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Abstract

This thesis documents research into shock waves in solids by using computer sim-
ulation techniques. The domain explored was at the atomic scale. Femto-second
molecular dynamics simulations employing periodic boundary conditions were used
with well-known interatomic empirical potentials to model the atomic interactions as a
shock wave was applied to the system. It was found that to create a stable shock wave
in a computer simulation, all the atoms in the system had to be given a centre-of-mass
velocity towards a plane parallel to the desired shock front. A momentum mirror was
used that reversed the momentum of the atoms that reached it, and thereby created
a shock wave in the system that propagated away from the momentum mirror. The
simulation was completed when the shock wave reached the far surface of the system.
The technique was used successfully in Lennard-Jonesium systems, although it was
found that the strength of the shock waves began to probe the unphysical region of the
Lennard-Jones empirical potential. Shock wave generation in quartz (silicon dioxide)
highlighted a number of issues. Firstly, using the well-used interatomic potential of
van Beest, Kramer and van Santen (BKS) gave β -quartz as the lowest stable phase at
zero kelvin, as opposed to α-quartz which is known to be the most stable phase at this
temperature. Hydrostatic compression simulations were performed and at a pressure
of 8 GPa the phase of quartz transformed back to α-quartz. The second issue was that a
dipole moment was present in the shock wave simulation cell that resulted in an unsta-
ble system due to long range Coulomb forces. These Coulomb forces were calculated
by Ewald summation and a correction for simulation cells similar to ours had been
proposed by Yeh and Berkowitz. The final issue found was that at pressures over 50
GPa the resulting interatomic distance of pair-potential term of the BKS potential turns
over and becomes infinitely attractive. This unphysical effect was overcome using a
polynomial fitted to the point of inflection. Using this extension to the BKS potential at
high pressures and the Ewald summation correction, shock wave simulations through
quartz were successfully performed and the results showed that at the very high shock
pressures that are generated quartz undergoes amorphisation.
The extension to the BKS potential had no precise justification as to its form and so
the pair-potential part of the BKS potential was re-parameterised using Density Func-
tional Theory ab initio calculations. This resulted in an improvement over the original
BKS potential as it corrected the problem of β -quartz being the lowest stable phase,
as the re-parameterised potential correctly gave α-quartz as the most stable phase. It
also allowed calculations to be performed up to 70 GPa without requiring the use of an
extension.
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Chapter 1

Introduction

1.1 Why use shock wave simulations?

The field of shock wave physics is an active and vibrant one, with much research on-
going to understand the mechanisms of material failure under impact (due to a shock
wave), and the use of shock waves to make materials harder and stronger. When a ma-
terial is subjected to a shock wave, it is rapidly and dynamically altered. The process
is highly anisotropic and brings about significant changes in the structure of the ma-
terial. These changes are difficult, if not impossible to achieve by static compression
alone because the material has time for atomic re-structuring, time for the temperature
to equilibrate and, for solids, any stresses to dissipate. Recent advances in computer
simulation techniques have opened up many areas of science to a new kind of experi-
mentation – that is, the computer simulation. The power of computer simulation lies in
its ability to be performed over and over again, at very little extra cost compared with
experimental testing and on any time scale. With the ongoing advancement of com-
puter hardware, many calculations that seemed impossible many years ago, or at least,
would take many days on the computer mainframes of old can now be performed rel-
atively quickly on a desktop computer. Therefore researchers are devising bigger, and
more complex problems to tackle – that tax even today’s impressive supercomputers’
number crunching ability. Shock wave science is one of those areas that can only gain
from bigger computer hardware. That said, not all problems require a supercomputer
to be answered and it is hoped that this will be evident from this thesis.
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1.2 Shock waves in solids

The foundations of the science of shock waves were laid by Rankine [1869] (1820-
1872) and Pierre-Henri Hugoniot1(1851-1889) in their studies of discontinuities through
fluids. Lord Rayleigh’s [Rayleigh, 1910] review showed that the equations of Hugo-
niot and Rankine where actually the same, albeit from different starting points. These
are now referred to as the Rankine-Hugoniot equations and they describe the passage
of a steady wave through a fluid.
Shock waves in solids can also make use of these equations, provided that the strength
of the shock wave exceeds the yield strength of the solid. For solids, the stresses and
internal pressures in shock compression can range from a few gigapascals (GPa) up
to terapascals (TPa). Such intense compressive forces happen over very small time-
scales (a few nanoseconds) and can bring about huge changes in the material. The
mechanisms that govern these changes are of intrinsic value; predictive models are in-
creasingly being used in place of the more expensive experimental methods to design
novel high-performance materials.
Shock compression (whether experiment or simulation) allows for the calculation of
the Hugoniot. The Hugoniot is a relationship between thermodynamic parameters of
states that are reached during shock compression and is used in the construction of
the equations of state of the material. Although a complete description of the pro-
cesses that occur under high-pressure in condensed matter is still far from understood,
the complexity of the problem has led researchers to investigate many different time-
scales and spatial scales. The atomic scale is ideal for studying shock waves due to
the short time-scales involved during shock compression and the fact that shock waves
exhibit rapid rises in velocity, density and pressure, with profile widths that can be as
small as just a few interatomic lattice spacings.
Molecular dynamics simulations, where Newton’s equations of motion are solved for
large numbers of atoms on a computer have been shown to give good agreement with
experimental data even though the numbers of atoms being simulated is far smaller
than one would expect to find in an experimental sample. This powerful technique is
also ideal for capturing the dynamic interaction of shock waves with matter.
This work is focussed on the atomic scale using molecular dynamics. Much work
has been done, and continues to be done, at the mesoscale using continuum mechan-
ics techniques, and at the macroscale via experimental shock compression. Although
these are outside the scope of this thesis, an interested reader is referred to an excellent
review by Davison and Graham [1979] and the recent book “Fundamentals of Shock
Wave Propagation in Solids” by Davison [2008]. It is the author’s opinion that a com-
plete description of shock waves will require knowledge of the processes in each of
the spatial scales and interactions between atomic scale, mesoscale and macroscale

1Chéret [1992] has written an excellent biography of Hugoniot
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researchers in these fields will be essential.

1.2.1 Layout of thesis

This thesis is organised as follows: The remainder of Chaper 1 will discuss the the ex-
perimental and simulation work that has led to the modern understanding of shock
compression in solids. Chapter 2 will introduce the theoretical background to the
work presented, and Chapter 3 will present the computer simulation techniques that
have been used extensively in obtaining the results presented herein. Chapters 4 and 5
present the results of simulations that the author has performed on Lennard-Jonesium
and quartz materials, respectively. In Chapter 6, the interatomic potential for quartz is
re-parameterised using ab initio Density Functional Theory calculations. A summary
and conclusions are drawn in Chapter 7, along with recommendations for future work.

1.2.2 Scope of this thesis and role of the author

This thesis covers the art of computer simulation applied to shock wave compression of
solid matter. The author has developed the methodology and written the software to en-
able shock wave compression simulations. The software base was already established
within the CASTEP [Segall et al., 2002] plane-wave density functional theory code,
however significant alterations were undertaken by the author to allow for atomistic
shock wave simulations to be performed. Development of the analysis tools, the shock
wave methodology and the re-parameterisaton of the empirical potential for quartz was
also the author’s own work.

1.3 Review of previous work

In this section a review of the experimental approaches to shock wave creation will be
given to highlight some of the techniques employed in creating and measuring these
short-lived and dynamic events. The section will conclude with a review of shock
wave simulation; from its early inception using one-dimensional systems through to
the most recent, billion-atom simulations.

1.3.1 Shock wave experiments in solids

Experimental shock waves in solids are most commonly created by using explosives
or by a projectile impact driven by a compressed gas delivery system (known as a
gas-gun). These experiments can form shock waves of pressures up to a few hundreds
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of GPa. Extremely high pressures of up to 10 TPa have been generated by using
underground nuclear explosions [Trunin, 1998] (however these are no longer possible
due to the ban on nuclear testing).
There are two main experimental methods for generating shock waves using explosives
that have been developed [Rice et al., 1958; Altshuler et al., 1958]. The first method
is known as the “free surface” method. In this method the solid (typically a metal) is
placed into contact with explosives such as TNT (trinitrotoluene) or a mixture of TNT
and RDX (Cyclotrimethylenetrinitramine). For moderate pressures (pressures up to a
few tens of gigapascals) the free-surface approximation can be used which states that
the velocity of the free surface after unloading is approximately double the particle
velocity. Figure 1.1 shows the motion in the shock plane with time. After detonation,
a shock wave (line AB) travels through the sample and emerges at the free surface
(point B) whilst a reflected wave (AC) travels back through the explosives. Line AD is
the velocity of the contact surface between the sample and the explosive and is equal
to the sample’s particle velocity. After reaching the free surface, an unloading wave
travels back into the sample (BE) and the boundary of the sample (BF) moves off with
double the particle velocity. Pressures of 3.5 GPa have been obtained in iron using this
method [Rice et al., 1958]. It is worth noting that the free surface method is unsuitable
for porous sample materials as the unloading velocity is considerably less than the
particle velocity and the free-surface approximation no longer holds [Zel’dovich and
Raizer, 2002].

Sh
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k

C

A
D

B
F 

E

Explosive Metal time

Position

Deto
nation

Figure 1.1: Position-time diagram for “the free surface” method of shock wave gener-
ation. Line AD is the velocity of the contact surface. After detonation, a shock wave
propagates along line AB and on reaching the free surface, the boundary (BF) moves
off at double the particle velocity.

The second method is suitable for all materials and is known as the “collision” method
(sometimes called the momentum transfer method) as it involves accelerating a plate
known as the flyer-plate (or driver plate) which is initially in contact with explosives
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into a target sample. A typical experimental schematic is shown in figure 1.2. Pres-
sures up to 40 GPa can be obtained using this experimental methodology [Altshuler,
Krupnikov, and Brazhnik, 1958]. In both experiments, the shock waves are generated
by a lens-like combination of fast and slow detonating explosives that create a planar
detonation wave that can be flat to millimetre precision [Rice et al., 1958]. In addition
to the two main methods described above, shock waves are also created by accelerat-
ing a projectile or a flyer-plate into the target sample by means of a gas-gun [Setchell,
2003] or by using strong magnetic fields [Knudson et al., 2001].

Target Plate

Interface

Detonator
    Lens

Explosive 

    High  Explosive

            (TNT)

Plastic 

Camera View

Flyer−Plate

Figure 1.2: Typical schematic of an explosive-driven flyer-plate shock wave experi-
ment.

The particle velocity and the shock-front velocity can be measured by electrical pin-
contactors placed at known distances inside the sample. These are set to send a pulse
to an oscilloscope as the shock wave passes. Thus using these measurements along
with the free surface approximation, the Hugoniot can be derived from the conserva-
tion laws of mass and momentum. Another method of shock front measurement is by
the use of high-speed photography: as the shock front exits the free surface it drives a
shock wave into a gas (argon is typically used) placed in front of the surface. A Lucite
block2 is placed between the gas and the camera so that the shock wave in the gas
is reflected back and forth causing luminescence due to heating. Timing information
is obtained by placing slits in a plate and sweeping a camera normal to the slits at
a predetermined speed. Most modern shock wave experiments utilise lasers to mea-
sure particle velocity using a technique called Velocity Interferometer System for Any
Reflector (VISAR). VISAR works by reflecting a probe laser off the free surface of
the target sample. When the shock front reaches the free surface, the probe laser is
frequency-shifted due to the Doppler effect. This frequency-shifted laser beam is di-
rected into an interferometer that produces temporally resolved data. Photomultipliers

2a transparent thermoplastic acrylic resin with ability to transmit 98% of visible light
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and electronic streak cameras are used as a means of recording data and allow shock
wave velocities to be determined.

The collision method was used by Rice et al. [1958] and McQueen and Marsh [1960]
in experimental shock wave generation in metals while working at Los Alamos Labora-
tory. Plastic was inserted between the TNT explosives and the flyer-plate to prevent the
latter breaking up during the experiment. They fitted their data to the Mie-Grüneisen
equation of state and concluded that the following linear equation for a Hugoniot is a
good approximation:

us = a+bup (1.1)

where us is the shock velocity, up the particle velocity in the sample and a and b are
constants. A quadratic equation of the form:

us = a+bup− cup
2 (1.2)

where a, b and c are constants, is sometimes used for high-pressure experiments [Prieto
and Renero, 1970].

The equation of state of matter at high-pressure can also be obtained from shock waves
generated with the use of lasers [Koenig et al., 1995]. For example, Silva et al. [1997]
have used laser generated shock waves to study the equation of state of matter to pres-
sures of 200 GPa. They used a laser focussed onto a target that caused ablation that
drove a shock wave through the sample. Remington et al. [2006] provides an in-depth
review of the use of lasers for generating high-pressures and temperatures as well as
hydrodynamic computer simulations. Advances in x-ray techniques allow the mate-
rial structure to be dynamically probed [Kalantar et al., 2005; Woolsey, 1994; Wark
et al., 1989]. This allows the comparison between structures generated during a com-
puter simulation and those of experiment, an important verification for the accuracy of
computer simulation.

1.3.2 Shock wave simulations

The macroscopic or continuum scale uses phenomenological descriptions of material
response such as dynamic yield strength and phase changes. It is often thought that
the reason for failure and phase change effects nucleate at much smaller spatial scales.
Such changes occurring at the atomic scale rapidly grow to larger dimensions of the
mesoscale scale and then onto the macroscopic scale. Each scale can resolve particular
details; such as the dislocations in the material structure at the atomic scale, whereas
at the mesoscale one can resolve the effects of grain boundaries and crack propaga-
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tion. Atomic scale simulations allow the investigation of the underlying structure of
the material. At this scale, the structural deformation of a material as a shock wave
passes through can be directly analysed and the mechanism of the subsequent material
failure can be determined. This could be due to defects in the material structure, to
dislocations, or due to a phase change [Holian and Lomdahl, 1998; Bringa et al., 2004;
Barmes et al., 2006]. Therefore atomic scale is well suited to study shock waves but
one must still be mindful of its limitations: the short length and time scales put an up-
per bound on the problems that can be studied because of limited computer resources
[Kadau et al., 2005]. It is surprising therefore to find that even at such small length and
time scales, macroscopic properties such as temperature and density can be calculated
quite accurately [Frenkel and Smit, 2002; Haile, 1997].

