculations, the program ran for a total of 6 generations with eight
members in the initial generation, giving 56 possible structures (8 from the ini-
tial population, and 8 offspring produced from each of the 6 subsequent gener-
ations). These calculations are compared with a random scatter search [Pickard
and Needs, 2006], in which 56 independent calculations are performed. This
is a relatively short calculation, when compared with the 200 generations used
in the Lennard—Jones studies on 130+ atom cells of chapters 4 and 5. However,
the number of atoms in this study is very much smaller, and the number of
minima in the potential energy surface will grow exponentially with the num-
ber of atoms, meaning that this relatively short run should still give meaning-
ful results. The number of structures produced is also comparable with the
number of structures produced by Pickard and Needs in their study on silane
in which they generated 40 structures at each pressure, with two SiHy units

per simulation cell.
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6.4.1 Polymorph Search

The results presented in this first GA calculation did not make use of the up-
dated fitness function described in chapter 5. The fitness function only used
the hyperbolic tangential weighting of equation 2.11c. One offspring, created
in the first generation did not converge, but was not selected in the update

procedure and so did not sire any offspring.

A histogram showing the enthalpy ranges of the structures found is shown in
figure 6.9. The structures from each generation are also colour—coded to allow
the progression of the distribution to be seen. A more detailed breakdown of

enthalpies and symmetries is shown in tables 6.2 and 6.3.

By the end of the first generation, a large spread of enthalpies had been found,
although the GA was still finding a large range of enthalpies throughout all
generations. There were also more higher—-symmetry structures found in later
generations, and the accuracy of the symmetries found also improved as the

generations progressed.

The GA found diamond twice (although the structure found in the zero™ gen-
eration has a high enthalpy), as well as rhombohedral graphite and other graphite—-
like structures. Structures E and F from Strong et al. [2004] were also found, in
fact, structure E was found twelve times, showing that it may be from a large
basin in the potential energy surface. This is one reason why the improved fit-
ness function was developed, to prevent a large amount of similar structures
being produced. Neither Lonsdaleite or any other structures from Strong et al.
[2004] or Winkler et al. [2001] were found in this short run.
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Figure 6.9: Histogram showing the enthalpy distribution found when using
the GA with a fitness weight of 0.00 broken down by generation. Only 7 mem-
bers of generation 1 are shown; member 4 is an un—converged structure with a
high enthalpy/atom.
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Gen Member Enthalpy  Symmetry Other Possible Symmetries
(eV/Atom) (Space Group)
0 15 -154.896 P1(2) C2/m (12) ; Cmmm (65)
2¢ -155.145 Imma (74)
353 -154.810 P1(1) Fmm2 (42)
45 -154.697 P1(2) C2/m (12)
5L3 -154.901 Cmmm (65)
6 ¢ -155.146 Imma (74)
7N -153.403 P1(2) Pmma (51)
ga -153.427 Fd3m (227)
1 1R -155.556 P1(2) R3m (166)
2e -155.145 Imma (74)
36 -155.555 P1(2) P2;/m (11) ; Cmcm (63) ;
P63/mmc (194)
4t -145.753 P1(1)
55 -154.696 P1(2) C2/m (12)
6 R -155.556 P1(2) R3m (166)
753 -154.810 P1 (1) Cm (8) ; Fmm2 (42)
8¢ -155.145 Cm (8) Fmm2 (42)
2 1R/G -155.556 C2/m (12) R3m (166)
2¢ -155.146 Imma (74)
3 L4 -154.901 Cmmm (65)
453 -154.810 P1 (1) Fmm2 (42)
553 -154.810 P1(1) C2 (5) ; Fmm?2 (42)
65 -154.696 P1(2) C2/m (12)
7€ -155.145 Imma (74)
gL4 -154.810 Cmmm (65)
3 154 -154.896 C2/m (12) Cmmm (65)
2 L3 -154.637 C2 (5)
3¢ -155.145 Imma (74)
454 -154.896 P1(2) Cmmm (65)

I This structure is un—converged. It was not selected to be included in the
next generation and so had no offspring.

4 Diamond.

¢ Structure E from Strong et al. [2004].

f Structure F from Strong et al. [2004].

G Graphite-like structure.

R Rhombohedral graphite-like structure.

L Lattice structure.

S Sheeted structure.

N Neither a lattice or sheeted structure.

3 Structure with 3-member rings.

4 Structure with 4-member rings.

Table 6.2: Summary of 6—generation polymorph search showing generations
0-2 and the first half of generation 3.
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Gen Member Enthalpy  Symmetry Other Possible Symmetries
(eV/Atom) (Space Group)
3 5° -154.696 P1(2) C2/m (12)
6 54 -154.896 P1(2)
7€ -155.145 Imma (74) Cmmm (65)
8¢ -154.433 Imma (74)
4 154 -154.897 P2/m (10) Cmmm (65)
2L -154.833 Fddd (70) I41/amd (141)
3L3 -154.657 Imm?2 (44)
4f -154.705 C2 (5)
5L3 -154.637 C2 (5)
6C -155.555 Cmem (63)
754 -154.896 P1(2) Cmmm (65) ; P63/mmc (194)
8¢ -153.674 Imma (74)
5 1¢© -155.145 Imma (74)
2 L3 -154.637 C2 (5)
3¢ -155.145 Imma (74)
454 -154.897 C2/m (12) Cmmm (65)
554 -154.896 P1(2) Cmmm (65)
6 L3 -154.637 Cmcm (63) R32 (155)
754 -154.896 C2/m (12) Cmmm (65)
g 54 -154.806 C2/m (12) Cmmm (65)
6 1° -155.559 Fd3m (227)
2L -154.654 I4m?2 (119)
3L3 -154.657 Imma2 (44)
453 -154.806 P1(1) Cm (8) ; R3m (160)
5f -154.705 C2 (5) )
6" -155.556 C2/m (12) R3m (166)
7 L3 -154.657 Imm2 (44)
g L3 -154.696 Imm?2 (44)
a Diamond.

" Rhombohedral graphite.
¢ Structure E from Strong et al. [2004].
f Structure F from Strong et al. [2004].
L Lattice structure.

S Sheeted structure.
3 Structure with 3-member rings.
4 Structure with 4-member rings.

Table 6.3: Summary of 6-generation polymorph search showing the second
half of generation 3 and generations 4-6.
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6.4.2 Improvements: The use of the Structure Factor

In the previous chapter I showed that using the structure factor improved con-
vergence on to the global minimum structure. This method should not just do
this however, it should also enable the differentiation of different structures
during the course of a calculation and therefore improve structural diversity
in the population. It should also try to prevent a large amount of any one
structure being produced as offspring by reducing the number of each type of
structure in the population. Again the GA was run for 6 generations giving 56
possible structures, but in this case the fitness weight parameter, w, was set to
0.75.

A histogram showing the enthalpy distribution is shown in figure 6.10, and
a comparison of this graph and that produced from the previous section is
shown in figure 6.11. As can be clearly seen, the use of the structure factor
has led to the distribution of enthalpies being skewed towards lower enthalpy
structures to a greater extent than in the previous calculation.

The results presented in tables 6.4 and 6.5 give more detailed symmetry infor-
mation. As well as finding diamond, rhombohedral and hexagonal graphite,
and structures E and F from Strong et al. [2004], Lonsdaleite was also found.
The Lonsdaleite structures are actually the smaller peak to the right of the low-
est enthalpy peak in figure 6.10, as well as one higher enthalpy graphite-like
structure. Fewer instances of structure E were also found, only 7 in this case.
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Figure 6.10: Diagram showing the enthalpy distribution found when using the
GA with a fitness weight of 0.75 broken down by generation.
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Figure 6.11: Comparison of the enthalpy distribution found when using the
GA with a fitness weight of 0.00 or 0.75. The extra low—enthalpy peak at
—155.53eV is due to two instances of Lonsdaleite and one of a graphite-like
structure.
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Gen Member Enthalpy  Symmetry Other Possible Symmetries
(eV/Atom) (Space Group)
0 154 -154.896 P1(2) C2/m (12) ; Cmmm (65)
2¢€ -155.145 Imma (74)
353 -154.810 Cm (8)
45 -154.697 P1(2) C2/m (12)
5L -154.901 Cmmm (65)
6 ¢ -155.146 Imma (74)
7N -153.403 P1(2) Pmma (51)
g L3 -153.427 C2 (5)
1 1N -153.451 P1 (1) Cm (8)
2¢ -155.145 Imma (74)
36 -155.555 P1(2) C2/m (12) _
45 -155.555 P1(2) C2/c (15) ; R3m (166)
5L -154.657 Imm?2 (44)
6 L3 -154.637 C2 (5)
753 -154.811 P1(1)
gL -155.145 Imm2 (44)
2 16 -155.554 P1(2) C2/c (15)
2L -154.901 Cmmm (65) C2/m (12)_
353 -154.806 P1 (1) Cm (8) ; R3m (166)
453 -154.811 P1(1) Fmm?2 (42)
5¢ -155.145 Imma (74)
653 -154.807 Cm (8)
76 -155.552 P1(2) P2;/m (11) ; Cmem (63)
8¢ -155.145 Imma (74)
3 1L -154.901 C2/m (12) Cmmm (65)
2N -153.471 Cm (8) Amm? (38)
36 -155.544 C2/m (12)
4 L -154.852 C2/c (15) Fddd (70)

1 Possibly the sp?~-bonded structure from Hoffmann ef al. [1983]
¢ Structure E from Strong et al. [2004].
L Lattice structure.