The passage of a shock wave is a complicated phenomena that involves different time
and length scales, therefore a multiscale approach is required to completely understand
what is happening in the material. The results of atomistic scale simulations could
be used as inputs to mesoscale simulations to explore longer length and timescale
phenomena, such as fracture and spalling, as well as things like shock unloading and
elastic-plastic flow. The output of mesoscale simulations can, in turn, be used as inputs
to continuum calculations for flow rates and deformations. This thesis is concerned
with the atomic scale and so will review the state of the art in this spatial domain.

1.3.2.1 Atomistic shock wave simulations

Computational power by the mid-1970s became sufficient to perform Molecular Dy-
namics (MD) simulations of shock waves. Researchers first used MD to simulate shock
waves using simple interatomic potentials (Morse, Toda and Lennard-Jones) to de-
scribe the interactions between atoms [Paskin et al., 1977; Tsai and Macdonald, 1973,
1978; Holian and Straub, 1978; Straub et al., 1979]. The shock waves were initiated
by imparting a constant velocity to the front plane of atoms to act as a compressive
piston that drove a shock wave ahead. Holian and Straub [1979] showed that a perfect
Lennard-Jones type crystal has a steady shock wave, provided the initial temperature
is above zero. At zero kelvin, the waves are always found to be non-steady and this
resulted in a shock wave thickness that grew linearly with time. Above zero, the shock
thickness approaches a constant value. As a general rule, shock thickness is inversely
proportional to shock strength, or strain, ε [Holian, 2002]

ε = 1− V
V0

= 1− ρ0

ρ
=

up

us

In the 1970’s, Bill Hoover pioneered the method of Non-Equilibrium Molecular Dy-
namics (NEMD) [Ashurst and Hoover, 1975]. This technique applies driving forces
and constraints at the atomic scale in order to simulate laboratory conditions. These in-

24



Chapter 1 Introduction

duce non-equilibrium (and ideally, steady-state) flows in mass, momentum and energy.
As a consequence of the atomistic scales of the samples under investigation, the strain
rates are much larger than those observed in laboratory experiments. Shock waves
were ideal phenomena to study using this technique and early shock wave NEMD
simulations were performed on dense liquids [Holian et al., 1980] and showed good
agreement with the well-established continuum mechanics simulations.
Holian [1988] found three regimes a system can be in when shocked; these are in
decreasing order of shock strength:

• Steady overdriven plastic wave

• Steady plastic wave preceded by a non-steady elastic precursor

• Unsteady elastic wave

The first two regimes are characterised by shear-stress relaxation and atomic re-arrangement
where the plastic wave is at most only a few lattice spacings thick, and the spacing be-
tween slipped regions decreased with decreasing shock strength. Holian also identified
that the elastic and plastic components of strain rate are related to compressive and dis-
sipative flows, respectively. For 3D solids, dissipative motion occurs in the transverse
direction to the shock.

There are other methods besides moving a piston into a simulation cell to generate
a shock wave. Kress et al. [1999] performed NEMD simulations of shock waves in
methane and used contracting periodic boundary conditions in the direction of the
shock wave. This method creates a shock wave by moving the boundaries towards
each other with the required piston velocity and this creates a symmetrical pair of
shock waves moving towards each other. A similar technique to this involves colliding
two identical systems. This is similar to the experimental flyer-plate experiments as
it creates two shock waves propagating away from the impact plane in both systems.
However, the drawback of both the above methods is that it requires twice as many
atoms as the piston method and hence will take at least twice the computational effort.
A method similar to the piston method was developed by Holian and Lomdahl [1998]
called a “Momentum mirror”. This places a perfectly reflecting surface at the origin
and the particles in the system are moved toward it with the desired piston velocity.
This is equivalent, by Galilean invariance, to a piston moving into the system. The
momentum mirror approach is discussed in more detail in section 3.8.1. Figure 1.3
shows an illustration of the different shock wave generating methods discussed above.

Zhakhovskiı̆ et al. [1999] have performed shock wave simulations on Lennard-Jones
crystals using MD and a technique called a “moving analytical window”. This tech-
nique allows the study of the shock front of the shock wave by using a moving window
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Figure 1.3: An illustration of the four methods of generating shock waves: Com-
pressive piston, symmetric impact, contracting periodic boundary conditions and the
momentum mirror. Up is piston velocity and Us is the shock velocity.

centered on the shock front. This would normally require an extremely long simula-
tion cell in order to perform any quantitative analysis, however the authors keep their
simulation cell constant by removing the leftmost planes of atoms from the “piston”
as it moves with constant velocity into the simulation cell and appending them to the
rightmost boundary. This allows for long-time averages of the shock front to be con-
structed.
An alternate method for shock wave simulation has been proposed by Maillet et al.
[2001] which uses what is termed a Hugoniostat. This is a form of equilibrium MD
and allows a system to quickly find the shocked state of the material. The Hugoniot
relations are used as constraints on the equations of motion. The Hugoniostat method
involves compressing the sample to the final shocked volume instantaneously at time
zero, then coupling the system to a thermostat constrained by the Hugoniot relations
so that a state on the Hugoniot is guaranteed to be achieved. The authors performed
both NEMD and MD with a Hugoniostat and claim that the results are similar, but
with an 8-fold decrease in computation time. An improved Hugoniostat was devel-
oped by Ravelo, Holian, Germann, and Lomdahl [2004] that compresses the sample
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over a short time-period instead of instantaneous compression, by means of a barostat.
This method captures the finite strain-rates that a system undergoes during shock com-
pression. Both methods have shown they can re-create the shocked state [Kadau et al.,
2005].
Atomistic simulations on silicon were performed by Oleynik et al. [2006] using NEMD
with piston velocities 1 < us < 4 km/s to cover the range from subsonic to supersonic
(speed of sound in silicon is 2.2 km/s). Oleynik used an alternative to the momentum
mirror in which the “mirror” was replaced by a repulsive potential wall. Four regimes
were observed compared with Holian’s three. The extra regime observed occured after
the strongest shock regime of an overdriven plastic wave. This regime they called the
“anomalous elastic” regime.
The use of supercomputers has allowed for a dramatic increase in the numbers of atoms
that are capable of being contained in a simulation cell. Kadau et al. [2005] have simu-
lated multi-million (up to 8 million atoms) atom shock-induced phase transformation in
iron using NEMD. They used up to 512 CPUs and ran for a time equivalent for a shock
to travel 2µm. Most recently, Timothy Germann and co-workers have performed sim-
ulations at the Los Alamos National Laboratory on the supercomputer “BlueGene/L”
using a billion atoms. The simulations ran for between 24 and 48 hours on 212,992
CPUs. If one was to be able to perform the same calculation on a single CPU it would
take over a millennium to complete.

1.4 Summary

The future of shock wave simulation lies with the ability to utilise large-scale super-
computer resources. It is evident that shock wave compression is a vibrant and active
field of research for both experimentalists and theorists alike. With the advances of
computational power larger and larger systems will be able to be simulated which will
allow the mesoscale continuum mechanics problems such as crack propagation to be
modelled at the atomic scale. This overlap will bridge the gap between atomistic and
mesoscale simulations and therefore can help enhance our understanding of the dy-
namic and short-lived properties of shock waves.
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Chapter 2

Shock waves

2.1 Introduction

This chapter presents the theory behind shock wave compression of solid matter. In
order to explain the development of shock compression in solids, shock waves in flu-
ids must first be outlined. This discussion will lead to the conservation laws for shock
waves: the Rankine-Hugoniot relations. The Hugoniot will then be introduced, fol-
lowed by the mechanical response of solid matter to shock loading.

2.2 Shock waves using gas dynamics

Consider the situation shown in figure 2.1 where a volume of a gas is confined in a
box having density ρ0, pressure P0 which undergoes compression by a piston moving
at velocity u0. The laws of conservation of mass and energy and momentum allows
the calculation of the unknown quantities at a later time t, namely the density ρ1 and
pressure P1 in the compressed region.

The propagation velocity us of the discontinuity (shock front) can also be determined.
If a mass of gas (equal to ρ0ust ) with unit cross sectional area is set in motion by a
piston at time t, then the mass occupies a volume (us− u0)t and so the density of the
compressed gas , ρ1 satisfies:

ρ1(us−u0)t = ρ0ust (2.1)

Newton’s second law tells us that the impulse due to the pressure forces will equal the
change in momentum that the mass acquires. Thus the resultant force is equal to the
pressure difference between the compressed gas side and that on the undisturbed side,
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Figure 2.1: A volume of gas under compression by a piston. As time increases, a
discontinuity in the density and velocity profiles is created ahead of the moving piston.

that is,
(P1−P0)t = ρ0usu0t (2.2)

The work done by the piston in compressing the gas, P1u0t, will equal the sum of the
increase in the internal and kinetic energies,

P1u0t = ρ0ust
�

ε1− ε0 +
u0

2

2

�
(2.3)

where ε(P,ρ) is assumed to be known. It is useful to consider the shock discontinuity
as stationary. Changing frames of reference, if us is the propagation velocity of the
shock front through the material, then u0 =−us is the velocity of the material into the
discontinuity. Further, u1 = −(us− u0) is the velocity of the material flowing out of
the shock front. We can now write the conservation of mass, momentum and energy
relations as

ρ0u0 = ρ1u1 (2.4)
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P1 +ρ1u1
2 = P0 +ρ0u0

2 (2.5)

h1−h0 =
1
2
(u0

2−u1
2) (2.6)

where the specific enthalpy (h = ε +P/ρ) has been introduced in (2.6) . These relations
are a set of continuity equations that are used to describe the conservation of mass,
momentum and energy across the discontinuity [Zel’dovich and Raizer, 2002]. These
can be re-cast into the well known Rankine-Hugoniot equations for a shock wave in a
fluid:

V = V0

�
us− (up−u0)

us

�
(2.7)

P = P0 +ρ0us(up−u0) (2.8)

ε = ε0 +
1
2
(P+P0)(V0−V ) (2.9)

where us is the shock front velocity relative to the undisturbed medium, V0 is the ini-
tial volume, P is the pressure, up is the particle velocity of the medium, ε the internal
energy, and ρ is the density. Figure 2.2 illustrates the use of these equations where the
thermodynamic variables have been set to zero for the undisturbed fluid.

up

E1 = P1
2 (V0−V1)

After shock wave Before shock wave

up = 0

E0 = 0
P0 = 0
V0 = 1

ρ0

P1 = ρ0usup

V1 = V0

�
us−up

us

�
us

Figure 2.2: Shock wave propagating through a fluid used to develop the Rankine-
Hugoniot relations.

Equations 2.7 to 2.9 relate the thermodynamic state variables on each side of the prop-
agating discontinuity but they do not describe the way the material changes from the
initial to the final state. There exists a locus of final state points given by a series of
different discontinuity (or shock) strengths. This is known as a Hugoniot.
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2.3 The Hugoniot

The relationship between the thermodynamic state parameters such as pressure, vol-
ume, and temperature, that represents all states that can be reached by a shock wave is
known as a Hugoniot. Hugoniots for moderate pressures are well represented by the
following relation [Kanel et al., 2004] :

Us = c0 +aup (2.10)

Where c0 is the speed of sound in the material and a is a constant (typically between
1 and 1.7 [Kanel et al., 2004]. For solids this relation holds providing the material
does not undergo a phase change [Prieto and Renero, 1970]. Figure 2.3 shows an
exemplar Hugoniot along with the relative positions of the isentrope. The straight line
connecting the initial state with the final state after a shock is called the Rayleigh line
and obeys the following relation (see Appendix A):

P = ρ0
2us

2(V0−V ) (2.11)

The Rayleigh line gives an indication of the shock strength. A Rayleigh line with a
steep gradient indicates a strong shock wave. In the limit of weak shock waves, the
Rayleigh line is tangential to the isentrope of the same initial conditions and the shock
speed approaches the sound speed. The isentrope is the region in the equation of state
along which there is no change in entropy in the system. The Hugoniot deviates from
the isentrope as the strength of the shock increases.

In figure 2.3 it can be seen that ∂ 2P/∂V 2 > 0. In this case, the Rayleigh line equation
would give a positive shock velocity. It is known that for a shock wave to be stable,
the shock speed must be greater than the speed of sound in the material. The Hugoniot
is always above the isentrope as the Rankine-Hugoniot equations demand an increase
in entropy across the discontinuity, but if there is a phase transition in the material,
then there is the possibility that ∂ 2P/∂V 2 < 0. This means the Hugoniot was convex
upwards and the Rayleigh line may have a gradient lower than the tangent at the initial
conditions, hence the shock velocity would be lower than the sound velocity in the
material and the shock would be unstable. It would be smoothed out into a continuous
form. This property is important as it allows unloading shocks to exist.
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Figure 2.3: An illustration to show a Hugoniot and its relation to the isentrope and the
Rayleigh line

2.4 Elastic-plastic response of solids

Interactions in solid matter are governed by interatomic forces, the extent of which
is limited to the dimensions of the atoms (of the order of an angstrom). In a solid
the atoms are close together and therefore interact strongly. At large distances atoms
are attracted to one another and at very small distances atoms are repelled from one
another (due to electronic repulsion). There exists a condition when these attractive
and repulsive forces are balanced and there is no force on each atom. This is the
equilibrium condition and it corresponds to a minimum in the interaction potential
energy.

Let us consider two atoms in a solid at equilibrium such as can be seen in figure 2.4.
The equilibrium interatomic distance is a0.

f

a0

f

Figure 2.4: Forces between two atoms separated by a distance a0.

Now if we apply a small force, f to these atoms to create a small displacement u, then
the balance between interatomic and applied forces will give us a new equilibrium
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distance a where
u = a−a0 (2.12)

As the force f is a function of distance, then

f(u) =−dφ(u)
du

(2.13)

where φ(u) is the interaction energy between the atoms. Here, the force is a function
of the displacement and it is also reversible. Returning the force to zero also returns the
interatomic distance to a0. This is an example of perfectly elastic deformation. The
bulk elastic behaviour is simply the effect of all the individual interactions between
the atoms. As long as the deformations are small, the elastic deformation is always
proportional to the applied force. This is Hooke’s law.

2.4.1 Hooke’s law

Hooke’s law can be derived from a few considerations. Firstly, that φ(u) is a continu-
ous function of u, so that it can be expanded as a Taylor series:

φ(u) = φ0 +
�

dφ
du

�����
0

u+
1
2

�
d2φ
du2

�����
0

u2 + . . . (2.14)

Now we know that at u = 0 is the minima of the interaction energy and so dφ/du = 0.
The final consideration is that the displacement is much smaller than the equilibrium
distance, and so higher order terms in equation 2.14 can be discarded. Therefore we
now have expressions for both the interaction energy and the force:

φ(u)� φ0 +
1
2

�
d2φ
du2

�����
0
u2 (2.15)

f(u) =
�

d2φ
du2

�����
0
u (2.16)

The force is proportional to the curvature of φ(u) at the minima (which is a constant)
and also to u. Therefore f ∝ u, i.e. Hooke’s law. The curvature of φ(u) can be expressed
in terms of stress and strain. This is known as the elastic constant of the material.
Deformations that obey Hooke’s law also obey the principle of superposition. That is,
forces on a body f1 + f2 produce displacements u1 +u2.
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2.4.2 Plasticity

If the applied force causes large displacements then the higher order terms in equation
2.14 can no longer be disregarded and Hooke’s law is no longer valid. The response
of the material to non-elastic processes dominates and overshadows the elastic region
and the atoms move past each other into entirely new equilibrium positions. This is a
plastic deformation response.

2.4.3 Mechanical stress and strain

Solids under the application of external forces undergo a deformation; a change in
volume or shape. The deformation is hydrostatic if the volume changes and not the
shape, and deviatoric if the shape changes and not the volume. Most deformations
are a combination of hydrostatic and deviatoric deformations. A deformation can be
described using the stress tensor and the strain tensor. Knowledge of these tensors
allows the full description of the deformation state of the material [Landau and Lifshitz,
2006]. The stress tensor, σik where i and k represent the coordinate directions in an
orthogonal reference frame (usually chosen to be x, y, and z) is the force per unit area
in the direction of i, acting on an area with normal oriented along k. When i = k,
i.e. the components σxx, σyy , σzz are known as the normal stresses. The tangential
stress (or shear stress) components are when σxy = σyx, σyz = σzy, σzx = σxz. Cauchy
discovered that the stress at any point can be defined by nine components of the stress
tensor, which can further be reduced to six components by symmetry (σi j = σ ji):

σ = [σ11,σ22,σ33,σ23,σ31,σ12] (2.17)

When there are no tangential components, the principal stresses form the pressure:

σ11 = σ22 = σ33 =
1
3

σik =−P (2.18)

where P is said to be the hydrostatic pressure. Figure 2.5 shows a diagram of the
Cauchy stress tensor on a unit volume of a body.

The strain tensor, εik also has normal components which describe the elongation along
axes, and tangential components that describe the amount of deformation. It is usual to
describe states in compression as positive stresses and strains and states under tension
as negative stresses and strains.
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Figure 2.5: The Cauchy stress tensor components on a unit volume of a body.

2.4.4 Elastic moduli

The way that a material behaves under elastic compression can be described by elastic
moduli. Three main elastic moduli are generally used and these are the bulk modulus,
Young’s modulus and the shear modulus. These moduli will now be described for an
isotropic material. The bulk modulus of a material is a measure of its compressibility
to uniform compression, i.e. it is a volumetric modulus. It is defined as:

K = V
∂P
∂V

(2.19)

The bulk modulus is the inverse of a material’s compressibility, κ . Young’s modulus
measures a material’s resistance to deformation, it is defined as the uniaxial stress over
the uniaxial strain:

E =
σ
ε

(2.20)

Young’s modulus holds only while the stress is in the region that Hooke’s law holds.
The shear modulus is similar to Young’s modulus except it measures a material’s re-
sistance to shear. It is defined as:

G =
σxy

εxy
(2.21)

where x �= y. Figure 2.6 shows the situation where the shear modulus is used.
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Figure 2.6: Shear modulus is used to describe the shear strain in one direction

2.4.5 Elastic constants

The general equation for Hooke’s law is defined as:

σi j = ci jklεkl (2.22)

where ci jkl is the elastic constant tensor which has 81 components. However, due to
symmetries of both the stress and strain tensors (ci jkl = c jikl = ci jlk = c jilk) and also
those in the material (e.g. a cubic crystal only has three independent elements) the
components of the elastic constant tensor can be significantly reduced. The simplified
stress-strain relationship:

σi j = λδi jεkk +2Gεi j (2.23)

where δi j is the Kronecker delta, λ and G are known as Lamé’s parameters, with G
being the shear modulus as defined above in equation 2.21. λ is related to the bulk
modulus by:

λ = K− 2
3

G (2.24)

A measure of how much a material expands sideways as it is compressed axially, is
known as Poisson’s ratio,ν and is defined as:

ν =−εx

εy
=

λ
2(λ +G)

(2.25)
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The above equations form a complete set of mathematical relations that capture all the
deformations a material can undergo. Knowledge of the values of the above parameters
allows predictions on how a material should respond under loading by a shock wave.

2.5 Response to shock wave loading

A material typically has three responses to shock wave loading . The first response is
for small loads and is purely elastic; a single elastic wave propagates though the mate-
rial causing little, if any, effect. These are not, strictly speaking, shock waves as there
is no propagating discontinuity in the material. The second response to shock loading
is a shock wave and the material also has an elastic wave however this is now followed
by a plastic wave. In this context, the elastic wave is known as an elastic precursor
as it precedes the plastic wave. The plastic wave causes irreversible changes in the
structure of the material. This two-wave structure is called as weak shock wave. The
third response is a known as a strong shock wave, where there is only the destructive
plastic wave propagating in the material. Considering a shock in the weak regime, one
can sub-divide the shock into three sections: the elastic wave, an unsteady “plastic pre-
cursor” and the plastic wave. The transition from an elastic to a plastic wave happens
when the material is loaded beyond a critical yield stress. At this point the material
deviates from its elastic response and begins to flow like a fluid. This behaviour is
known as hydrodynamic deformation and happens at a stress known as the Hugoniot
elastic limit (HEL). Figure 2.7 shows a pressure-volume Hugoniot of a material that is
under the perfectly-elastic, perfectly-plastic approximation and the HEL.

HEL

HugoniotPr
es

su
re

Volume

Figure 2.7: An illustration of the Hugoniot of a perfectly-elastic,perfectly-plastic ma-
terial and the location of the Hugoniot elastic limit (HEL)

A material is likely to break or fracture if the stress and strain are large enough. The
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underlying mechanisms for this failure can be due to imperfections in the material
structure causing dislocations, bonds being broken between atoms, or a mixture of
both. Figure 2.8 shows the stages that a material undergoes when subjected to stress
and strain loading.

Strain

Stress
Elastic Region FracturePlastic

Region

Figure 2.8: An illustration to show the elastic-plastic response of a material to stress
and strain

2.6 Summary

The theory of shock compression in condensed matter is well established. Researchers
have for a long time used the continuity equations to obtain good descriptions of the
macroscopic processes that have been observed by experiment. Work is still ongoing
however, to understand at the microscopic scale the nature of shock compression. Here
is where computer simulation will play an important role in the continued research.
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Computer simulation

3.1 Introduction

Computer simulation is a powerful tool for researchers. The ability to quickly and
cheaply test hypotheses and ideas without having to resort to expensive laboratory
testing is invaluable. However, computer simulation does have its drawbacks - the
immense complexity of processes and interactions in materials means that approxima-
tions are inevitable and the limited availability of computer power requires still further
approximations. That said, computer simulations are able to predict some material
properties extremely accurately, such as lattice parameters to within mÅ. This chapter
discusses the theory of computer simulation techniques and how they are applied to
create a shock wave simulation.

3.2 Ensembles

The idea of using a thermodynamic ensemble comes from statistical mechanics. It is
a way of realising many different states (or configurations) a system can be in all at
once, in essence it is like performing the same experiment many times and obtaining
a range of values for a measured property. Each ensemble has its own thermodynamic
restrictions and these determine the ensemble’s suitability for a particular problem. In
the microcanonical ensemble (NVE) the number of particles, the volume, and total
energy of the system is kept constant. This corresponds to an adiabatic process for
an isolated system and is useful for computing the trajectories of molecular dynamics
simulations. The canonical ensemble (NVT) is where the number of particles, the tem-
perature, and the volume are kept constant and is more comparable to experiment, but
does require the use of a thermostat to maintain a constant temperature. Phase bound-
aries and equations of state can be found using the NVT ensemble. Other ensembles
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include the isothermal-isobaric ensemble (NPT), where the pressure is maintained us-
ing a barostat, and the grand-canonical ensemble (µVT) where density fluctuations
in a system are maintained by coupling to a particle reservoir maintained at constant
chemical potential, µ .

3.3 Molecular dynamics

Molecular Dynamics (MD) is a technique that simulates the interaction between atoms
and molecules by solving the Newtonian classical equations of motion. Newton’s sec-
ond law states:

Fi = miai (3.1)

where,

ai =
∂ 2ri
∂ t2 = r̈i (3.2)

where ri is the position of atom i, Fi is the force acting on it, mi its mass and ai its
acceleration. Equation 3.1 gives a set of 2nd order differential equations to be solved
subject to 3N initial conditions (N atoms with 3 degrees of spatial freedom). Newton’s
equations can be rewritten in Hamiltonian form:

Fi =
∂pi
∂ t

= ṗi (3.3)

pi = miṙi (3.4)

where pi is the momentum of atom i. As Newton’s second law contains no time depen-
dance, there exists a function of positions and velocities that is constant in time. This
is called the Hamiltonian, H(rN ,pN). In an isolated system, total energy is conserved,
thus we can define the Hamiltonian for this system as the sum of all the atoms’ kinetic
energy plus the potential energy associated with intermolecular interactions:

H(rN
,pN) =

1
2mi

N

∑
i=1

pi
2 +U(rN) = E (3.5)
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where N is the number of atoms and E is the total energy of the system. The subse-
quent equations of motion are:

∂H
∂pi

=
∂ri
∂ t

= ṙi (3.6)

∂H
∂ri

=−∂pi
∂ t

=−ṗi (3.7)

These equations are equivalent to Newton’s equations except that they are now 6N 1st
order differential equations (3 degrees of spatial freedom plus 3 degrees of momentum
freedom). Computationally, it is much easier to solve 6N 1st-order equations than 3N
2nd-order equations due to the computationally expensive integration procedures.

3.3.1 Phase space

The position coordinate of each atom can be plotted in a 3N-dimensional space, called
the configuration space. In this space the axes of the 3N-dimensions are the time-
dependant position vectors, ri(t). Similarly, there exists a 3N-dimensional space con-
taining the time-dependant momentum vectors, pi(t), known as momentum space.
These can be combined to form a 6N-dimensional space known as phase space:

ΓN = (x1, . . . ,x3N , p1 . . . , p3N) (3.8)

Phase space is a useful concept and can be used describe all the possible configurations
of a system - each configuration of the system is defined by the vector Γ. A trajectory
in phase space defines how a system evolves over time.

3.3.1.1 Ergodicity

The ergodic hypothesis as applied to molecular dynamics simulation of an isolated
system, says that the measured long-time average of an instantaneous property, X, is
equal to the ensemble average [Haile, 1997].

X(r) = lim
t→∞

1
t

� t0+t

t0
X(r, t �)dt � = <X(r)> (3.9)

Here we assume that t is sufficiently long that the time average no longer depends on
the initial positions of the system. Therefore by taking the time averages of thermo-
dynamic properties in a molecular dynamics simulation one would obtain the macro-
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scopic measurement of that property.

3.3.2 The equations of motion

The velocities and positions of each particle in the system can be computed by in-
tegrating Newton’s equations. Unfortunately, analytical solutions are not possible so
numerical solutions are employed using finite difference methods. The most widely
used is Verlet’s algorithm, which is a third-order Störmer algorithm [Verlet, 1967]. It
is derived from two Taylor series expansions of a particle coordinate; one forward in
time, the other backward in time. These are summed to remove the odd-order terms
resulting in the Verlet algorithm for positions:

x(t +∆t)≈ 2x(t)− x(t−∆t)+
d2x(t)

dt2 ∆t2 (3.10)

The truncation error varies as O(∆t)4 which is why it is called a third-order algorithm.
Equation 3.10 contains no explicit velocities and so the Velocity Verlet algorithm was
developed [Swope et al., 1982]:

x(t +∆t)≈ x(t)+
dx(t)

dt
∆t +

1
2

d2x(t)
dt2 ∆t2 (3.11)

which is just a single forward-in-time Taylor expansion of truncation error O(∆t)3.
Velocities are stored at the same time from equation 3.12 which has a truncation error
of O(∆t)2.

dx(t +∆t)
dt

≈ dx(t)
dt

+
�

d2x(t)
dt2 +

d2x(t +∆t)
dt2

�
∆t
2

(3.12)

3.3.3 Periodic Boundary Conditions

Periodic Boundary Conditions (PBC) are needed for the simulation of large bulk sys-
tems. The typical MD simulation may have thousands or tens of thousands of atoms,
but it is still dominated by the edges of the containers, which cause unwanted surface
effects. PBC removes these effects by considering the system to be built from an in-
finite amount of blocks. Each block is a replica of the simulation cell (known as the
primary cell) and these replica blocks are known as image cells and are periodically
repeated in all directions to make a macroscopic sample. Atoms and images are free
to move though the boundaries and enter or leave any cell, however total number of
particles and total momentum is conserved. This is achieved by, for example, if an
atom (or a molecule) leaves the primary cell on the right hand edge, then a particle
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is introduced into the primary cell from the left hand edge with the same momentum.
There is a minor issue when dealing with pairwise interactions such as forces between
atoms. When computing forces, the forces exerted by atom j on atom i is:

Fi =−
∂U(ri j)

∂ri
(3.13)

where U is the interaction potential. In order to ensure that only atom j or only one of
its images exerts a force on atom i, the minimum image convention requires that the
cut-off range for the pairwise forces is:

rcut ≤
L
2

(3.14)

where L is the length of the simulation box. This removes any artificial spatial correla-
tion when using PBC. An illustration of PBC and the minimum image convention can
be seen in figure 3.1.

Image cell atom

rcut

L
Simulation cell atom

Figure 3.1: A 2D representation of Periodic Boundary Conditions. The primary sim-
ulation cell is surrounded by 8 image cells. The cut-off of the pairwise interactions,
rcut ≤ L

2 is a requirement of the minimum image convention.