S Sheeted structure.
N Neither a lattice or sheeted structure.
G Graphite-like structure.
3 Structure with 3-member rings.
4 Structure with 4-member rings.

Table 6.4: Summary of 6-generation polymorph search with w = 0.75 showing
generations 0-2 and the first half of generation 3.
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Gen Member Enthalpy  Symmetry Other Possible Symmetries
(eV/Atom) (Space Group)

3 554 -154.896 Cmmm (65) ]
66 -155.556 P1(2) R3m (166)
7 L3 -154.637 C2 (5)
g 54 -155.556 Cmmm (65)

4 1¢ -155.146 Imma (74)
26 -155.556 P1(2) Cmcm (63) ; P63/mmc (194)
3N -153.667 P1(1) C2/m(12) _
4R -155.556 P1(2) C2/c (15) ; R3m (166)
5¢ -155.534 P63/mmc (194)
6¢ -155.145 Imma (74)
7 L3 -154.637 C2 (5)
gL -154.807 Imm2 (44)

5 1L3 -154.637 C2 (5)
253 -154.806 P1 (1) Cm (8)
3L3 -154.637 C2 (5)
453 -154.806 P1(1) Cm (8) ; R3m (130)
5f -154.705 C2(5) )
6 R -155.555 P1(2) R3m (166)
77 -155.555 R3m (166)
gL -155.145 Imm?2 (44)

6 1f -154.704 C2 (5)
2¢ -155.534 P63/mmc (194)
354 -154.896 C2/m (12) Cmmm (65)
4N -153.470 Cm (8) Amm? (38)
554 -154.896 P1(2) C2/m (12) ; Cmmm (65)
65 -154.696 C2/m (12)
72 -155.559 Fd3m (227)
gL3 -155.554 C2 (5)

a Diamond.

" Rhombohedral graphite.

¢ Lonsdaleite.

¢ Structure E from Strong et al. [2004].

f Structure F from Strong et al. [2004].
G Graphite-like structure.

R Rhombohedral graphite-like structure.
L Lattice structure.

S Sheeted structure.

N Neither a lattice or sheeted structure.
3 Structure with 3-member rings.

4 Structure with 4-member rings.

Table 6.5: Summary of 6-generation polymorph search with w = 0.75 showing
the second half of generation 3 and generations 4-6.
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Structure 4 from generation 3 is also rather interesting. It appears to be very
similar to the sp>~bonded structure proposed in Hoffmann et al. [1983], and is
shown in figure 6.12. The bond lengths and angles of this structure are given
in table 6.6, and are close to the suggested values of 120° and 1.44A. The
structure proposed by Hoffmann et al. has space group 141 /amd (141) , as well
as having 8 atoms in its unit cell. This structure has a space group of C2/c (15)
(or Fddd (70) with lower tolerances) however. When the symmetry of space
group Fddd (70) is enforced the bond angles become 125.893° and 117.054°
with bond lengths of 1.433 A and 1.465 A.

Figure 6.12: a) Structure 4 from generation 3. The highlighted section is de-
scribed in b) The labelling convention for table 6.6.

Angles Bond Lengths
/ADB 125.90° | AD 1.433A
/ADC 117.17° | BD 1.465A
/BDC 116.93° |CD 1.433A
/CGE 116.84° | CG 1.465A
/CGF 125.88° | EG 1.433A
/EGF 117.28° | EG 1.432A
/DCG 116.94°

Table 6.6: Table giving bond lengths and angles for the structure shown in
figure 6.12 a). The naming convention is as shown in figure 6.12 b).
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6.4.3 Comparison: Random Scatter

In order to compare the methods above with another of similar capabilities,
I will test against the method of Pickard and Needs [2006] (who tested their
method on 40 structures for silane and 100 structures for 2—atom silicon) by
performing a random search of 56 structures, which is a comparable num-
ber to that chosen for the study on silane. This is equivalent to performing a
generation 0 calculation on 56 population members, and then exiting the GA
calculation before any breeding has occurred. This will also be a test of the
structure factor, since the use of this in the fitness function should force the
population into other areas of the potential energy surface not explored in the

initial generation.

Histograms comparing the enthalpy distribution of the scatter method and
that of the two previous GA runs are shown in figures 6.14 and 6.15, showing
the w= 0.0 and w= 0.75 comparisons respectively. The most obvious fact about
these plots is the fact that there are a much larger number of higher enthalpy
structures produced by the scatter method than in the GA calculations, and
that the spread of enthalpies is much more evenly distributed across the range
in the scatter calculations. There are two low enthalpy peaks that do not appear
in either of the GA calculations, one is structure D from Strong et al. [2004], the
other structure is shown in figure 6.13.

Figure 6.13: Structure 49 found using the random scatter method.

While Lonsdaleite was found, diamond and structure F from Strong et al. [2004]
were not. Structure E from Strong et al. [2004] was found 8 times and there
were also a large number of neither sheeted or lattice structures found. Some
of these were an array of carbon atoms arranged in linear chains and struc-
tures similar to these have been reported as a polymorph of carbon known as
carbyne [Lagow et al., 1995; Scemama et al., 2002].
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Figure 6.14: Comparison of the enthalpy distribution found when using a scat-
ter method or the GA with a fitness weight of 0.00.
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Figure 6.15: Comparison of the enthalpy distribution found when using a scat-
ter method or the GA with a fitness weight of 0.75.
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Structure Enthalpy = Symmetry Other Possible Symmetries
(eV/Atom) (Space Group)
1R -153.221 P1(2) R3m (166)
2N -153.243 Pm?2 (6)
3N -153.277 P1 (1) Pm?2 (6)
4N -153.448 P1 (1) Pm2 (6)
5N -153.611 P1(1)
6N -153.616 P1 (1) C2 (5)
7N -153.665 P1(1) Cm (8)
gN -153.673 P1(2) P2/m (10)
9¢ -153.675 Imma (74)
10N -153.675 P1(2) P2/m (10)
11N -153.675 P1(2) P2/m (10)
12N -153.677 P1(1) F222 (22)
13N -153.793 P1(2) Pmma (51)
14N -153.794 P1(2) C2/m (12) ; Cmcm (63)
151 -154.205 P1(1) Ama? (40) ; P4ommc (131)
161 -154.411 P1(2) F222 (22)
171 -154.418 P1(2) R3m (166)
18¢ -154.421 Imma (74) .
191 -154.426 P1(2) R3m (166)
205 -154.428 P1(2)
21 L3 -154.637 C2 (5)
2L -154.637 C2 (5)
23 L3 -154.637 C2 (5) )
24 R -154.637 C2/m (12) R3m (166)
25 L3 -154.637 C2 (5)
26 L -154.654 I4m?2 (119)
27 L -154.657 Imm?2 (44)
28 L3 -154.657 Imm?2 (44)

¢ Structure E from Strong et al. [2004].
I Linear structure.
R Rhombohedral graphite-like structure.
L Lattice structure.

S Sheeted structure.

N Neither a lattice or sheeted structure.