3.3.3.1 Periodicity effects

The effects of PBC for computing static properties are small and overshadowed by
other systematic errors. Therefore repeating simulations with increasing numbers of
atoms in the primary cell tests whether there is any periodicity effecting the system. For
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dynamic properties however, especially time-correlation functions, using PBC requires
sampling greater than the periodic correlation time, τPBC. A convenient means of
estimating this time is from the sonic velocity v:

v =
1

√ρmκs
(3.15)

where ρ is the system density, m the atomic mass and κs is the adiabatic compressibil-
ity. Therefore the periodic correlation time is:

τPBC =
L
v

(3.16)

where L is the length of the simulation cell. Thus the larger the system, the larger the
periodic correlation time.

3.3.4 Temperature

The temperature of a MD simulation is a statistical property and is related to the atoms’
kinetic energy by:

N

∑
i=1

|pi|2

2mi
=

1
2

kBT Ndo f (3.17)

where Ndo f is the number of degrees of freedom and kB is Boltzmann’s constant. The
time-average of the instantaneous temperature, <T > is regarded as the macroscopic
temperature. The temperature in a (NVT,NPT) MD simulation is maintained by the
use of a thermostat. There are a number of well known thermostats available to use for
a molecular dynamics simulation, with the most popular being the Andersen and the
Nosé-Hoover thermostats. An Andersen thermostat [Andersen, 1980] maintains the
temperature by stochastic collisions with a heat-bath and yields good results for time-
independant properties. However, for dynamical properties the Andersen thermostat
should not be used as the collisions unrealistically effect the system, resulting in a
decorrelation of particle velocities. Hence, the velocity autocorrelation function decays
faster than it should and properties based on this (e.g. the diffusion coefficient) are
effected. Nose [1984] developed a method that is both deterministic and suitable for
dynamics, although the formalism that is usually used is that of Hoover [1985] and is
known as a Nosé-Hoover thermostat.

A Nosé-Hoover thermostat is described by the extended Lagrangian (extended as the
Lagrangian contains artificial coordinates and velocities):

LNose =
N

∑
i=1

mi

2
s2ṙ2

i +
Q
2

ṡ2−gkBT lns−U(rN) (3.18)
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where Q is an effective “mass” associated to the additional coordinate, s, and g is an
integer parameter equal to the number of degrees of freedom of the system. From
equation 3.18 it can be seen that:

∂L
∂ ṙi

= mi s2 ṙi = pi (3.19)

∂L
∂ ṡ

= Qṡ = ps (3.20)

The extended system creates a microcanonical ensemble of 6N + 2 degrees of freedom.
Nosé introduced two sets of variables; real and virtual, and calculated the equations of
motion for both. In a MD simulation, the real-variable formulation is the best one to
use [Frenkel and Smit, 2002]. The equations of motion for the Nosé-Hoover thermostat
can be simplified [Hoover, 1986] to yield:

ṗi = −εpi (3.21)

ε̇ =
1
Q

�

∑
i

p2
i

mi
−gkBT

�
(3.22)

ṡ
s

=
d lns

dt
= ε (3.23)

where a thermodynamic friction coefficient ε = sps/Q has been introduced.
The Nosé-Hoover thermostat has problems with solids, especially in small or rigid sys-
tems or in those where the interactions are harmonic (such as in near zero temperature
system). This problem may be overcome by linking together successive Nosé-Hoover
thermostats into what is called a Nosé-Hoover Chain [Martyna et al., 1992] and then
linking these chains of thermostats together to form a massive thermostat.
There is also a technique known as Langevin dynamics, named after the French physi-
cist Paul Langevin that extends molecular dynamics away from isolated systems and
attempts to emulate the effect of particles interacting with the system from the sur-
roundings. Langevin dynamics allows the controlling of the temperature of the system
through its equations of motion.

3.3.4.1 The Berendsen thermostat

It can take many time-steps for the temperature of a molecular dynamics simulation
to reach equilibrium. However, there is a technique available that can push the system
toward thermal equilibration. This technique is known as a Berendsen thermostat and
can be used for both canonical as well as the microcanonical ensembles. The Berens-
den thermostat [Berendsen et al., 1984] pushes a system rapidly to thermal equilibrium
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at a desired target temperature. This is achieved by a re-scaling of the velocities after
each time-step. It is worth noting that the Berendsen thermostat conserves momentum,
but not the total energy. The temperature is controlled by a velocity scaling parameter,
λ :

λ =
�

1+
∆t
τT

�
T0

T
−1

�� 1
2

(3.24)

where T0 is the target temperature and T is the actual temperature, ∆t is the time-
step of the simulation and τT is a coupling constant with dimensions of [time]. Care
must be taken when choosing this constant as too large a value results in the system
reverting to an NVE ensemble (as the Berendsen is effectively turned off) and too
small a value results in large fluctuation in the system temperature which can take a
long time to reach the required temperature. Once the system has reached the desired
temperature, the Berendsen thermostat must be switched off and the standard ensemble
methodology must be used to maintain the temperature. This is because the Berendsen
thermostat has no physical association and the dynamics of the system would no longer
be able to be correctly described by the statistical mechanical ensembles.

3.3.5 Pressure

The pressure is usually derived from the Virial theorem of classical dynamics where
the pressure is calculated by taking one third the trace of the pressure tensor as in
equation 2.18, or alternatively:

<P>=
1

3V

�

∑
i

�
p2

i
mi

+ ri ·Fi

��
(3.25)

which is also invariant to the initial coordinates. However, for systems with periodic
boundary conditions this form is unsuitable, as it assumes that there are walls or exter-
nal forces to preserve the shape of the system. Therefore the form that is used is:

<P>=
1

3V

�

∑
i

p2
i

mi
+∑

i
∑
j>1

ri jFi j

�
(3.26)

To perform a molecular dynamics simulation at constant pressure requires the use of a
barostat. A barostat is introduced into the equations of motion similar to the method
used for the Nosé-Hoover and Berendsen thermostats. For a Berendsen barostat, the
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lattice parameters are scaled by a parameter χ:

χ =
�

1− β∆t
τcell

(Pext −P0)
� 1

3
(3.27)

where P0 is the calculated pressure and Pext is the desired pressure, β is a measure of
the system compressibility and τcell is a coupling constant.

3.3.6 Short-range forces

The short-ranged interactions between atoms can be described with the use of inter-
atomic potentials. These models are created by curve fitting to experimental data and
sometimes simulated data, such as from ab initio calculations, for example.

3.4 Interatomic potentials

Interatomic potentials are simple empirical functions that generate the potential energy
surface of a system. The potentials can be specific to a particular property or generic
for a material. Pair potentials govern the interaction between pairs of atoms and usually
assume that this interaction only depends on the distance between each atom. A few
specific potentials will now be discussed as they are used later in the thesis for shock
wave calculations.

3.4.1 Lennard-Jones pair potential

Probably one of the most well known empirical pair potential is the Lennard-Jones
potential derived by J.E. Lennard-Jones in 1924 [Jones, 1924a,b]. It has the form:

U(r) = kε
��σ

r

�n
−

�σ
r

�m�
(3.28)

where σ is the distance to the zero in U(r), ε is the energy at the minimum

k =
n

n−m

� n
m

� m
n−m (3.29)

where the integers follow n > m. The choice, m = 6,n = 2m = 12 results in the
Lennard-Jones (12,6) potential [Haile, 1997]. This potential has a 1/r6 attractive term
coupled with a 1/r12 repulsive term. The attractive term has a physical origin; from
London’s theory for dispersion whereas the r12 repulsive term is not physical - it was
chosen to be numerically convenient when calculating the pairwise force:
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F(r) =−∂U(r)
∂ r

= 24
ε
σ

�
2
�σ

r

�13
−

�σ
r

�7
�

(3.30)

By convention, attractive forces are negative and repulsive forces are positive. Figure
3.2 shows a graphical form for the Lennard-Jones potential in reduced units. Reduced
units are useful for computer simulations as many of the values that are held in memory
are ∼ 10−40 and so numerical operations on these numbers could result in underflow
or overflow. Reduced units remove this problem by choosing a set of basic units. A
common (though not unique) choice for a LJ model is:

• Length = σ

• energy = ε

• mass = m (mass of atoms in the system)

using these basic units, all other units can be derived. Table 3.1 shows the conversion
to reduced units for a LJ model.

Table 3.1: Reduced units conversion table

Unit Reduced unit
temperature ε/kB
time σ

�
m/ε

distance r/σ
energy U(r)/ε
force F(r)σ/ε

If all the pair interactions are sampled during the course of a simulation then the num-
ber of samples increases with the square of the distance, this means that much computer
time could be spent computing these interactions. It is much more convenient to use a
truncated potential that sets the interactions between two atoms to zero for atoms that
are further apart than a certain cut-off radius:

U(r) =

�
4ε

��σ
r
�12−

�σ
r
�6

�
r ≤ rcut

0 r > rcut
(3.31)

The step change in the energy at the cut-off radius, rcut , can cause problems in the
simulation as the force will have a discontinuity. This can be avoided by shifting the
force so that it goes smoothly to zero at the cut-off radius and then integrating to get
the corresponding energy.

Fshi f t(r) =

�
F(r)−∆F r ≤ rcut

0 r > rcut
(3.32)
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Figure 3.2: The Lennard-Jones (12,6) potential. Reduced units used: r∗ = r/σ , Poten-
tial energy, ε∗ = U(r)/ε and Force = σF(r)/ε)

where the shifted force, ∆F is given by:

∆F = −
�

∂U(r)
∂ r

�����
rcut

(3.33)

Thus the potential is:

Ushi f t(r) =

�
U(r)−U(rcut)− [r− rcut ]∆F r ≤ rcut

0 r > rcut
(3.34)

3.4.2 Potentials for silicates

3.4.2.1 The BKS potential

A well known and used potential for silicates is the so-called BKS potential of Kramer,
Farragher, van Beest, and van Santen [1991]:

U(r) = ∑
i> j

qαiqβ j

rαiβ j
+ ∑

i> j

�
Aαiβ jexp(−bαiβ jrαiβ j)−

Cαiβ j

r6
αiβ j

�
(3.35)

where α and β are atomic species, qα and qβ are their charges and A, b, and C are con-
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stants derived from curve-fitting to a mixture of experimental data and Hartree-Fock
ab initio calculations. The author’s found that the inclusion of experimental data was
a necessity as their fit to ab initio data alone could not stabilise the predicted struc-
tures. This mixed empirical force-field approach couples the precise ab inito calcula-
tions on the local structure (accurately describing the nearest neighbour interactions)
to the macroscopic (experimental) data. This was done by iterating between fitting
the potential parameters to the ab initio calculations and optimising the bulk param-
eters (qSi and bO−O) by comparison with experimental elastic constants and unit-cell
dimensions. Their force-field parameters, given in table 3.2 (machine precision), have
been shown to be reasonably successful in describing the dynamic and structural prop-
erties of quartz (SiO2) and some of its polymorphs [Murashov and Svishchev, 1998;
Kimizuka et al., 2003]. The Coulomb term is usually computed using Ewald summa-
tion and form of the pair potential can be seen in figure 3.3. A notable problem can be
seen with this potential if the interatomic distance between atoms becomes very small.
In such an event, the BKS potential has the unphysical property of having the energy
(and force) diverging to minus infinity. Therefore care must be taken when using this
potential to ensure that this does not happen.
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Figure 3.3: Plot of the pair part of the BKS potential.

3.4.2.2 The TTAM potential

Another well known and used potential derived by Tsuneyuki et al. [1988] is the so-
called TTAM potential:
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Table 3.2: Force-field parameters used for quartz in the BKS potential [Kramer et al.,
1991]

αi−β j Aαiβ j (eV) bαiβ j (Å−1) Cαiβ j (eV Å6) q
Si-O 18003.7572 4.87318 133.5381 qSi = 2.40
O-O 1388.77300 2.76000 175.0000 qO =−1.2

U(r) = UCoulomb
i j (r)+ f0(bi +b j)exp

�
(ai +a j− r)

bi +b j

�
−

cic j

r6 (3.36)

where r is the interatomic distance and ai is the effective radius of the ith atom with
a force of f0 = 1 kcal/Å/mol. This potential has the same form as the BKS, and was
also parameterised using ab initio Hartree-Fock calculations on a tetrahedral cluster
of SiO4−

4 . To obtain charge neutrality, the authors added 4 point charges at 1.65 Å
away from the oxygen atoms and in-line with the silicon-oxygen bonds. The authors
then performed a non linear fit and as there were more than one set of parameters, the
authors chose the ones shown in table 3.3.

Table 3.3: Force-field parameters used for quartz in the TTAM potential [Tsuneyuki
et al., 1988]

αi a (Å) b (Å) c (kcal1/2Å3mol−1/2) q
O 2.0474 0.17566 70.37 -1.2
Si 0.8688 0.03285 23.18 2.4

The authors found that MD simulations on α-quartz, α-cristobalite, coesite and stishovite
were dynamically stable, despite the large differences in atomic structure.

3.4.3 Many-body empirical potentials

There have been a number of techniques developed to capture many-body effects, e.g.
Daw and Baskes [1983]; Derlet et al. [1999]; Mei and Davenport [1992]; Johnson
[1973]; Erkoc [1997]. One of the most well-known is the Embedded Atom Method
that is used to describe metallic systems.

3.4.3.1 The Embedded Atom Method

The problem with simple pair potentials is that they fail when considering metallic
systems. This is because they have no in-built many-body term that captures the elec-
tronic interactions between atoms. Stott and Zaremba [1980] introduced the concept
of a quasiatom, which is an impurity ion plus its electronic screening cloud. Norskov
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and Lang [1980] introduced the Effective Medium Theory that gives the interaction be-
tween an atom (or cluster of atoms) with an inhomogeneous electron system. Follow-
ing these researchers work, Daw and Baskes [1983] introduced the Embedded Atom
Method (EAM). This method uses a pair potential term plus a term that is dependent
on the electron density of the system. It is a quick and computationally inexpensive
way of capturing the atom-atom interactions. In the EAM potential the total energy
has the form:

Etot =
1
2 ∑

i> j
φi j(ri j)+∑

i
F(ρi) (3.37)

ρi = ∑
j �=i

ρ(ri j) (3.38)

where Etot is the total energy, φi j(ri j) is a pairwise potential as a function of the dis-
tance, ri j, between atoms i and j. F is the embedding energy, i.e. the energy required to
place an atom i in an electron density ρi , and where ρi j is the electron density function
which is summed over all other atoms. [Johnson, 1988] has used the EAM for FCC
metals and shows that the embedding function used in several models are essentially
equivalent.

3.4.4 Long-range forces

Computing the interatomic potential up to a cut-off should be a reliable way of com-
puting the short-ranged forces. However, this truncation of the potential can lead to
serious inaccuracies. It can be shown [Frenkel and Smit, 2002] that the contribution of
the missing tail of the interatomic potential (a tail correction) is estimated as:

Utail =
1
2

� ∞

rc
4πr2ρ(r)U(r)dr (3.39)

where ρ is the average number density. However, unless U(r) decays faster than r−3

then this tail correction diverges [Frenkel and Smit, 2002]. Therefore Coulombic inter-
actions cannot be treated in this fashion. There exists a number of techniques available
for computing long-range interactions, such as the Madelung Potential or the Fast Mul-
tipole Method [Greengard and Rokhlin, 1989], however the most widely used is known
as Ewald summation and this method is used throughout the work in this thesis, and
therefore merits further discussion.
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3.4.4.1 Ewald summation

Consider an electrically neutral system of N charged particles located in a cubic unit
cell. We assume the system has periodic boundary conditions. The Coulomb contribu-
tion to the potential energy is:

UCoul =
1
2

N

∑
i=1

qiφ(ri) (3.40)

where φ(ri) is the electrostatic potential at the position of ion i:

φ(ri) = ∑
j,n

� q j

|rij +nL| (3.41)

where the prime indicates that the sum is over all periodic images, n, except when
j = i in the primary cell, i.e. ion i interacts with all its images but not with itself.
This expression can be thought of as a series of point charges, and therefore decays
as 1/r and so is only conditionally convergent; thus is unsuitable to use in computing
the electrostatic potential. Now consider what happens if we place a diffuse Gaussian
charge distribution of opposite sign around each of the point charges, such that the
total charge of this distribution exactly cancels qi. This now means our system has an
electrostatic potential that is due to the part of qi that is not screened by the Gaussian
charge distribution. This fraction, at long distances, rapidly decays to zero, so it is
straightforward to compute the electrostatic potential by direct summation. However,
we now need a correction for the screening charge. The correction takes the form of
a smoothly varying compensating charge distribution located at each ion i. Figure 3.4
shows diagrammatically how the Ewald method is used to compute the electrostatic
potential for a system of point charges - the point charges (left) can be considered
as a set of point charges plus Gaussian screening charge cloud (right, top) plus the
correction for the Gaussian charge cloud (right, bottom). The computational effort of
the Ewald summation scales as O(N3/2). Appendix B gives a detailed mathematical
description of how the Ewald summation is performed.

3.5 Geometry optimisation

The starting point in any simulation is to relax the simulation cell to remove any resid-
ual stress and forces from the system. This process is know as a geometry optimisation
and attempts to locate the local minimum in the potential energy surface of a system.
It is an important start to any simulation as the experimentally or theoretically deter-
mined structure may not have the lowest energy configuration in a computer simulation
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= +

Figure 3.4: Illustration of the Ewald summation methodology: A set of point charges
(left) can be considered as a set of screened charges (screened by oppositely charged
Gaussians) (right,top) plus the smoothly-varying correction to the screening (Gaus-
sians) (right bottom).

(although it should agree to within a few percent).
In essence the problem is one of a global optimisation and corresponds to the finding
minimum potential energy configuration. There are a number of ways in which this can
be achieved, with the simplest being the method of “Steepest Descents” (also called
the gradient descent method). This, like many optimisation methods, is an iterative
method where a point of lower energy is found by the following:

xi+1 = xi +λ si (3.42)

where the subscript i denotes iteration number and the optimal step length, λ and the
directions to step, si are to be determined. The method of Steepest Descents uses this
form, where the minimum of the function f is found by minimising (stepping) along a
line from a point, xi to a point xi+1 in the direction of si = −∇f(xi) and iterating this
procedure until either the minimum is reached or the function starts to increase

xi+1 = xi−λ∇f(xi) (3.43)

If the function does start to increase, a new direction is chosen (typically orthogonal
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to the local gradient direction) and the procedure continues. This method has severe
drawbacks for functions of f that have long narrow valley structures as it may take
many iterations to reach convergence. An improvement to this, known as the conjugate
gradients method, may be derived in which the search direction is chosen that is both
conjugate to the current and all previous search directions. Figure 3.5 shows a diagram
of the above methods.

Potential Energy Surface

Steepest Descent − Many  interations to
reach local minimum

Conjugate gradient − Reaches local
minimum in fewer iterations

Figure 3.5: Methods of Steepest Descent (left) and Conjugate Gradients (right) used
for global optimisation.

3.5.1 The BFGS algorithm

The so-called BFGS algorithm was named after its developers, Broyden,Fletcher,Goldfarb
and Shanno [Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970] and is a
quasi-Newtonian optimisation technique. The theory of quasi-Newton methods is that
an approximation to the curvature of a non-linear function can be computed without
having to form the Hessian matrix [Gill et al., 2004]. The Hessian matrix, A (an NxN
matrix of second derivatives of a function) holds the curvature information of a func-
tion and is key to finding the minima of that function and has the form for a potential
energy surface, E of:

A =





∂ 2E
∂x2

1

∂ 2E
∂x1x2

. . .
∂ 2E

∂x1xN

∂ 2E
∂x2x1

. . . ...
... . . . ...

∂ 2E
∂xNx1

. . . . . .
∂ 2E

∂xNxN




(3.44)

The BFGS algorithm uses an initial guess at an approximate Hessian matrix and what
is termed an update matrix to update the Hessian with information accumulated during
the minimisation procedure. The basic idea is that around a local minima, the energy
surface is assumed to quadratic for very small displacements. Let us take a step si from
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a position xi in a search direction pi. To find this search direction, let us expand the
gradient function around the point xi as a Taylor series

∇ f (xi + si) = ∇ f (xi)+Aisi + . . . (3.45)

The curvature of f can be approximated using first-order information:

sT
i Aisi ≈ (∇ f (xi + si)−∇ fi)T si (3.46)

At the start of each optimisation iteration there exists an approximate Hessian, Bi

which has the information of the curvature from all previous iterations. If this Hes-
sian is taken to model a quadratic function, then we can find a search direction, pi

that is a stationary point satisfying the Newton direction, and is given by the linear
equation:

Bi pi =−∇ f (xi) (3.47)

This is equivalent to the method of Steepest Decent if on the first iteration and there
exists no prior information available to the Hessian (B0 is taken as the identity matrix).
To compute the new location we use the substitution:

si = xi+1− xi ≡ λi pi (3.48)

and re-arrange equation 3.47 to give

xi+1 = xi−λiHi∇ f (xi) (3.49)

where Hi is the inverse Hessian and λ a scalar step in that direction (similar to the
Steepest Descent method). After the step has been computed, the Hessian (or inverse
Hessian) is updated to take into account the new curvature information:

Bi+1 = Bi +Ui (3.50)

where Ui is the update matrix. In order for the updated Hessian to satisfy the quasi-
Newton condition we must have:

Bi+1si = ∇ f (xi+1)−∇ f (xi) (3.51)

During an optimisation iteration, the only new information obtained about the function
f is along only one direction. Thus the updated Hessian only differs from its previous
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iteration by a matrix of low rank. Either a one-rank or a rank-two matrix correction is
often used:

Ui = auuT −bvvT (3.52)

where a one-rank correction has the scalar b = 0 and u and v are vectors. Using the
substitution: yk = ∇ f (xi+1)−∇ f (xi), the BFGS formula can be show to become:

Bi+1 = Bi +
λi∇ f (xi)yT

k
yT

k (xi+1− xi)
+

ykyT
k

yT
k (xi+1− xi)

(3.53)

Using the above methods a system can be relaxed to its lowest energy state by itera-
tively minimising the system energy (or enthalpy) with respect to the atoms’ positions
(which results in a zero force). It can be also done with respect to the system strain,
resulting in zero pressure and stress in the system.

3.6 Ab initio computer simulation

3.6.1 The many-body problem

The many-body problem comes from considering a system with many atoms and elec-
trons. As will be discussed, the electronic interactions pose an impossible problem for
computer simulations due the enormous computational storage costs of the many-body
wavefunction.

3.6.1.1 The Born-Oppenheimer approximation

The Born-Oppenheimer Approximation [Born and Oppenheimer, 1927] is a powerful
approximation, as it separates the electronic and nuclear motion allowing the many-
body wavefunction to be described as a product of the electronic and nuclear wave-
functions. The idea is that as electrons are much lighter and move much faster than the
ions in the system, they are said to instantaneously respond to any ionic motion. The
ions are treated to obey Newton’s Laws for classical particles and the time-independant
Schrödinger equation is used to describe the electronic wavefunction.

3.6.1.2 The Schrödinger equation

The goal of most approaches lies in solving the electronic time-independant Schrödinger
equation:
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�
−1

2
∇2 +V̂ext(RI)+V̂e(ri)

�
Ψ(ri, . . . ,rn) = EΨ(ri, . . . ,rn) (3.54)

where atomic units have been used (h̄ = me = e = 1), the first term is the kinetic energy
operator, the second term is the Coulomb potential of the nuclei:

V̂ext(RI,ri) =−∑
i

∑
I

Zi

|RI− ri|
(3.55)

and the third term is the electron-electron Coulomb interaction:

V̂e(ri) =
1
2 ∑

i
∑
j �=i

1
|r j− ri|

(3.56)

and Ψ(ri, . . . ,rn) is the 3N-dimensional wavefunction. The electron-electron term in
the Schrödinger equation makes numerical solutions for more than a few electrons im-
possible due to the huge storage cost of the wavefunctions. Therefore approximations
have to be constructed to make this problem possible. Early work used a mean-field
approximation which replaced the many-body wavefunction with a sum of many one-
particle wavefunctions. This is called the Hartree approximation, and replaced the
electron-electron interaction with:

V̂H =
�

dr� n(r�)
|r� − r| (3.57)

where n(r) is an average electron density. However, because the solution to the one-
particle wavefunction depends on the electron density, which in turn, depends on the
wavefunction, then solving this requires a self-consistent approach. A much better ap-
proximation was developed called the Hartree-Fock approximation which overcomes
some of the failings of the Hartree approximation (e.g. the violation of the Pauli Ex-
clusion principle for the wavefunction). This approximation replaces the many-body
wavefunction with a Slater determinant that guarantees the antisymmetric requirement
under exchange of electrons. This approximation gives reasonable values for the total
energies of atoms but still has shortcomings - the difference between the actual energy
and the energy calculated using this approximation was called the correlation energy.

3.6.2 Density Functional Theory

Density Functional Theory (DFT) is a quantum mechanical theory designed to inves-
tigate electronic structure. It was developed 1960’s based on the work by Walter Kohn
and P. Hohenberg [Hohenberg and Kohn, 1964]. The principle behind the theory is that
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the total ground state energy of a system can be written in terms of a unique functional1

of the electron ground-state density, n(r), where the electron density is:

n(r) =
�

. . .

�
dr2 . . .rn|Ψ(ri|2 (3.58)

The ansatz for the total energy is:

E[n(r)] = F [n(r)]+
�

V̂ext(r)n(r)dr (3.59)

where the functional F [n(r)] is unknown and therefore researchers re-wrote it as a sum
of the kinetic and Hartree contributions plus a contribution that has both the exchange
and the correlation effects. Knowledge of this last term would enable an exact solution
to the many-body Schrödinger equation for the ground state energy. The terms above
are calculated in DFT using the method introduced by Kohn and Sham [1965] in which
the system of interacting electrons is replaced with a system of non-interacting elec-
trons with the same electron density. The kinetic energy of a non-interacting system
is:

EK[n(r)] =−1
2

�
φ∗n (r)∇2φi(r)dr (3.60)

Thus the Schrödinger equation to solve [Refson, 2006] is:

�
−1

2
∇2 +V̂ext(RI)+V̂H(r)+V̂XC(r)

�
φn(r) = Enφn(r) (3.61)

where φn(r) are the one-particle Kohn-Sham wavefunctions (often called the Kohn-
Sham orbitals) and the exchange-correlation potential is given by a functional deriva-
tive:

V̂XC(r) =
δEXC[n(r)]

δn
(3.62)

and contains all the unknown information about F [n(r)] including the difference be-
tween the kinetic energies of the interacting and non-interacting systems. Once again,
this functional is unknown. It was hoped that the exchange and correlation effects
would give a relatively small contribution and a reasonable approximation should yield
good results. This is true for some systems such as metals, but for strongly correlated
systems the exchange and correlation effects are large, and other methods, such as GW
[Hedin, 1965] are required to find the ground state energy.

1A functional is a function of a function
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3.6.2.1 Local Density Approximation

The Local Density Approximation (LDA) makes the approximation:

EXC[n(r)] =
�

dr n(r) εXC(n(r)) (3.63)

where εXC(n(r)) is the exchange-correlation density at a point r as a function of the
density. In a homogeneous electron gas this is known exactly (from Monte-Carlo sim-
ulations). Considering atoms, LDA tends to over-bind resulting in bond-lengths about
1% smaller than experiment. However, LDA remains a good approximation for many
systems and gives a reasonable description of chemical bonding, surfaces and defects.
The success of LDA can be partially attributed to it obeying the sum rule. That is,
the amount of positive charge surrounding each electron in the homogeneous electron
gas (due to electrostatic repulsion) is equal to exactly one electron. Many prospective
improvements to LDA failed due to not obeying the sum rule.

3.6.2.2 Generalised Gradient Approximation

The Generalised Gradient Approximation (GGA) is a more sophisticated approxima-
tion for the exchange-correlation functional and is used for systems in which the elec-
tron density rapidly changes. The gradient of the electron density is taken into account
in GGA. The GGA proposed by Wang and Perdew [1991] obeys the sum rule and is of-
ten used for calculations. GGA is successful in describing the binding and dissociation
energies in many systems although does tend to under-bind.

3.6.2.3 Reciprocal space and the Brillouin zone

Reciprocal space is a useful concept in DFT and simplifies many computational prob-
lems. In crystallography the reciprocal lattice is defined as:

ek·r = 1 (3.64)

for a wavevector, k and a position vector r.

The position vectors in reciprocal space are given by the following formulae:

a∗ = 2π b× c
a · (b× c)

b∗ = 2π c×a
a · (b× c)

c∗ = 2π a×b
a · (b× c)

(3.65)
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where a, b, c are the real space lattice vectors, and a · (b× c) is the volume of the unit
cell. Points on the reciprocal lattice are defined as:

G = ha∗+ kb∗+ lc∗ (3.66)

where h,k,l are integers.