3 Structure with 3-member rings.

Table 6.7: Summary of Random Scatter minimisations showing structures 1-

28.
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Structure Enthalpy  Symmetry Other Possible Symmetries
(eV/Atom) (Space Group)

295 -154.696 P1(2)

305 -154.696 P1(2) C2/m (12)

315 -154.696 P1(2) C2/m (12)

325 -154.696 P1(2) C2/m (12)

335 -154.696 P1(2)

345 -154.696 P1(2) C2/m (12)

3553 -154.810 P1 (1) Fmm? (42)

36 53 -154.810 P1(1) Cm (8) ; Fmm2 (42)

3753 -154.810 P1 (1) Cm (8) ; Fmm2 (42)

38 53 -154.810 P1 (1) Cm (8) ; Fmm2 (42)

39 R -154.854 C2/m (12) R3m (166)

40 54 -154.896 Cmmm (65)

415 -154.897 P1 (1) Cmmm (65)

4oL -154.901 Cmmm (65)

43¢ -155.145 Imma (74)

44 ¢ -155.145 Imma (74)

45 ¢ -155.145 Imma (74)

46 © -155.145 Imma (74)

47 -155.145 Imma (74)

48 € -155.146 Imma (74)

49T -155.203 Cmmm (65)

50 d -155.338 14 /mmm (139)

51¢ -155.534 P63/mmc (194)

52 R -155.555 C2/m (12) R3m (166)

53 R -155.556 C2/c (15) R3m (166)

54 R -155.556 P1(2) R3m (166)

55 R -155.556 P1(2) R3m (166)

56 R -155.556 P1(2) R3m (166)

" Rhombohedral graphite.
¢ Lonsdaleite.
d Structure D from Strong et al. [2004].
¢ Structure E from Strong et al. [2004].
R Rhombohedral graphite-like structure.
L Lattice structure.

S Sheeted structure.

N Neither a lattice or sheeted structure.

3 Structure with 3-member rings.
4 Structure with 4-member rings.

Table 6.8: Summary of Random Scatter minimisations showing structures 29—

56.
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While there were are only a relatively small number of structures produced in
this study, it is similar number to that created by Pickard and Needs [2006], and
even though only two GA calculations were performed, as compared to the 15
runs produced for the Lennard—Jones calculations, the trend of the enthalpy
distribution is still clear and is as would be expected. The structures produced
by the scatter method are independent and so would have a much more even
enthalpy distribution compared to the GA, which is a method that is designed

to search for minimum enthalpy structures.

Which of these methods is the best for this type of study? Looking at the results
the scatter method has found some structures that the GA did not find, and the
GA found other structures that were not found in the scatter approach.

A much more rigorous comparison of these two methods would be to perform
the scatter search until all the structures listed in table 6.1 have been found, and
to then perform a number of GA calculations to produce the same number of
new structures, varying the number of population members in each genera-
tion. When performing these GA calculations it is necessary to consider not
only how many structures are produced, but how many are produced in each
generation. These calculations presented here were for 8 population members
over 6 generations, but the same number of structures would have been pro-
duced with 4 population members over 13 generations.

By setting off a range of GA calculations all producing the same number of
structures as those required by the scatter approach would allow a full anal-
ysis of the role that population size plays in the GA. The results presented
here show that as more structures are generated by the scatter approach they
will also proportionally generate a larger number of high—enthalpy structures,
whereas the GA will focus more on (but not be limited to) the lower—enthalpy
structures. As the system size increases this will increase the number of struc-
tures required by the scatter approach to unfeasible levels as it samples the
potential energy surface

6.5 Conclusions

By allowing the cuts made in the crossover operation to be made in fractional
co—ordinates each population member may be allowed to have unit cells which
have different sizes and shapes. This means that it is possible to use the GA as
a polymorph search technique without having to test all possible symmetries
in a systematic search. Since the GA will always start from an initial random

structure so there is no initial bias to any preconceived solution.
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The initial search only used roulette wheel update, and did not use the im-
proved fitness function described in chapter 5. These results showed a distri-
bution skewed towards lower enthalpy structures (as would be expected from
the weighting factor associated with the roulette wheel method). By using the
structure factor the number of different structures increased slightly, and the
enthalpy distribution was more skewed towards lower enthalpies. The use of
the structure factor resulted in fewer instances of the higher enthalpy Imma

(74) structure, and more of the lower enthalpy graphite-like structures.

The structure factor augmented fitness function is behaving in the same way
as in chapter 5. It will move the system away from high enthalpy structures,
until it reaches lower enthalpy structures. At this point, since it cannot drive
the system down further these structures will start to become more numerous
in the population, but the total number of different structures found during a
calculation will increase, since the system is being forced into new symmetry
structures. An improvement to this method would be to store the structure
factor of all previous structures that have been found, and to compare current

structures against these, as well as those of the current population.

When the GA is compared with the scatter approach of Pickard and Needs
[2006] it is clear that although the scatter approach samples more of the poten-
tial energy surface, it samples it more evenly, and although it found two struc-
tures not found in the GA calculations, it also missed some structures found in
these studies. In effect, the GA will sample the lower-enthalpy regions of the
PES more regularly. However, these calculations were only over 56 possible
structures, due to the cost involved in performing ab initio GA calculations.

As the system size is increased by adding more atoms then the number of total
minima in the PES of the system will increase exponentially. In this case the
even distribution of structures shown by the scatter method will mean that it
will require more and more structures to be generated. The skew introduced
by the GA will mean the physically interesting areas of the PES will be those
searched more thoroughly. As was shown in the previous two chapters, the
GA performs very well at systems with 130+ atoms, and the scatter approach

will not behave as well when applied in these cases.
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Pressure Induced Phase Transitions

7.1 Introduction

In all the studies that have been shown so far in this work, the principle method
of comparison involved the enthalpy of the structure, H = U+ PV. In the
Lennard-Jones potential HCP is always the most stable phase, and FCC is al-
ways meta—stable but the Dzugutov potential has a number of meta—stable
phases which undergo phase transitions at different pressures. It is possible
to simulate the effect of an applied pressure and so allow the GA method
to study systems at any pressure. With an applied pressure a meta—stable
phase at zero—pressure may become the most stable phase at increased pres-
sure. Minimising within this enthalpy surface will allow for the investigation
of pressure-induced phase transitions.

While the GA may not be able to produce from a single calculation the mini-
mum enthalpy structure at a given pressure it should be able, as in the polymorph-
search application described in the previous chapter, to suggest structures of
interest. The GA may not be able to give the exact pressure at which phase
transitions between different structures occur, but it will be able to suggest sta-
ble phases. Any transitions between these phases can then be examined by
other methods.

GA calculations will be started at a number of different pressures and the pop-
ulation will be allowed to vary both the cell and the number of atoms within
that cell. This method therefore make no assumptions about the cell shape or
the number of atoms within that cell, unlike in the previous chapter where the
number of atoms was kept fixed. Any phases suggested can then be compared

for stability at different pressures.

As was shown in chapters 4 and 5 the GA is capable of dealing with large
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systems of up to 150-atoms. In this chapter I will study systems of over 240-
atoms by using the Dzugutov potential [Dzugutov, 1992] (see section 3.2.3).

7.2 The use of the Dzugutov Potential

The extra repulsive component that this potential exhibits means that this po-
tential has some interesting phases at varying temperatures and pressures,
which have been catalogued in detail in Roth and Denton [2000]. However,
due to the constraints of the local BFGS minimiser (section 2.2.4) finite tem-
perature Genetic Algorithm calculations cannot be performed at present, so
accessing high temperature regions of the phase diagram is not possible. It
is possible to increase the pressure applied to the system, so attempts can be
made to probe the system at increasing pressure at zero temperature.

This potential has been used extensively to study quasi—crystals [Roth and
Denton, 2000] and in molecular dynamics simulations of liquids with poly-
tetrahedral and icosahedral order [Doye et al., 2003], and similar potentials
with a second minimia have been developed, although they will not be dis-
cussed here. The study by Roth and Denton included a large number of possi-
ble structures which were tested for stability. However, it was found that only
three phases were stable at zero temperature, body—centred cubic (BCC), the
o—-phase and face—centred cubic (FCC).

In Roth and Denton [2000] the system was studied by both molecular dynam-
ics cooling and thermodynamic perturbation theory [Weeks et al., 1971]. The
full pressure—temperature phase diagram was determined by MD cooling.

The pressure ranges are given in table 7.1, and the enthalpy per atom of each
of the phases suggested by Roth and Denton [2000] at the pressures studied
here are given in table 7.2. I have also plotted the energy-volume curve for
these phases in figure 7.1. From this curve it is possible to determine the phase
transition pressure between phases. The curve plots internal energy, U, against
volume, V. The gradient of the line of common tangent between curves will

give the pressure, P, of phase coexistence, since

du = d9-—-dw
= Jd§ —PdV

where dQ = TdS is the infinitesimal heat flow into the system, T the tempera-
ture and 8 the entropy of the system, and dW = PdV is the infinitesimal work
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done by the system. For these calculations 7 = 0 so

dU = —PdV. (7.1)

This potential also gives rise to tetrahedrally—close—packed (TCP) structures,
where space is attempted to be filled by regular stacking of tetrahedron [Szeto
and Villain, 1987; Shoemaker and Shoemaker, 1988]. This leads to strain within
the cell, and will also create some rather large cells. According to Roth and

Denton no TCP phases are stable at zero temperature.

Phase Pressure Range * Pressure Range (MPa)
(reduced units)

BCC Pa3/e <170 P < 86.893

o-phase 1| 1.70 < Po3/e <2.85|86.893< P <138.739

FCC Po3/e >2.85 P >138.739

! Data taken from Roth and Denton [2000].

I This structure must be relaxed at higher pressures. The
fractional co—ordinates of the o—phase at higher pressure
are not the same as those at zero pressure.

Table 7.1: Table giving the pressure ranges for the three stable phases of the
Dzugutov potential at T = 0K in reduced units.

Pressure Enthalpy/Atom (eV)
(MPa) BCC o FCC
0] —2.7256 x 1072 —2.6781x102 —2.2241x 102
50| —1.3023 x 1072 —1.2863x 1072 —1.0210 x 102
90 | —1.7610 x 1073 —1.8942x 103  7.8191 x 10*
100 | 1.0361x103 8.2633x10™% 1.5582 x 103
150 | 1.4901x1072 1.4304x1072 1.3193x 1072

Table 7.2: Table showing the enthalpies of each of the 3 phases suggested by
Roth and Denton for the pressures studied.
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Figure 7.1: Energy—Volume curves for the Dzugutov potential, showing BCC,
FCC and the o—phase. The curve for the o—phase was made assuming an
isotropic expansion due to computational difficulties.
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7.2.1 The o-Phase

There are three phases which should appear at OK [Roth and Denton, 2000]: a
BCC phase, followed by a phase labelled as the o—phase, which is the structure
of B-U [Crystal Lattice Structures, 1995—], and finally FCC at higher pressures.
While the BCC and FCC phases can be represented using cubic cells with 2—or
4-atoms respectively, the o—phase has a complicated 30-atom unit cell which
is tetragonal and has lattice parameters of a = b = 13.680837, ¢ = 7.214048 and
a=p=y=090°.

Figure 7.2: The unit cell of the Dzugutov potential c—phase looking down the
[001] direction.
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7.3 Results

The aim of these calculations is to determine the stable and meta—stable phases
of the Dzugutov potential at different pressures, without assumptions. This
potential is a useful test case due to its ease of calculation and because of the

comparison study of Roth and Denton.

7.3.1 Exploding and Shrinking Cells

For results obtained using this potential an addition was made to the GA in the
crossover step. Previously the atom-number could either be kept fixed or be
allowed to vary. For these calculations I added a third option which is to allow
the atom number to vary within an allowed amount of the original number of

atoms within the input cell.

While this is not necessary in a fixed—cell calculation, for a variable—cell cal-
culation it is essential. Without this constraint it would be possible for the
number of atoms to keep decreasing, the cell getting smaller and smaller until
the minimum image convention is violated, at which point the calculation will
stop. It might also allow a calculation to keep adding atoms at the crossover
stage and then allow the cell to grow to accommodate them. In this way the
calculation would increase in size and take a longer and longer time for each
minimisation step. This percentage cut—off keeps the advantages of a variable

atom-number calculation without these problems.

7.3.2 62-Atom Cells

Both the FCC- and BCC—phases require only one atom in the primitive cell
(or 4 and 2 atoms respectively in the conventional cubic cell), whereas the o—
phase cell is 30—atoms. Here, the parameterisation of the Dzugutov potential
is beneficial, and so in this case it is possible to use a relatively small simula-
tion super—cell, which is preferred since with less atoms there are less possible
glassy states. As was discussed earlier in chapter 3, the simulation super—cell
needs to be large enough to prevent self interaction. In the Lennard—Jones
parameterisation the cut-off radius is 2.50, but in the Dzugutov potential it
is only 1.940. While constructing a cubic 108-atom FCC cell is not possible
in the Lennard—Jones case, it is possible to construct a 60—atom g—phase cell.
Running a GA calculation at 100MPa means that the 0—phase should be the

preferred structure found.

Initial GA runs on this 60-atom cell proved a little too successful. Out of 16
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population members, it was often possible for the o—phase to found in the
zero™ generation, before any breeding or mutation steps. While this shows that
the o—phase exists in a relatively large area of the potential energy surface, in
a situation where the “answer” is unknown it may not be the case that it is
possible to input the correct number of atoms into the GA. I therefore decided
to start with 62-atoms in the initial cell, thus making sure that zero™ generation
would not contain any o—phase structures. Starting with few atoms may mean
that as the number of atoms varied during the calculation the cell may shrink
and violate the minimum image convention. Starting with 62 atoms, with a
maximum allowed variation in the number of atoms of 15%, means that the

number of atoms accessible is between 53 and 71.

5.0 x 1073
4.5 x 1073
4.0 %1073
3.5 %1073
3.0x 1073
2.5 %1073
2.0 x 1073
1.5x 1073
1.0 x 1073
5.0 x 104

2.0 x 101°

1.0 x 10*°

Enthalpy/Atom (eV)

Generation Number

Minimum Enthalpy BCC Enthalpy - - - -
Average Enthalpy -------- o Enthalpy - - - - - -
Maximum Enthalpy «eeeeees FCC Enthalpy - - - - -

Figure 7.3: Convergence plot of a variable-atom-variable—cell 62-atom o-
phase calculation at 100MPa. The inset shows the complete calculation. The
BCC-phase structure is shown in figure 7.4 and the minimum-enthalpy struc-
ture found is shown in figure 7.5.

Results using a 62-atom initial cell at varying pressures showed that the GA
can find BCC, o—phase and FCC structures in a small number of generations.
The convergence plot shown in figure 7.3 for a 100MPa calculation shows con-
vergence to the BCC—phase (figure 7.4) before the structure then found the o-
phase (figure 7.5). The reason for the high enthalpies in the convergence plot
is due to the fact that some structures had not converged properly due to some
atoms being in the same place. When this happens the the GA will assign this
structure with a very high enthalpy, but will not stop the calculation. The high
enthalpy will reduce the probability that this population member will produce
offspring.
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Figure 7.4: The 68—atom BCC—phase found in generation 11 of the calculation
shown in figure 7.3.

Figure 7.5: The 60-atom o-phase found in generation 31 of the calculation
shown in figure 7.3.
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Number of Each Phase Found

Lowest Higher Lower

Pressure | Enthalpy | Enthalpy Enthalpy
(MPa) | Phase ! Phase BCC o FCC Phase *

0 | BCC 13 8§ 1 0 0

50 | BCC 2 16 1 0 3

100 | o 1 9 11 0 1

150 | FCC 1 0 0 15 6

! Data taken from Roth and Denton [2000].
* Where the term “Lower Enthalpy” refers to having
lower enthalpy than the phase in column 2.

Table 7.3: Summary of results for 62—-atom variable—cell, constrained variable—
atom—-number calculations.

7.3.2.1 Lower-Enthalpy Structures

In another of the 100MPa calculations performed a new structure emerged
from the GA. This structure has 65 atoms and has a lower enthalpy to the -
phase. A convergence plot of this calculation is shown in figure 7.6, where the
population had evolved into a meta—stable (at this pressure) BCC—phase. The
population then evolved into a lower—enthalpy phase than the o—phase, which
according to Roth and Denton should be the stable phase at this pressure.

Further lower—enthalpy phases were found, at all pressures other than zero
pressure, although calculations on these phases at zero pressure found them all
to be more stable than either BCC, 0 or FCC. A summary of all the calculations
performed is shown in table 7.3. As can be seen, the GA was successful at
finding the previously found phases, as well as a number of higher—enthalpy
phases.

I will be using the radial distribution function (RDF), g(r), (also called the pair
correlation function) as a useful quantity for using to distinguish between dif-
ferent solid structures. The RDF describes how many atoms may be found a
distance r from any other atom in the material. Different solid structures have
distinctive RDFs (which can be seen below in figure 7.10). The RDFs of solid
structures such as BCC or FCC usually contain well defined peaks, whereas in
the RDF of a more disordered structure the peaks become smeared, indicating

the distortions to the lattice structure.