The Brillouin zone is the location in reciprocal space that has the smallest volume and
the complete space group symmetry of the crystal. The first Brillouin zone therefore,
is the primitive cell of the reciprocal lattice and is the dual of the Wigner-Seitz cell
in real space. There are several points that are of special interest - and correspond
to areas of symmetry. An important point is the center of the Brilloiun zone and is
called the Gamma point (Γ point). In a calculation, the charge density is calculated
using a sum over a discrete set of wavevectors (called k-points) in the Brillouin zone.
Many k-points may be required to accurately sample the Brillouin zone however these
can be reduced using the symmetry in the cell [Monkhorst and Pack, 1976]. As the
energy of the system is dependent on the number of k-points chosen, care must be
taken to ensure that the system is properly converged with respect to k-point density.
Unfortunately, a large number of k-points also imposes a large computational burden,
although there are effective methods to distribute the computational load when using
large-scale supercomputers.

3.6.2.4 Basis sets

For computer simulations, it is convenient to express the wavefunction in terms of a
basis set:

φ(r) = ∑
α

cαφα(r) (3.67)

where the complex coefficients cα determine the outcome of all operations on the set
of basis functions φα . This means that a computer can be used to store the coefficients
and to solve an eigenvalue equation of the form:

Hcα = Ecα . (3.68)

Popular basis sets include plane-waves, Gaussians, Slater-type orbitals and Muffin-tin
orbitals. However plane waves are widely used in solid state calculations due to their
inherent periodic properties [Refson, 2006] .
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3.6.2.5 Plane waves

Many systems of interest are crystalline and therefore the external potential acting
on the electrons is periodic. Bloch’s theorem states that solutions to the Schrödinger
equation for a periodic system can be written as

Ψk(r) = eik·ruk(r) (3.69)

where k is an arbitrary wavevector within the first Brillouin zone and uk(r) is a periodic
function of r with the same periodicity as the potential.

A Fourier series can be used to expand uk(r):

uk(r) = ∑
G

ck,GeiG·r (3.70)

where ck,G are the complex Fourier coefficients, and the sum is over all reciprocal
lattice vectors. A plane-wave basis set of the form:

φα(r) = eiG·r (3.71)

is a natural basis for expressing the wavefunction of a periodic system. Therefore, the
wavefunction ( equation 3.69 ) can be written:

Ψk(r) = ∑
G

ck,Gei(k+G)·r (3.72)

From the variational principle in quantum mechanics we see that only an upper bound
on the true ground state energy can be obtained when using a finite basis set size.
Increasing the basis set size will always lead to a monotonic decrease in the computed
energy however, the smallest number of plane-waves needed to accurately represent
the system needs to be determined. This can be done using a parameter called the
cut-off energy:

Ec =
1
2
|k+G|2 (3.73)

Of course, as the cut-off energy is variational then the computed ground state energy
will always decrease with increasing cut-off. It is therefore important to use as many
plane waves as sufficient to converge the ground state energy to a required tolerance.
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3.6.3 Convergence of the ground-state energy

When performing DFT calculations one has to ensure that the parameters chosen en-
sure that the simulation is converged to the computed ground state energy. This means
that the value of the ground state energy is, to some reasonable tolerance, unchanged
with increased number of k-points and increased cut-off energy. One has to remember
that the computation time increases with number of plane waves and with the number
of k-points. Figures 3.6 and 3.7 give an example of a converged aluminium system of
108 atoms. In figure 3.6 the cut-off energy is converged (to meV precision) at 300 eV.
Converging the cut-off energy is not sufficient for convergence; a series of different
k-point sampling tests are also required, chosen to be performed at the value of con-
verged cut-off energy. As can be seen from figure 3.7 the k-point density has converged
(to meV precision) at a value of 0.005 Å−1 which corresponded to a Monkhorst pack
grid of 15× 15× 15 points in the Brillouin zone. As can be seen from the graph, the
k-point sampling is a non-variational parameter and therefore the energy can fluctuate
both down and up during convergence testing.
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Figure 3.6: Cut-off energy convergence for a K-point spacing of 0.014 Å−1.

3.7 Structural analysis

3.7.1 The radial distribution function

The radial distribution function, g(r), of a system is a measure of the local structure of
the system. g(r) can also be obtained from x-ray and neutron diffraction experiments
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Figure 3.7: K-point density convergence for a cut-off of 300 eV.

and therefore gives a metric of evaluating the performance of computer simulations.
g(r) is simple to compute in molecular dynamics simulations since the positions of
each atom are available as a function of time. g(r) is defined by:

g(r) =
1

ρN

�
N

∑
i

N

∑
j �=i

δ [r− ri j]

�
(3.74)

where N is total number of atoms, ρ is the number density (ρ = N/V ), and the an-
gular brackets represent a time average. For homogeneous materials, the structural
arrangement is independent of the orientation and only depends on distance between
atoms. Also, the double sum in equation 3.74 only contains 1

2N(N−1) unique terms.
Applying normalisation, and by integrating over all pairs of atoms we reduce to:

�
g(r)dr =

1
ρ

N(N−1) (3.75)

The above equation says that there are N−1 other atoms in the system surrounding a
particular atom. This might appear obvious, but it is useful for the basis of a probabilis-
tic interpretation of g(r). This says the probability of a finding an atom in a spherical
shell of radius r, and thickness ∆r , centered on a particular atom is:

1
N−1

ρg(r)V (r,∆r) (3.76)

where V (r,∆r) is the volume of the shell. For small separations, one atom has a large
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influence on the surrounding atoms and g(r) ≈ 0, whereas for large separations, one
atom has little influence on the position of another and g(r) = 1. To compute g(r) in
simulations we consider equation 3.74 with a small shell thickness ∆r:

∑
∆r

g(r)V (r,∆r) =
2

ρN ∑
∆r

�
N

∑
i

N

∑
j �=i

δ [r− ri j]∆r

�
(3.77)

where the double sum actually represents a counting operation, and equals the number
of atoms in the spherical shell of thickness ∆r. Therefore we can write the following
expression for g(r):

g(r) =
2 < N(r,∆r) >

NρV (r,∆r)
(3.78)

If we consider a simulation with M time steps, then the time-average of g(r) can be
written explicitly:

g(r) = 2
M

∑
i=1

Ni(r,∆r)
1

MNρV (r,∆r)
(3.79)

where Ni is the counting operation result at time ti in the simulation. The value of ∆r
is important as too small a value would yield a small population sample and therefore
statistically unreliable results, whereas too large a value could miss important details
of the structure.

3.8 Simulating Shock waves in condensed matter

Using the methods outlined above, equilibrium properties of the material under investi-
gation are easily computed. However, a shock wave is a dynamic and non-equilibrium
event and therefore further techniques are required before a successful shock wave
simulation can be performed. The generation of a shock wave can be performed by
a number of different methods already discussed in 1.3.2.1. In this work, the concept
known as a momentum mirror was used and will therefore be described in detail.

3.8.1 The momentum mirror

A concept known as the momentum mirror was developed by Holian [1988] to generate
a shock wave in computer simulations. This momentum mirror is (usually) located at
z = 0 plane and acts as a perfect reflector for incoming atoms. It can also be located at
x = 0 or y = 0 planes to investigate directional compressibility. The momentum mirror
used in this work was invoked after the second step of the velocity-verlet integration
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algorithm; any atom that had a z < 0 position had the sign of its velocity and position
switched. This resulted in the atom effectively “bouncing” off a perfectly reflecting
surface. Thus, on subsequent MD steps, any plane of atoms that had been reflected by
the mirror would be closer to the next plane of atoms which would feel a strong force
away from the mirror. This force creates the shock wave and propagates away from
the momentum mirror (z = 0 plane). Figure 3.8 shows a schematic of a system with a
momentum mirror.

Figure 3.8: A schematic of a 3D system with a momentum mirror. up is the piston
velocity towards the momentum mirror and us is the subsequent shock velocity away
from the mirror. Periodic boundary conditions are used throughout, therefore a vacuum
region is employed to avoid particle interactions through the momentum mirror.

The momentum mirror is essentially an infinitely massive piston that impacts with the
system to start a shock wave. Holian [1988] outlined the problems associated with
the momentum mirror approach; material near the mirror can react in a way different
from normal impact shock wave experiments; as the momentum mirror approach is
asymmetric, atoms near the mirror are trapped against a cold piston and heat up. Thus
for calculating averages, the first few planes of atoms near the mirror should be dis-
regarded. One other problem is that the free surface at the end of the system has to
be properly equilibrated to prevent a shock propagating into the simulation cell due to
relaxation.

3.8.2 Shock wave generation

The shock wave in the systems was generated by giving all the atoms in the system a
velocity towards the z = 0 plane and the momentum mirror. The desired strength of
the shock wave was determined by the velocity that the atoms impacted the momentum
mirror. By Galilean invariance, this velocity is the piston velocity, up by analogy with
the experimental work discussed in section 1.3. Molecular Dynamics using the micro-
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canonical ensemble were performed until the shock wave reached the back plane of
atoms. At this time, the whole system is in the shocked state and is under maximum
compression.

3.8.3 Temperature effects

Holian and Straub [1979] studied the effect of temperature on shock wave simulations.
They proposed that a system must have a temperature in order for the shock wave to
become a steady wave. At T0 = 0K the system is said to be unable to sustain a steady
shock wave through the simulation cell. The reason for this is that there is a transverse
stress relaxation process that happens behind the shock front, which couples with the
shock wave to form a steady wave. Steady waves are essential to allow the Rankine-
Hugoniot relations to be obeyed. This coupling is absent in a perfect crystal at zero
temperature. We performed a zero temperature shock wave simulation on a perfect
crystal of 1000 argon atoms to verify this claim. The shock velocity used was the
speed of sound in solid argon (≈ 1000 m/s) and was considered to be a strong shock
wave. The results showed that at T0 = 0K, the system behaved as if one-dimensional,
where each atom only moved in the z-direction and had no movement in either x or
y directions. This caused a self-similar wave to propagate in the system and a shock
wave was never established. Figure 3.9 shows snapshots of the system initially and at
maximum compression. Figure 3.10 shows two velocity profiles for a plane of atoms
located spatially at 10 Å and 18 Å from the momentum mirror in the z-direction. The
profiles show that the atoms were oscillating in the z-direction as the planes of atoms
collided and rebounded. This oscillatory motion destroyed the onset of a steady shock
wave and was seen to have decayed with increasing distance from the momentum
mirror. By 18 Å the oscillations had decayed to almost zero.The profiles showed no
evidence of a steady shock wave, and therefore we can conclude that shock waves
in three-dimensional systems must have a temperature greater than zero in order to
facilitate the creation of a steady wave. A system with temperature would allow for
transverse stress relaxation behind the shock front. It is worth noting that this effect is
likely due to the simulation using a perfect crystal, and experiments would not see this
effect. Also if an imperfect crystal was used, where the atoms where not located on
their lattice points, then a shock wave should still be capable of forming.
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Figure 3.9: Snapshots of a T=0 shock wave simulation, presented as a 2D slice of a
3D simulation. Atomic positions (illustrated with black dots) are inside a rectangular
simulation cell. System is moving towards the left where a momentum mirror is located
at the far left boundary. Left: Initial system configuration. Right: System at maximum
compression does not show the effect of a shock wave. Therefore a system at T0 = 0K
is unable to sustain a steady shock wave (see text for detailed discussion and also figure
3.10).
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Figure 3.10: T0 = 0K shock wave velocity profiles. Profiles are located at 10 Å and
18 Å from the momentum mirror along the z-direction. The system does not show a
shock wave velocity profile and therefore the system was unable to sustain a steady
shock wave (see text for discussion).
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3.9 Summary

Computer simulation has matured into a valuable tool for scientists. The choice of
whether to use interatomic potentials or to use the far more accurate, but far more
computational costly, ab initio approaches (for which DFT is but one choice) depends
on the particular problem at hand, but they are so far not suitable for shock wave simu-
lation due to the large number of atoms required for a steady-state wave to propagate in
the system. The methods for computing temperatures, pressures and other properties
remain the same however, and the choice of ensemble and the choice of thermostat
and/or barostat once again depends on the problem to be solved. For shock waves,
it is evident (see also chapter one) that many atoms are required to capture the ef-
fects caused by the propagating discontinuity, and thus interatomic potentials are the
best choice for computing the energies and forces, and using the NVE ensemble. An
approach adopted by the majority of researchers in the field and also the approach
adopted for the work in this thesis. Temperature plays an important role in simulation
shock wave generation, without it there can be no steady-state wave as there would be
no transverse directional stress relaxation mechanisms. This of course, only applies to
perfect crystals and is therefore unlikely, if not impossible to observe experimentally.
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Chapter 4

Shock wave simulations in
Lennard-Jones systems

4.1 Introduction

This chapter is concerned with simulations using the well known Lennard-Jones (LJ)
empirical pair potential. Lennard-Jonesium systems are the ideal starting point to de-
velop the methodology for shock wave simulations because of the computational sim-
plicity of the LJ (12,6) pair potential. The LJ (12,6) pair potential has been shown to
give a good representation for the equilibrium properties of the noble gas argon and
therefore this material was used for the shock wave simulations discussed in this chap-
ter. The chapter is organised as follows; first, a brief description of argon will be given
followed by the results of equilibrium simulations on argon. The results of shock wave
simulations in Lennard-Jonesium systems will then be discussed.

4.1.1 Argon

Argon was the first noble gas to be discovered and is located in Group 8 of the Pe-
riodic Table of elements. It is a colourless, odourless gas contributing less then 1%
(by volume) of the Earth’s atmosphere. It was discovered in 1894 by Lord Rayleigh
and Sir William Ramsay after an experiment that removed oxygen and nitrogen from a
sample of air [Rayleigh and Ramsay, 1894]. Today, argon is collected as a bi-product
of the creation of liquid oxygen and liquid nitrogen. Argon is chemically inert, making
it useful for applications such as fire extinguishers and shielding air-sensitive materi-
als. However, the most common use is in traditional incandescent light bulbs where it
protects the element from oxidisation. Solid argon has a Face-Centred Cubic (FCC)
structure, space group Fm3m (space group number 225). Argon melts at 83.85 K and
boils at 87.15 K. Figure 4.1 shows a unit cell structure for argon.
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Figure 4.1: Conventional unit cell of crystalline argon

4.2 Equilibrium simulations

The usual parameters for the Lennard-Jones potential were used: σ = 3.405 Å, ε = 120
K and a cut-off distance, rcut = 2.5σ . Therefore, the smallest simulation cell that
could be used for argon is 4×4×4 unit cells (256 atoms) due to the Minimum Image
Convention (see 3.3.3) and this was used to calculate the equilibrium properties.