In total there were three possible new phases found, the RDFs of which are
shown in figure 7.7. Structures “c”, “d”, “g” and “h” have similar radial distri-
bution functions, and structures “c” and “d” have the same enthalpy per atom,

despite having a difference of 6 atoms between these cells.
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Figure 7.6: Convergence plot of a variable-atom-variable—cell 62-atom o-
phase calculation, giving rise to a previously unknown phase. The inset shows
the complete calculation. The minimum-enthalpy structure found is shown in
figure 7.8 and has 65-atoms.

Structures “g” and “h” have very similar RDFs which have peak positions sim-
ilar to those of “c” and “d”, but whose peak positions are slightly smeared. The
higher enthalpy per atom for these structures indicates that these are the same

structure as “c” and “d”, but structures “g” and “h” have defect differences.

The number of atoms difference between structure “g” and structure “h” is 6
atoms, although these structures do not have the same enthalpy/atom, having
63 and 69 atoms respectively. This could indicate that the unit cell of this struc-
ture (characterised by the structures “c” and “d”, and with “g” and “h” having
higher—enthalpy defects) should contain either 2 or 6 atoms. A unit cell of 3
atoms would mean that a 63 or 69 atom structure should be able to have the
same enthalpy per atom as a 60 or 66 atom structure. A view of structure “c”

is shown in figure 7.9.
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Figure 7.7: Comparison of the radial distribution function, g(r), and enthalpy
per atom for the lower-enthalpy structures found.
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Figure 7.8: Structure “a” from figure 7.7: 65—atom phase found in generation
64 of the calculation shown in figure 7.6.

92900 000
XXXIXX X

Figure 7.9: Structure “b” from figure 7.7, 64 atoms, and structure “c” from
figure 7.7, 66 atoms
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The radial distribution function of structure “b” is unique, although it does
have some similarities to those of “c” and “d”. The RDF of “a” is also different
to that of “b”, “c” and “d”, although it is similar to “€” and “f”, in which the
peaks are also smeared compared to those in “a” (figure 7.8). Again I suggest
that these are the same structures with only stacking fault or defect differences.
Structure “a” can be seen in figure 7.8 and shows stacking which requires 5
layers until it repeats. The stacking of structures “b” and “c”, shown in figure
7.9 are similar to each other, but different from structure “a”. The ordering of
figure 7.7 is such that distinct structures are placed in the “a”, “b”, “c” and “d”
positions, even though structures “€” and “f” have a lower enthalpy per atom
than “b”, “c” and “d”. In fact, in figure 7.6 the system passes through structure
“c” before finding structure “a”.

A plot comparing the radial distribution functions of BCC, FCC, HCP and o-
phase structures with these three phases is shown in figure 7.10. As can be
seen, these new phases have distinct peaks that are not present in either the
HCP, FCC or BCC plots. The RDF of a TCP—phase structure should appear as
smeared out 0—phase structure [Roth and Denton, 2000]. The RDFs of phases
“a”,”b” and “c” are quite distinct and clear, indicating a small number of atoms
in the unit cell.

Taking the cells of these structures and calculating the energy—volume curves
for these structures leads to the plot in figure 7.11. As can be seen, structure
“a” should be the most stable phase at all positive pressures. A summary of

the enthalpies of these three phases at a number of pressures is given in table
74.

Pressure Enthalpy/Atom (eV)
(MPa) | New Phase “a” New Phase “b” New Phase “c”
0] —3.1968x 1072 —2.9235x 102 —2.8630x 102
50 | —1.9605x 1072 —1.4941x10"2 —1.4939 x 102
100 | —7.5010 x 103 —3.0522 x 103 —3.0337 x 102
150 | 4.3883x10°3 8.6854x103 8.7353x 102

Table 7.4: Table showing the enthalpy per atom of the three distinct lower
enthalpy phases suggested by the GA for the pressures studied.
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Figure 7.10: Comparison of the radial distribution function, g(r), for the dis-
tinct lower—enthalpy structures found with BCC, FCC, HCP and the o—phase.
The Dzugutov Potential is also shown.
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Figure 7.11: Energy—Volume curve for the Dzugutov potential showing the
three new phases. The curves for the o—phase and structures “a”, “b” and
“c” were calculated assuming an isotropic expansion due to computational
difficulties.
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7.3.2.2 Characterisation

In an attempt to characterise these phases, I used the symmetry finder from
Materials Studio Modelling (MSM) used in chapter 6 [Accelrys, 2001-] to at-
tempt to find the unit cell of the three new phases. For phase “a” the symmetry
finder suggested a symmetry of C2/m (12) at a very fine tolerance (0.001 A).
The symmetry of structure “b” was also suggested to be of space group C2/m
(12) and both “c” and “d” were given the same space group of Fmmm (69)
(giving the same suggested cell). A summary of these suggested cells is given
in table 7.5. All suggested cells have 1 atom in the primitive cell. The cells
were produced by calculating the symmetry and then creating the primitive
1-atom cell from this symmetry. These structures were then tessellated up to a
5 x 5 x 5 super—cell before being relaxed in CASTEP. If the correct unit cell has

been determined then this relaxation should leave the structure unchanged.

Phase Symmetry Fractional Unit Cell Relaxation
Co-ordinates

a) C2/m(12) (3,3.0) Volume=40.0973 A BCC
a=b=3.7960A Im3m (229)
c=>5.08812A
a = =132.323°
y = 63.2806°

b) C2/m (12) (0,0,0) Volume=43.4450 A BCC
a=b=23.83654A Im3m (229)
c=23.72546 A
a = =73.6831°
y = 113.005°

C) Fmmm (69) (0,0,0) Volume=43.9087 A BCC
a=3.77317A, b=3.94809A Im3m (229)
c=4.30249A
a = 54.2225°, B = 58.0928°
y = 67.6846°

Table 7.5: Table showing the suggested structures from Materials Studio Mod-
elling [Accelrys, 2001-]. When relaxed all suggested structures became BCC
rather than the original phase.
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Figure 7.12: Comparison of the radial distribution function, g(r), for suggested
structure from the symmetry finder and a) Phase “a”; b) Phase “b”; c) Phases

IICII and Ild/l.
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However, in all cases, creating a super—cell from the suggested primitive cell
and relaxing the structure did not give the same results as before, and the struc-
tures relaxed into the BCC phase (space group Im3m (229)). Figure 7.12 shows
a comparison of the RDFs of the GA determined phases and the structures
suggested by MSM. While these RDFs are repeated almost exactly in all cases,
there are some differences, most notably with extra peaks around the 1.7r /o
positions. The suggested cell for structures “c” and “d” not only contains the
similar peaks between these two structures, but also has the separate peaks
that appear in these structures (i.e. the peak at 2.1r /0o that is present in “d” but
missing in “c”). It is clear that MSM is creating the wrong unit cells of these
structures, despite these cells having some of the characteristics of the correct

structures.

This extra structure within the super—cell seems to be forcing the system out of
these low—enthalpy structures, and into the BCC-basin. These areas of the
potential energy surface seem to be close, since these structures originally
evolved from a system with a BCC meta—stable structure as the lowest en-

thalpy member (figure 7.6).

I also attempted to use the FINDSYM packing from the ISOTROPY [Stokes and
Hatch, 1995-

] but this also produced structures (“found” using the highest tolerance set-
tings) that minimised to BCC. It is possible that structure “a” has a 65-atom
unit cell, just as structure “b” has a 64-atom unit cell, although I think this
unlikely. The largest unit cell possible for structures “c” and “d” is 6 atoms,
assuming that these structures are both defect—free.

All attempts so far to determine a smaller unit cell of these structures has failed,
and I am unable to give the symmetry for a smaller unit cell for any of these
lower enthalpy phases. The funnels that these structures exist within in the
potential energy surface may be very narrow (as indicated by the study of
Roth and Denton being unable to find these phases). If this is the case then the
small perturbation made by the symmetry finder moving the atoms is enough
to disrupt the lattice and move the structure into the much larger BCC basin.
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7.4 Large Cell Calculations

I want to see how well the GA will operate with a large number of atoms in
a variable cell calculation. As was shown in chapters 4 and 5 the GA could
cope very well with 150-atoms using a Lennard-Jones potential in a fixed—cell
case, and it is tempting to attempt minimisations with even larger numbers of

atoms here.

For these reasons I also performed calculations using input cells (before ran-
domisation) of a 5 x 5 x 5-BCC cell of 250 atoms, a 4 x 4 x 4-FCC of 256 atoms,
and a 2 x 2 x 2-0-phase cell of 240 atoms. Allowing the number of atoms to
vary by 15% on either side of 240, 250 or 256 atom input cells should mean that

all structures are accessible.

As shown in the previous section, the GA is able to find the o0—phase using a
cell of 62—-atoms. The FCC—phase became accessible at higher pressures as was
expected, and the BCC—phase appeared at lower pressure, and at pressures
where the 0—phase has the lowest enthalpy.

A cell with 230 — 260 atoms has an incredibly complex potential energy sur-
face (since the number of minimia increases exponentially with the number
of atoms), with a large number of glassy high enthalpy states that the system
would be required to pass though to access the 0—phase from a BCC—phase.

The external pressure for these calculations was set to 0.09 GPa at which the
O-phase is slightly more favourable in enthalpy than the BCC—phase. The
structure factor weighting factor w was set to 0.75 as in previous calculations.
However, I found that from a 240-atom cell the system was unable to find the
o-phase, with only BCC phases appearing. The convergence graphs for two
independent calculations can be seen in figures 7.13 and 7.16.

Both the BCC structures found are in the space group Im3m (229) but have
non—cubic cells. Both have 252—-atoms but have different cells and are orien-

tated differently within them, as can been seen in figures 7.15 and 7.17.

The calculation shown in figure 7.13 is interesting in that it appears that the
FCC—phase was found as the systems minimised to the BCC phase in the gen-
erations 37-47. In fact this was a glassy structure more closely resembling the
o-phase (figure 7.14) but with stacking faults, dislocations, an incorrect num-
ber of atoms (251 compared to 240) and a non-tetragonal cell. Even though
the GA found a o-like structure, it was unable to minimise this further, and
eventually the population evolved into the BCC—phase. Since the increase of
one atom is easily done in crossover, and a 252-atom structure might easily

fall into a BCC—phase part of the potential energy surface this could explain
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Figure 7.13: Convergence plot of a large variable-atom—variable—cell calcula-
tion. Two of the structures found are shown in figures 7.14 and 7.15.

why a structure with some o—phase characteristics evolved into a BCC—phase

structure.

I find it interesting that the BCC—phases found, while both having the same
structure and number of atoms, have markedly different cells. Although the
calculation has no knowledge of the super—cell used in the calculation, and so
the atoms can have any orientation in space, the periodic cuts force a weak
coupling between the atoms and the cell, as was seen in section 4.2.1.4. How-
ever, the variable—cell in this case has meant that the cell can be any periodic
cell within the lattice, and so these cells are different. Although the more com-
plicated o—phase was not found it is gratifying to see that the GA can still find
low—enthalpy meta-stable structures with a large number of atoms.
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Figure 7.14: Glassy 251-atom structure with some o-phase characteristics
from the calculation shown in figure 7.13.

Figure 7.15: A 252-atom BCC-—phase structure found from the calculation
shown in figure 7.13.
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Figure 7.16: Convergence plot of a second large variable-atom-variable—cell
calculation. The minimum-enthalpy structure found is shown in figure 7.17.

Figure 7.17: A 252-atom BCC-phase structure found from the calculation
shown in figure 7.16.
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7.5 Conclusions

The Dzugutov Potential is an interesting empirical potential which exhibits a
number of different phases at higher pressures but at zero-temperature, mak-
ing it a good test potential for the GA. Using 62—-atom cells the GA found all
previously reported structures by varying the number of atoms in the unit
cell. During these calculations the GA also found three previously unreported
phases, one of which has been shown to be the most stable phase at all posi-
tive pressures. However, attempts to determine the symmetry of smaller unit
cells of these structures has so far proved frustrating, and any suggested unit
cells have relaxed into BCC structures. The fact that these phases are so sensi-
tive to the initial placement of atoms may mean that they are unstable at finite

temperature, which may explain why they have not been reported previously.

Calculations performed on large cells of more than 230 atoms did not manage
to repeat the successes of the 62-atom cells, although they were able to find
BCC structures. This means that the GA can still operate effectively as the

number of atoms increases, even in a variable—cell case.

The action of increasing pressure also reduced the number of higher-enthalpy
local minima within which the system became trapped, and increased the
number of lower—enthalpy phases found in the calculations. While the GA
is not best suited to determine the pressure at which the phase-transition oc-
curs, it can be used to suggest candidate phases. With these phases it is then
possible to construct energy—volume curves which can be used to determine

the phase-transition pressure.
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Chapter 8
Conclusions

When I started this work, I hoped that I would be able to create a framework
that would allow the prediction of crystal structures from first principles. In
chapter 2 I outlined the methodology of Genetic Algorithms, and showed how
they had already been applied to some problems in solid—state physics. While
these methods had shown some excellent results there is always scope for im-
provement. I then outlined some methods for parameterising systems that fit
within the GA approach in chapter 3, using both empirical potentials and the
ab initio Density Functional Theory.

Following on from the real-space encoded GA methods of Deaven and Ho
[1995], which cut the structure into halves and then swapped these halves to
make new structures, in chapter 4 I outlined the methodology of a Genetic Al-
gorithm that uses the periodic nature of the simulation system to aid the con-
vergence to the minimum-—enthalpy structure. The key feature of this method
is the use of a crossover procedure which is also periodic with the system.
Applying this method to the Lennard-Jones potential, this technique showed
a faster convergence to the final structure that the use of a planar cut in the
crossover procedure. This method does not require that the number of atoms
in each population member be fixed during the course of the calculation, in
fact, results are improved if the number of atoms is allowed to vary between

members.

Building on this method, in chapter 5 I derived a new fitness function, based on
the structure factor (equation 5.1), that could differentiate between structures
during the course of a calculation, and attempt to force the system away from
already found structures. Results were compared against those of the previous
chapter and not only showed more structural diversity within the population,
these results also showed a faster convergence with increasing weight being

placed on the results of the structure factor comparison.
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In chapter 6 I applied the GA method developed to search for carbon poly-
morphs. This search also involved the use of DFT that makes as few assump-
tions about the system as possible, although there are other methods, such as
Quantum Monte Carlo [Foulkes et al., 2001], that make even less assumptions.
This chapter also introduced a vital piece of functionality within the method
that I am developing: the ability to breed structures with different cells. With-
out this ability it would be necessary to perform this method over all pos-
sible cell types. This technique was compared against the scatter method of
Pickard and Needs [2006] and showed that the distribution of structures us-
ing the GA was skewed towards lower—enthalpy structures, while still finding
some higher—enthalpy ones. Out of the 56 structures created using both meth-
ods, a greater number of different symmetries was found using the GA. Fur-
ther work will be required to show that the GA would be the preferred method
in all cases over the scatter method.

These methods were then applied to search for phases of the Dzugutov poten-
tial at different pressures. Using input cells with approximately 60 atoms the
method was able to find all previously known phases. Using these same input
cells three new phases were also found, although these have yet to be fully
characterised. Using input cells with approximately 250 atoms the BCC—phase
was found. While these results for large cells showed that there is still some
improvement that could be made to force the system to explore other possible
structures, the fact that this method was able to find perfect lattice structures
without defects and stacking faults in cells of this size is encouraging. While
these results used an empirical potential they show that this method can be ap-
plied to large system successfully. This means that large—scale ab initio systems
could also be studied using this method.

I believe that I have outlined a consistent framework that should allow the de-
termination of crystal structures from first principles. The methods developed
can be applied to systems without any bias towards the number of atoms in the
cell or the cell shape. In the next chapter I will outline a number of possible ex-
tensions and improvements to the method. All the results presented here have
been from cells with only one species, and I will outline a simple extension that
will allow for multi-species calculations. I will also show how calculations on
surface and interface systems can be performed using these techniques, before
discussing the possible extension to large systems using Neural Networks, and
the difficulties associated with extending the method to finite temperature sys-

tems.
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Chapter 9

Future Applications

9.1 Introduction

While I consider that the method described in this study has been well vali-
dated on the systems described, the technique itself is also in its infancy, and

is being improved continuously. I will now describe some ways in which this

is currently being done, or how the method may progress in the future.

9.2 Extension to Multi-Species

Effectively multi-species calculations can be performed in exactly the same

way as single-species calculations, but with a few minor modifications.

Algorithm 4 Multi-Species Crossover

1:

—_ =
—= O

A cut is defined by calculating a wavelength and amplitude.
Loop over the number of different species of atom.
Consider the atoms in species 1.
This cut is compared against the atoms in the current species:
if all required crossover constraints are fulfilled then
EXIT
Change to species 2 and goto line 4.
else
Start again with a new cut; goto line 3.
end if

: The constraints must be fulfilled for the same cut for all species.