4.2.1 Geometry optimisation

The simulation cell was equilibrated using the geometry optimisation technique dis-
cussed in section 3.5. Stress and Force were converged to MPa and meV/Å, respec-
tively. Figure 4.2 shows the convergence of the stress parameter. The lattice parameter
was calculated to be a = 5.305 Å. This compares well with the experimental value of
Henshaw [1958]: a = 5.256 Å.

4.3 Static compression

A series of hydrostatic compression calculations were performed and the PV graph can
be seen in figure 4.3. It can be seen from the figure that the maximum compression
achievable is tending towards 0.40 times the initial volume. Theoretical work on gases
[Zel’dovich and Raizer, 2002] has shown that the maximum compression achievable
for an ideal gas is 0.25. The discrepancy between the calculated value and the theoret-
ical one is likely due the system being in the solid phase and also the unphysical r−12

part of the LJ potential.

78



Chapter 4 Shock wave simulations in Lennard-Jones systems

Figure 4.2: Simulation cell stress convergence of argon using the Lennard-Jones (12,6)
potential

4.4 Shock wave simulations

As discussed above, argon has been extensively studied and its equilibrium properties
well described by the LJ (12,6) potential. It is expected however that a shock wave
will result in the energy and forces being calculated from the unphysical r−12 region
of the potential. This is accepted, as the main purpose of this particular study was to
verify that the shock wave simulations were being performed as accurately and error
free as possible. The ease of computing the LJ energies and forces allows focus on the
mechanics of the shock wave generation itself.
The shock wave simulations were performed on 1000, 2000 and 4000 atom systems.
All systems were created from the equilibrium simulation cells and further equilibrated
to ensure stress and forces were zero. A vacuum gap of 10.00 Å was added to the z-
direction, which was parallel to lattice parameter “c” to ensure that atoms at either end
of the simulation cell were separated by a distance greater than the cut-off distance of
the LJ potential and so did not interact with each other. Periodic boundary conditions
were still applied in the x and y-directions. The speed of sound in solid argon was taken
as 1.05 km/s [Dobbs and Jones, 1957]. Figure 4.4 shows a snapshot at 1.5 ps of one of
the shock wave calculations, with a shock wave propagating at 2 km/s from left to right.
The shock front is clearly identified and the shocked argon has no structure behind the
shock front, indicating an amorphous state. Figure 4.5 shows a typical velocity profile
for this shock wave at simulation times between 1 and 4 ps. The particle velocity was
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Figure 4.3: Hydrostatic compression of argon using the Lennard-Jones (12,6) poten-
tial. The compression is approaching a maximum compression of 0.4 times the initial
volume, as marked on the graph by a dotted line.

obtained by dividing the system length (along z) into 1 Å segments, and the atoms’ z-
component of velocity in each bin averaged per atom. This spatial averaging then gave
a snapshot of the atoms velocity along the simulation cell, and the shock front was the
discontinuity in the velocity profile. The shock front clearly separates the shocked and
equilibrium states in the material and was of a constant amplitude and velocity as can
be seen in Figure 4.5.

Figure 4.4: Snapshot of a shock wave in a system of 4000 argon atoms presented as a
2D slice (taken at x = 0) of a 3D simulation. Momentum mirror located at z = 0 plane,
up = 2.0 km/s, t = 1.5 ps. The shock wave is propagating from left to right, leaving an
amorphous state behind the shock front.
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Figure 4.5: Average particle velocity profiles for a shock wave in a system of 4000
argon atoms. up = 2.0 km/s. The shock front (the discontinuity in the particle velocity
profile) is constant in amplitude and velocity.

4.4.1 Relationship between the shock and the piston velocities

The relationship between the piston velocity and the shock velocity is also called a
Hugoniot and is shown in figure 4.6 for the calculations here (atomistic data), and
experimental data of Dick et al. [1970]. The dotted line is a linear fit to these data up
to 10 GPa, using the formula:

us = aup + c0 (4.1)

where a is the fitting variable and c0 is the speed of sound in the material at zero pres-
sure [Kanel et al., 2004]. It can be seen that there is also a good agreement of the
atomistic data with the linear Hugoniot equation (equation 1.1) with a = 1.0, up to 10
GPa. After this point the plot is in poor agreement with the linear Hugoniot equation,
however the fit agrees with an intercept (us = 0) with the bulk sound speed calculated
from adiabatic compressibility data [Dobbs and Jones, 1957].
The data points for piston velocity, up, were taken as the velocity given to the sys-
tem towards the momentum mirror. The Rankine-Hugoniot relations were not used to
compute the particle velocities at this time. The data points for the shock velocity, us,
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were computed from the time the first plane of atoms hit the momentum mirror to the
time the shock wave reached the free surface, i.e. to a point just after the maximum
compression of the system.
The experimental data of Dick et al. [1970] is also plotted in figure 4.6. They used an
explosive lens system to generate a shock wave in their samples of solid argon which
were created by immersing the sample container of argon into a liquid nitrogen bath.
Their shock velocities were calculated using the Rankine-Hugoniot relations. They
used the method of least-squares fit to their data, and decided it was best fitted by us-
ing two regions: 2.00 ≤ us ≤ 5.79 km/s and 5.79 ≤ us ≤ 8.50 km/s. Good agreement
of the atomistic data with the experimental data can be seen up to about us = 5.0 km/s.
After this the experimental and the atomistic simulation data diverge. In figure 4.6
we see that there are differences in the computed Hugoniots for the three systems, but
between 2000 and 4000 atoms these differences are very small. It is likely that finite-
size effects were evident for the smallest system, but by 4000 atoms the effects had
converged. Systems larger than 4000 atoms are likely to yield very similar results, and
systems smaller than 4000 atoms may suffer from finite size effects.

Figure 4.6: Piston and shock velocity relationship for three different system sizes and
experimental shock wave data of Dick et al. [1970].

4.4.2 The Hugoniot

Figure 4.7 shows the calculated Hugoniot for the 4000 argon atom system along with
static compression data from section 4.3 and experimental data of Dick et al. [1970].
The hydrostatic compression data more faithfully follows the experimental data than
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the shock compression data. A reason for the difference may be attributed to the way
the pressure was calculated for the shock compression data. The maximum of the σzz

component of the stress tensor was chosen as the shock pressure, which may not be
the same as for the hydrostatic or experimental pressures. However at the maximum
pressure the system was under maximum compression before the shock wave exited
the back plane. Comparing the maximum stress tensor (σzz) pressure and volume with
the static compression data, it can be seen that the final volume is smaller for the static
compression at the same (but hydrostatic) pressure. This could be due to the atoms
re-arranging to minimise the stresses on the system. This is not possible for shock
compression simulations as there is little time for the atoms to react as the shock front
passes through the system. Therefore the location of the shock Hugoniot is expected
to lie above the static compression Hugoniot on a PV plot. The failure to agree with
the experimental data is more than likely due to the shock wave simulation probing
the unphysical r−12 region of the LJ potential, whereas the static compression does not
readily probe this region and therefore its data are in good agreement. This indicates
that the potential is too rigid for shock compression simulations and that the that the
r−12 term may be too strong.
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Figure 4.7: Hugoniot of argon using the Lennard-Jones (12,6) potential along with
experimental shock wave data of Dick et al. [1970]. Also plotted is the hydrostatic
compression data.
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4.5 Summary

This chapter has described the use of the LJ potential in the simulation of shock waves
through Lennard-Jones systems (argon was used as the LJ potential yields good agree-
ment to its equilibrium properties). The purpose of these calculations was to verify the
methodology for shock wave simulation (this methodology is outlined in Appendix
C). The work in this chapter has allowed for a methodology to be built for shock
wave simulations. The results obtained showed that the LJ potential under-estimated
the final volume for shock wave simulations, possibly due to the unphysical r−12 part
of the potential. As this functional form was chosen as a numerical convenience for
equilibrium calculations, it is deemed unsuitable for the non-equilibrium situation of
shock compression.
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Chapter 5

Simulations of quartz

5.1 Introduction

Silicon dioxide, SiO2, is most commonly known as quartz and it is the second most
abundant mineral in the Earth’s crust. It is thought to comprise a large part of the
Earth’s mantle where it is at high-pressures of up to 136 GPa and high-temperatures
up to 1200 K. At room temperature, quartz is naturally found in the α-quartz phase
(also known as low-quartz) and has many uses from clock parts to an impedance match
standard for VISAR experiments [Hicks et al., 2005]. Quartz has a number of high-
pressure and high-temperature polymorphs, with β -quartz (high-quartz), coesite, and
stishovite being the most well-known. Figure 5.1 shows an experimentally determined
phase diagram of quartz [Akhavan, 2005]. The low-pressure polymorphs of quartz
all have each silicon atom surrounded by 4 oxygen atoms in the crystal lattice and
therefore each silicon is said to have a coordination number of 4. Stishovite however,
has a coordination number of 6 and has a very different arrangement of atoms in its
crystal lattice to all the other quartz polymorphs [Sinclair and Ringwood, 1978]. It
is also known that quartz becomes amorphous at high-pressures, between 25 and 35
GPa at 300K using static experiments, such as diamond anvil cells [Hemley et al.,
1988]. However, there is still some debate about the mechanisms that underlie such
phase changes and whether the dynamic nature of shock compression could allow the
formation of one of the high-pressure polymorphs of quartz, such as stishovite. This
chapter investigates shock compression of quartz to determine whether such a high-
pressure phase change is possible and the underlying re-structuring mechanisms at the
atomic level.
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Figure 5.1: The phase diagram of quartz [Akhavan, 2005].

5.2 Equilibrium calculations

Figure 5.2 shows diagrams of the unit cell of α-quartz. The 9 atoms in the unit cell
have a silicon to oxygen coordination number of 4, with the oxygens surrounding the
silicon forming a tetrahedral shape.

Figure 5.2: Unit cell of α-quartz, containing 9 atoms. Silicon is 4-fold coordinated
with oxygen in a tetrahedral shape.

The BKS potential [Kramer et al., 1991] was used with cut-off radii of 6.0 Å for
both the silicon-oxygen bonds and oxygen-oxygen bonds, respectively. Therefore the
smallest system that could be simulated was 243 atoms (3× 3× 3 unit cells). Figure
5.3 shows the force and stress convergence of a 243 atom system of α-quartz during a
geometry optimisation.
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Figure 5.3: Geometry optimisation of α-quartz. Force (left) and stress (right) have
been reduced to 1 meV/Å and 1 MPa, respectively.

The calculated lattice parameters of the optimised structure are shown along with DFT
calculations1 using the LDA and GGA functionals and experimental data of Gualtieri
[2000] in table 5.1. The BKS potential tends to under-bind by about 2.5%. The under-
binding and over-binding of the GGA and LDA functionals, respectively, is also evi-
dent.

Table 5.1: Lattice parameters calculated for quartz using the BKS potential and DFT
with LDA and GGA functionals.

a (Å) b (Å) c (Å) α β γ
BKS 5.040 5.040 5.340 90.00 90.00 120.00
LDA 4.901 4.901 5.405 90.00 90.00 120.00
GGA 5.033 5.033 5.512 90.00 90.00 120.00
EXP 4.9158 4.9158 5.4091 90.00 90.00 120.00

1Performed by the Author using CASTEP [Segall et al., 2002] with library pseudo-potentials, a
cut-off of 600 eV and a k-point density of 0.04 Å−1.
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5.2.1 Effect of cut-off distance on the lattice parameters

The silicon-oxygen cut-off was investigated to determine the optimal value to use.
Figure 5.4 shows the convergence of lattice parameters with cut-off distances. A cut-
off of 6.0 Å was chosen as the parameters were changing only by mÅ.
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Figure 5.4: Variation of the calculated lattice parameters with different pair-potential
cut-off distances. At the chosen cut-off of 6 Å, the lattice parameters are changing by
mÅ.

5.2.2 Structure of geometry-optimised α-quartz

After the geometry optimisation it was found that the final structure of BKS potential
optimised α-quartz was β -quartz. This was expected as the authors of the BKS po-
tential also found this phase at zero temperature and pressure [Kramer et al., 1991].
These two phases of quartz, α-quartz, and its high-temperature polymorph, β -quartz
have similar structures [Bragg and Gibbs, 1925] as can be seen in figure 5.5. However,
β -quartz has a slightly lower density and the distances to the second nearest oxygen
neighbours of silicon are equal (whereas in α-quartz these distances are different).
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These differences are highlighted in Table 5.2 that shows experimentally determined
values [Akhavan, 2005]. The radial distribution function, g(r) for α-quartz and β -
quartz can be seen in figure 5.6. It is clear that β -quartz retains more structure at
longer distances, whereas α-quartz has lost its long-range ordering. The main peaks
in the g(r) plot occur at 1.62 Å, 2.64 Å and 3.16 Å. These are the Si-O, O-O and
Si-Si bond lengths, respectively for the SiO2 tetrahedron. These compare well with
experimental values of Si-O = 1.61 Å and O-O = 2.63 Å [Mozzi and Warren, 1969].

Figure 5.5: Comparison between the unit cells of α-quartz (left) and β -quartz (right).
In α-quartz, A �= B, whereas in β -quartz, A = B.

Table 5.2: Differences between the α and the β phases of quartz.

α-quartz β -quartz
Symmetry Hexagonal Hexagonal

(P3221) (P6222)
Volume 113.00 118.11
Density 2.650 2.533
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Figure 5.6: Comparison between the radial distribution functions of α-quartz (top) and
β -quartz (bottom). See text for discussion.
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5.2.3 Hydrostatic compression at T=0K

A series of hydrostatic compression simulations were performed on the geometry-
optimised 243 atom system of quartz using the BKS potential. The initial structure
was that of β -quartz as shown in figure 5.7. The simulations were performed as a se-
ries of geometry optimisations at different pressures, and therefore the compressions
were performed at zero kelvin. The results of the hydrostatic compression simulations
can be seen in figure 5.8. At 6 GPa the system underwent a phase transformation from
β -quartz to α-quartz. The system then remained at α-quartz up to very high-pressures.
Figure 5.9 shows the c/a ratio of the lattice parameters for the initial β -quartz system
over the phase transformation region. It can be seen that at the transformation bound-
ary, 6 GPa, the c/a ratio shows a discontinuity indicating a sudden structural change.
To determine what order of phase transformation had taken place, the energy-volume
curve was constructed seen in figure 5.10. This curve shows the total energy of the
system (enthalpy minus pressure-volume term) against the system volume. The curve
is continuous and therefore the transformation from α-quartz to β -quartz is a second-
order phase transformation. Figure 5.11 shows the structure of the quartz system at 8
GPa alongside the structure of bulk α-quartz and it can be seen they are very similar
in structure. Symmetry analysis performed on the quartz system at 6 GPa found that it
had a P3221 space-group symmetry which is the same as α-quartz.