It is also necessary to consider what is meant by the crossover constraints; as

well as fixing the atom—-number it is also possible to fix the stoichiometry of the

system. If doing a calculation on water for instance, it might be better to allow
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an extra oxygen atom only if two extra hydrogen atoms were also allowed (or
multiples thereof), rather than fixing the number of atoms per species at the
start of the calculation. This is now comparable to a variable-atom number

calculation.

In the mutation step it is also possible to add in a transmutation operation,
where the species type of an atom is swapped with that of a different atom,
i.e., if an atom of species A is at position X1 and an atom of species B is at
position X, then after the transmutation step the atom at X; is of species B and
the atom at position X is of species A. During this step the total numbers of

species A and species B will not change.

This may be the preferred way of doing a variable-atom number calculation
since a change in stoichiometry may change the physics or chemistry of a situa-
tion in unwanted ways. It also may be desired to allow different possibilities to
be presented and considered by the algorithm which may be counter-intuitive,
but could perhaps lead to interesting new structures. This also allows a greater
ability to explore the PES. As was seen in chapters 4 and 7 even in a variable—
atom calculation the number of atoms in the minimum enthalpy configuration
was the correct one, even though the number of atoms changed through the
generations, and the system converged faster than if the number of atoms were
fixed at the start of the calculation. Allowing a change in stoichiometry may

have similar benefits.

This method has been coded into the GA, but is still undergoing a testing
phase, and so no results have been presented using this extension to the method.

This technique will form the basis of future studies.

9.3 Improvements to the Fitness Function

As was shown in chapter 5 the use of the structure factor could improve the
fitness calculation by weighting against similar structures. In the formalism
shown it may be possible for two similar structures to have different structure
factors. While this is unwanted, it is acceptable. However, it is also possible
that two dissimilar structures would have the same structure factor. This is
less acceptable - this means that one of the structures will be weighted against
even though it should be weighted more highly.

Turning to the world of signal processing a suggestion presents itself, the Bis-
pectrum function [Mendel, 1991];

145



Chapter 9 Future Applications

B(ki,kz) =F (ki) F (k2) F* (k1 + k) (9.1)

where F (K) is as defined in equation 5.1. It is a statistical tool that is useful in
searching for non-linear interactions, and it has been shown that this function
is superior to the structure factor for differentiating between signals [Heikkild,
2004]. While equation 9.1 is translationally invariant, in fact it is possible to
take the diagonal component

Baiag (K) = F (K) F (k) F* (2k) 9.2)

which is also translationally invariant. Expanding this gives

Bdiag(k)ZVSZXZp' p' (q) exp (271K - rn) exp (271K - rm) exp (—471iK - 1)
mom g
9.3)

simplifying in terms of Iy, rm and rq gives

Baiag(K) =V3S S S 0" (n)p' (M) o () exp{271ik- [(rn—rq) + (rm—Trq)]} (9.4)
mm°q

The vector [(rn—rq) + (rm—rg)] contains two angles to average over and so it
is not possible to spherically average equation 9.4 in the same way as equation
5.3. Calculating the average correctly requires a lengthy derivation and leads
to an infinite series of spherical Bessel functions and so for this application I
will approximate the average as

<Bdiag (k/)> ~ VBZ % %p/ (n) p/ (m) p/ (q) Sinék\’[‘([:nrn__rqr)qz:zr(n:”l_rqg(lfﬂ }) (9.5)

There is no requirement on the Bispectrum to be positive—definite, so this func-
tion can be either positive or negative. Using this function instead of A (k) in
the comparison function, shown in equation 5.14, gives

ke || Bliag () - \<Bdiag<k'>>|\

R(<Bdla9 (k/>>> 5 ‘ ‘
kr dlag

9.6)

The use of this function should hopefully improve on the results that have
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already been shown using the structure factor as seen in chapter 5. A fitness
function using the Bispectrum has yet to be coded into the GA.

9.4 Extension to Surfaces and Interfaces

The determination of surface structure is still one of the most complicated ar-
eas of physics. While large-scale ab initio calculations have been performed
of complicated surfaces [Stich et al., 1992; Brommer et al., 1992], no unbiased
global minimisations have been attempted on this scale. Large scale empirical
calculations have been performed, with success [Chuang et al., 2005, 2004], but
empirical potentials are restrictive, and may not give accurate results, espe-

cially for these larger systems.

While the method utilising periodic cuts has been shown during the course of
this thesis to be suitable for bulk crystallographic systems, some modification
of the method is required to make this method suitable for studies on surface
and interface systems. The crossover technique must be modified due to the
change in periodicity, as seen in figure 9.1, where in figure 9.1 surface calcula-

tions would have species A as a vacuum.

bulk-like layer
species A
periodic slice
A surface/interface
species B
c bulk-like layer
a,b

Figure 9.1: Diagram showing the super—cell to be used in surface/interface GA
calculations, with periodic cut in the plane of the surface/interface.

Periodic cuts can still be used, but due to the fact that we are dealing with a
2-D system now, rather than the three-dimensional system that the method
was originally designed to optimise, only one cut is required. The boundary in
the direction perpendicular to the surface/interface will require some form of

bulk termination, as is shown in figure 9.1. As was seen in figure 3.5 where the
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k—point density and plane-wave cut-off energy had to be converged, in any
surface or interface calculations the amount of vacuum-gap and the number
of bulk—constrained atoms must also be converged to ensure the accuracy of

the calculation.

With regards to the method itself, I believe that the fact that this cut is made in
the plane of the surface gives this method advantages over the work of Chuang
et al. [2005, 2004]. The cut should not only mix elements from both parents in
plane, but also allow the addition of adatoms and other surface features, as

shown diagrammatically in figure 9.2

parent 1 parent 2

offspring

Figure 9.2: Diagram showing crossover between two idealised surfaces with
different features. The crossover operation allows the creation of new surface
features that may not be present in either parent.

When this method is extended to study interface systems, as figure 9.1 also de-
scribes, this method will allow a large degree of mixing in the initial population
due to the randomness introduced for the Oth generation. This may have an
advantage over proceeding from two idealised surfaces placed in contact and
then directly minimising, or simulation the deposition of atoms onto the sur-
face (as in Miyazaki and Inoue [2002]). This may mean that the formation and

study of more interesting interface structures may be possible.

As with the extension to multi-species calculations, described in section 9.2,
the GA is currently able to perform calculations using this method. However,

no results have yet been obtained.
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9.5 Extension to Large Systems

While studying large systems using empirical potentials as in chapter 4, 5, and
7 can be useful and does allow some interesting physical insight, it would be
better to study all systems using an ab initio framework as in chapter 6. How-
ever, DFT calculations are incredibly expensive and time—-consuming. An ideal
solution would be to use an empirical method that was more closely related to

the potential energy surface searched in DFT.

To this end I suggest using a combination of Genetic Algorithm methods and
Neural Networks. The Neural Network method of Lorenz et al. [2006, 2004]

would allow large scale calculations to be performed in a feasible timescale.

9.5.1 Neural Networks

It has been recently shown by Lorenz et al. [2006, 2004] that Neural Networks
(NN) can be trained from ab initio calculations to accurately represent the Po-
tential Energy Surface (PES) of the system being studied, and allow Molecular
Dynamics (MD) simulations to be performed. In this method an approxima-
tion to the PES is found using an iterative technique which samples the ab
initio PES calculated from Density Functional Theory (DFT). I suggest using
these techniques and applying them for use within a GA framework. The NN
approach can be easily tested against empirical potentials for improving the
method, before being applied to more complicated quantum mechanical sys-

tems.

9.5.2 Combining with the Current Method

The NN method could be incorporated into the framework of the Genetic Al-
gorithm, as it has already been shown that the GA makes no assumption as
to how the energy of the system is calculated. The NN can be trained from
within the course of the calculation, and could be saved and improved upon
in subsequent calculations. While a NN PES may not be as accurate as DFT,
it would give a good guess at an initial structure that could then be optimised

within DFT, training the net as the calculation proceeds.

9.5.3 Other Possibilities

Other possible schemes which would allow the large systems to be studied

within an ab initio context are the “learn-on—the—fly” method of Csanyi et al.
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[2004] where the classical force—field is continually updated with ab initio cal-
culations. This scheme is currently being incorporated into CASTEP as part of
a large MD project. It may also be possible to use a linear—scaling ab initio code
such as ONETEP [Haynes et al., 2006] instead of CASTEP for the energy and

force calculations.

9.6 Extension to Finite Temperature

While there is nothing to prevent the GA method from being used to study sys-
tems at finite temperature, the local minimiser would have to be able to search
in this space. As was discussed in section 3.4, I was exploring the energy land-
scape defined by the enthalpy of the system. In a finite temperature situation
it is the Gibbs free energy surface that must be explored, § = U + PV — T8.
While it is possible to define a temperature, 7, it is more difficult to calculate
the entropy, 8, of the system. For this type of calculation to be possible in a
GA framework, it is necessary to be able to perform finite-temperature local-

optimisation.

9.7 Conclusions

There are a number of ways in which the genetic algorithm method proposed
here could be extended or improved, some of which should be easier to imple-
ment than others. Key extensions are those that allow variable-species calcu-
lations and surface/interface studies to be performed, and these have already
been completed. The Bispectrum method of fitness determination should also
be incorporated and test against current results to see if there is an improve-
ment over the Structure Factor method already implemented.

The extensions that allow large—scale or finite temperature calculations will
require extensive development and testing before they can be incorporated
into the current scheme. However, it is these methods that may allow some

interesting and commercially relevant systems to be studied.
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Appendix A

Clusters

A.1 Introduction

While the chapters in this thesis have been concerned with bulk systems, I
would also like to give the results of a study performed at the start of my
PhD on Lennard-Jones clusters, which involved comparing the GA method
of Deaven and Ho [1995] and more traditional Simulated Annealing meth-
ods. I was interested to see how the “physical” approach of Simulated An-
nealing compared with the nature-inspired approach of Genetic Algorithms,
and hence decide which approach was best for crystal structure determination.

A.2 Simulated Annealing

Simulated Annealing [Kirkpatrick et al., 1983] is a relatively simple technique
which is analogous to cooling the structure into the minimum state. The method
consists of two loops, the first controls the “temperature”, T, and the second
is a Metropolis loop [Metropolis et al., 1953] (see algorithm 5). The “temper-
ature” of the system is a parameter that controls how much of the potential
energy surface can be explored from any point. The system will start in a ran-
dom state, and then the atomic positions will be altered at random be a small
amount. The energy of the new solution is then compared to the previous so-
lution. The Metropolis loop will always accept lower energy solutions than the
current one, but will only accept higher energy solutions with a certain prob-
ability that is dependent on this “temperature”. The higher the “temperature”
then higher energy solutions are more likely to be accepted. The last loop is
performed as if T = 0 by only accepting lower energy solutions. This is known

as a “greedy” step.
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This technique can be applied to many problems such as microchip design, and
the Travelling Salesman problem [Kirkpatrick et al., 1983]. In microchip design
it is the length of the connections between transistors that is optimised, taking
into account any congestion on the chip. In the Travelling Salesman problem
it is the total distance travelled between cities, where all cities are visited.

A number of different cooling schedules can be chosen, where the temperature
is lowered, for example, in a linear or an exponential fashion. I found the linear

cooling schedule to be the best in this case.

Algorithm 5 Basic Simulated Annealing

1: Begin with an initial temperature T = T (cooling down to a final tempera-
ture Tf) and an initial structure with energy E
Start temperature loop
Start the Metropolis loop for a given number of steps
Generate a trial structure with energy Eiig
Set AE = E — Egjq
if AE > 0 then
P = exp(—AE/kgT)
else
P=1
end if
: This value of P is then compared with a random uniform deviate p € [0,1]
: if p< P then
then the new configuration is accepted
: end if
: End Metropolis loop
: The temperature is then lowered by whatever cooling schedule is chosen
if T = Ts then
a greedy run through the Metropolis loop is performed
then EXIT temperature loop
: end if
: End temperature loop

N N R =R s =R = R = =
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A.21 Temperature Bouncing

Schneider et al. [1998] described the use of a modified cooling schedule known
as temperature “bouncing” to improve the results of a simulated annealing
approach to the PCB442 problem. At the start of the simulated annealing al-
gorithm, the system is usually in a highly disordered state, but after the ini-
tial cooling stage the system is now in a lower-energy one. By increasing the
temperature the system can now explore areas of the potential energy surface
that were inaccessible at the end of the first quench, but could be lower in en-
ergy. Successive raising and lowering of the temperature gives rise to the term
“bouncing”. This scheme was included so lines 16 — 21 of the algorithm are
altered from the basic algorithm to those in algorithm 6.

Algorithm 6 Bouncing Alteration

16: The temperature is then lowered by whatever cooling schedule is chosen
17: if T = Tf and T;/2 > Ts then

18:  a greedy run through the Metropolis loop is performed

199 Ti=T/2

20: else

21:  a greedy run through the Metropolis loop is performed

22:  then EXIT temperature loop

23: end if

24: End temperature loop

A.2.2 Results

It was found that these bouncing steps markedly improved the results for
Lennard-Jones clusters (see figure A.1). When the temperature is “bounced”

this often results in a new minimum energy structure being found.

Despite the use of bouncing this method was unsuccessful for clusters of more
than 12 atoms. The summarised results of performing 128 simulated annealing
simulations for each cluster type is shown in figure A.2. These results were
quite discouraging and from these results, combined with the success of the
GA method (see section A.3.1) I decided to focus wholly on genetic algorithms.
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Figure A.1: The effects of temperature bouncing on energy for LJg cluster
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Figure A.2: Summary of Simulated Annealing simulations. There are 128 sim-
ulations for each cluster type. Results in red show the percentage of simula-
tions that achieved the global minimum structure, and where this structure
was not found, results in blue give the percentage difference of the lowest en-
ergy structure found from the global minimum.
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Figure A.3: The 38-atom Lennard—Jones cluster, LJ3g

A.3 Genetic Algorithms

The GA method used here is the one described by Deaven and Ho [1995],
Johnston [2003] and in section 2.3 except that the plane of the cut is the same
for both clusters, and two parents will produce two offspring. This work
was performed concurrently with the simulated annealing results described
above, and on the strength of the GA method it was decided to only follow this
method of optimisation for the rest of this PhD. Update was only performed
in an elitist manner however, rather than using a hybrid scheme, which was
developed later.

A.3.1 Results

A good test case for any global optimisation technique is to successfully find
the LJzg cluster [Doye et al., 1999] shown in figure A.3. This is a close-packed
structure, which is different from the icosahedral symmetry of the minimum-
energy clusters for most other Lennard—Jones clusters, which are typically
based on Mackay icosahedra [Mackay, 1962].

This method had no problems in being able to find this structure, as can be
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Figure A.4: Results from GA in the study of the LJsg cluster. The minimum-
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seen in figure A.4. The structure shown in figure A.3 was found after only 7
generations, with the all the structures becoming the same after 13 generations.

A.4 Conclusions

When comparing the methods of simulated annealing and genetic algorithms
it is clear to see, from the results presented here, that GAs are more efficient
than simulated annealing for determining the minimum energy configurations
of atomic clusters. Having discarded simulated annealing as a method, I then
moved on to expanding the GA cluster technique so that it would be suit-
able for studying systems with greater periodicity. The method developed has
been described in detail in chapter 4 and extensions and improvements to this

method are then described in subsequent chapters.
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Recipe for Cinnamon Balls

Ingredient Amount
egg whites 2
Castor (superfine) sugar 100g (40z / 3 cup)
ground almonds 200g (1/21b / 2 cups)
cinnamon 1 level tablespoon
icing (confectioners’) sugar | (approx 5mm deep in a plate or wide bowl)

Algorithm 7 The Perfect Cinnamon Balls [Rose, 2004]

1:

o

Beat the egg whites till they form stiff peaks.

2: Fold in all the remaining ingredients.
3:
4: Bake on a greased tray at 170° C (Gas Mark 3 / 325°F) for 25 minutes, or

Form into balls with wetted hands.

until just firm to the touch.
Roll in icing sugar whilst warm.
Roll in icing sugar when cold.

I find it easier to mix the dry ingredients first, before adding them to the egg

whites. This ensures a more even mixing.

It is important to bake the balls only as long as directed to ensure that the bis-

cuits remain soft and moist inside. It may seem that they are still underdone,

but it is important that they are not allowed to dry out.

These amounts make about 15-20 depending on the size of the cinnamon balls.

I find it best not to pre-heat the oven otherwise they may burn. Also use a clean

baking sheet, or one that has only been used for cakes/biscuits, to improve

taste. Remove them from the baking sheet with a firm twist, or a thin spatula.
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