Figure 5.7: Left: Structure of bulk β -quartz. Right: Structure of α-quartz post geom-
etry optimisation at zero pressure. The two structures both have P6222 space group
symmetry, indicating the optimised structure is that of β -quartz.
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Figure 5.8: Static compression of quartz using the BKS potential. At 0 GPa up to 6GPa
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Figure 5.10: Static compression of quartz. Inset: The transition region from β -quartz
to α-quartz. The energy-volume plot indicates a second-order phase transition occurs
as the curve is smooth and continuous and so there are no discontinuities in its deriva-
tive.

Figure 5.11: Left: Structure of bulk α-quartz. Right: Structure of the quartz system
after geometry optimisation at 8 GPa. The two structures both have P3221 space group
symmetry, indicating the structure is that of α-quartz.
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5.2.4 Structure of high-pressure quartz

It is thought that α-quartz transforms to coesite between 2 and 3 GPa (at room tem-
perature) and to stishovite between 8 and 10 GPa under shock loading. Recovered
samples of stishovite have been found in meteorite craters in Arizona [Chao et al.,
1962]. Figure 5.12 shows the structure of stishovite (left) [Baur and Khan, 1971] and
coesite (right) [Araki and Zoltai, 1969]. The density of coesite and stishovite was
2.896 gcm−3 and 4.287 gcm−3, respectively [Sinclair and Ringwood, 1978].

Figure 5.13 shows structure of the quartz system after a geometry optimisation using
the BKS potential at a hydrostatic compression of 40 GPa. The structure of this system
was α-quartz but had a density of 3.823 gcm−3, therefore putting it at a density between
coesite and stishovite.

Figure 5.12: Structures of stishovite (left) [Baur and Khan, 1971], with space group
symmetry P4/mnm and coesite (right) [Araki and Zoltai, 1969] with space group sym-
metry C2/c.

The hydrostatic compression was continued until the pair part of the BKS potential
failed, that is, when the pressure was large enough to push the interatomic distances
passed the point of inflection in the pair potential (zero of the second derivative). This
was found to occur at 50 GPa. This had severe consequences for shock wave simu-
lations where it was expected that the pressures would greatly exceed this value for
strong shocks. Therefore, the pair part of the BKS potential was extended to allow
high-pressure simulations to be performed.

5.2.5 Extending the BKS potential for high-pressure

The nature of shock compression creates very high-temperatures and high-pressures in
the system and it is likely that atoms would have sufficient kinetic energy to overcome
the pair-potential barrier of the BKS potential. As the BKS potential has the unphysical
property of diverging to minus infinity should this happen, this needs to be corrected
to allow for shock wave simulations. Several methods have already been employed to
correct for this behaviour. Barmes et al. [2006] have fitted a 2nd order polynomial to
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Figure 5.13: Quartz structure at 40 GPa. The structure has the same symmetry as
α-quartz but a density between coesite and stishovite.

the (truncated and shifted) BKS pair-part of the potential, and then applied it to shock
wave simulations of silica glasses. Guissani and Guillot [1996] have fitted a Lennard-
Jones type potential although they were not using BKS, but the TTAM [Tsuneyuki
et al., 1988], and were investigating the liquid-vapour state of silica. For this study, a
form similar to the latter method was chosen that would give a strong core repulsion
at small separations. The pair-part of the BKS potential was replaced at the point of
inflection (zero of the second derivative) with:

U(r) =
α
r2 +

β
r6 + γ r < r∗ (5.1)

where α , β and γ are the parameters of the function, analytically derived such that the
values of the potential, and the first and second derivatives match those of the potential
at the point of inflection, r∗. Table 5.3 shows the fitting parameters calculated and
figure 5.14 shows the new form of the potential.

Table 5.3: Numerical values of the fitting parameters used for BKS correction.

α(eV Å2) β (eV Å6) γ(eV )
Si-O 24.1700 23.8086 -3.5872
O-O 12.3435 18.9662 -6.9426

The hydrostatic compression simulations were extended to 200 GPa using the BKS
potential plus extension. The pressure-volume curve can be seen in figure 5.15.
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points above 50 GPa are calculated using the extension to the BKS potential.
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5.3 Shock wave simulations

5.3.1 Shock waves in systems with charge

The Lennard-Jones simulations approach for creating shock waves was used for cre-
ating the shock wave systems: a vacuum gap was added to ensure that there was no
interaction between the end planes of atoms. For systems that have charge, such as
quartz, this creates a large dipole moment in the system due to the removal of the
periodicity in the z-direction. This has catastrophic consequences for the geometry
optimisation as the ends of the system are drawn together across the vacuum region by
Coulomb attraction to counteract the dipole moment. In order to get a stable system
with which to perform the shock wave simulations, the Coulomb force computation
(using Ewald summation) has to be performed only in the directions perpendicular to
the shock propagation direction. Therefore the Ewald summation was performed es-
sentially in two-dimensions and the system had the geometry of a slab of material.
There are two-dimensional (2D) Ewald summation methods available [Spohr, 1997;
Kawata and Nagashima, 2001; Grzybowski et al., 2000], however these are computa-
tionally expensive, especially for large systems. A correction to the three-dimensional
(3D) Ewald summation technique was proposed by Yeh and Berkowitz [1999], which
they denoted as EW3DC and they showed that their correction to 3D Ewald summation
is much more computationally efficient than using a 2D Ewald summation technique.
The EW3DC uses a shape dependent energy correction, J(M,P), where P is the sum-
mation geometry of the system. The total dipole moment is given by:

M =
N

∑
i=1

qiri (5.2)

where qi is the charge on the ith atom, at position ri. The systems studied here had
the geometry of a rectangular slab (P=R) and therefore the energy correction term was
given by:

J(M,R) =
2π
V

M2
z (5.3)

using atomic units, and where V is the volume of the (3D) system. The correction is
also applied to the force calculation, which is obtained by differentiation of the energy
term:

F(r) =
∂J(M,R)

∂r
=

4πqi

V
Mz (5.4)

This correction holds provided that the length of the simulation cell in the shock di-
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rection (the non-periodic direction) is at least greater than three times the length of
the largest of the simulation cell lengths perpendicular to the shock direction, i.e.
Lz > 3∗max(Lx,Ly). This EW3DC technique was employed for the shock wave simu-
lations presented here. System tests using the corrected 3D Ewald were performed and
the results (seen in figure 5.16) show how the EW3DC using a small Lz gives the long-
range limit convergence of the 3D Ewald summation technique (when Lz → ∞). The
test system was successfully geometry optimised using this correction to the Ewald
summation and a vacuum gap just larger than 3 ∗max(Lx,Ly) resulted in a system
that was stable for molecular dynamics simulations. The calculation time using the
correction and the small vacuum gap was 200 times faster than using the 3D Ewald
summation using a 2000 Å vacuum gap.
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Figure 5.16: The energy with a correction to the 3D Ewald summation used for 2D
systems gives the same value as the long-range limit of the 3D Ewald summation.

5.3.1.1 Shifting the system prior to optimisation

Prior to geometry optimisation of the larger shock wave simulation systems, all the
atoms in the system were shifted away from the origin by up to 10 Å. This was a ne-
cessity, as a possible way for the geometry optimisation of the system to reduce the
dipole moment was to move planes of atoms past the z = 0 plane, resulting in a neg-
ative contribution to the dipole moment. This is bad for a shock wave simulation as
the momentum mirror would reflect the atoms passed the z = 0 plane thereby creat-
ing an unexpected high-density system. For this reason, a check after each geometry
optimisation was performed to ensure the the 10 Å shift was sufficient.
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5.3.2 Geometry optimisation of shock simulation systems

The geometry optimisation with correction to the Ewald summation was performed
on systems of 1584 and 3600 atoms of α-quartz (4×4×11 and 4×4×25 unit cells,
respectively). The optimisation reduced the dipole moment of the systems to the order
of 10−3 D. The variation in the dipole moment during geometry optimisation of the
3600 atoms system can be seen in figure 5.17. The majority of the bulk of the system
remained unaltered however. This is determined by considering the radial distribution
function (RDF) of the system, which is plotted in Figure 5.18 and indicates that the
majority of the structure remained that of β -quartz.

-100

0

100

200

300

400

D
ip

ol
e 

m
om

en
t  

(D
eb

ye
)

0 20 40 60 80 100
Interation of force minimisaiton

Figure 5.17: Dipole moment of quartz system during geometry optimisation. The
geometry optimiser was able to reduce the moment to zero and thereby created a stable
system for shock wave simulations.

5.3.3 Equilibration

The systems were equilibrated to 300 K using a Berendsen thermostat for 5 ps followed
by a further 5 ps of NVE simulation. Figure 5.19 shows the temperature of the system
over the equilibration period.
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Figure 5.18: Radial distribution function (g(r)) of quartz system post geometry optimi-
sation. Inset: g(r) of β -quartz for comparison.

5.3.4 Simulation results

A shock wave was created in the systems by using the so-called momentum mirror
technique [Holian, 1988], located at z = 0. All atoms in the system were given a piston
velocity of −up = 1 km/s,2 km/s,6 km/s,12 km/s towards the momentum mirror. A
shock wave thus propagated in the positive z direction at velocity us. The system
incorporated a vacuum gap in the z-direction which was created to be larger than the
cut-off radii to ensure that the potential was not acting on atoms through the momentum
mirror. The Ewald correction method of Yeh and Berkowitz was employed. Periodic
boundary conditions (PBC) in all directions were used throughout. The system was
equilibrated to 300 K using a Berendsen thermostat and then further equilibrated for 2
ps using standard NVE dynamics before the shock wave was initiated. The longitudinal
sound speed in crystalline quartz is 5.7 km/s, and rises to 6 km/s in amorphous (fused)
quartz.

5.3.4.1 Piston velocity

The piston velocity and shock velocity plots for the system are shown in figure 5.20.
There is a clear linear relationship between the shock and piston velocities. This in-
dicates that the piston passed through the system with little resistance. The system
behaved like a fluid and this could be attributed to the momentum mirror being in-
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Figure 5.19: Equilibration of quartz system to 300K using a Berendsen thermostat for
5 ps, switching to NVE simulation for a further 5 ps.

finitely massive and therefore too “hard”, although work by Wackerle [1962] indicates
that quartz loses all rigidity at pressures above its Hugoniot Elastic Limit (HEL) which
is around 6 GPa.

5.3.4.2 The Hugoniot

The Hugoniot generated for the quartz system is plotted in figure 5.21 along with the
experimentally determined data of Wackerle [1962] and data from Los Alamos Scien-
tific Laboratory (LASL) collated in Marsh [1980]. It is clear that the simulation data
covers a much stronger shock compression region than the experimental data. The
calculated maximum pressure (stress) along the shock direction is greater than that
observed in the strongest shock compression experimental datum. Although the ex-
perimental data have no error bars, similar shock compression experiments performed
by Fowles [1967] are in excellent agreement. Therefore the discrepancy between the
calculated Hugoniot and the experiment is likely due to the probing of the region of
the pair potential that was far from its equilibrium region, and consequently is not a
good description of quartz at such high-pressures. However, there was another possi-
bility; that the infinitely massive momentum mirror was causing the discrepancy. To
investigate this an improved momentum mirror was constructed.
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Figure 5.20: Shock velocity against particle velocity plot for quartz using an infinitely
massive momentum mirror.

5.4 Improvements to the momentum mirror

The results above suggest that the momentum mirror is too hard and unrealistically
compresses the quartz systems. An improvement to this “infinitely massive” momen-
tum mirror to make the compression more realistic was to replace the momentum mir-
ror by a block of the sample to be shocked (in this case, quartz). The block interacts
with the system via the interatomic potential and is analogous to the flyer-plate for the
experimentally created shock waves. Calculations using this momentum mirror shall
be referred to as the flyer-plate simulations.

5.4.1 Considerations using a flyer-plate momentum mirror

As already discussed in section 3.8.1 there are implications to consider when using
the hard momentum mirror. The flyer-plate momentum mirror also requires careful
consideration as there were simulation difficulties to overcome. The main difficulty in
using a block of the same material as the sample was to make sure that the sample did
not destroy the flyer-plate on impact. One way of doing this was to zero any forces and
velocities on the atoms that constituted the flyer-plate, but this had severe problems
with the total energy of the system. The momentum mirror drained the energy of the
incoming atoms and resulted in an unrealistic build-up of atoms at the interface. This
approach also violated the conservation of momentum. A better method was to give the
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Figure 5.21: Hugoniot of quartz along with experimental data of Wackerle [1962] and
Marsh [1980].

flyer-plate atoms a much larger mass than they would normally have. This ensured that
the conservation of momentum was maintained as the flyer-plate would move slightly
on impact with the sample. To ensure the surface of the flyer-plate was representative
of a sample surface, the flyer-plate was geometry optimised in the same way as the
simulation cell.

5.4.2 Flyer-plate simulations

Figure 5.22 shows a 2D slice (taken at x = 0 plane, which is into the paper) schematic of
the flyer-plate momentum mirror (left) and the simulation atoms (right) separated with
a vacuum gap of 10 Å (greater than the cut-off radii) so that the atoms in the flyer-plate
and the simulation atoms were not interacting at the start of the simulation. Periodic
boundary conditions were used throughout and a vacuum region (left of flyer-plate)
was used to ensure no interactions between the simulation atoms and the flyer-plate
atoms.

Figure 5.23 shows the average particle velocity profiles for a piston velocity up=5.74 km/s.
From the figure the shock thickness is estimated to be 10 Å in width and the shock ve-
locity is determined to be 6.44 km/s by considering the distance between the profiles,
which means the shock front is moving 10% faster than the average particle velocity.
Figures 5.24 and 5.25 illustrate the shock wave’s progress as a snapshot during the
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Figure 5.22: Schematic of a flyer-plate momentum mirror technique used for a quartz
shock wave. Image is a 2D slice (taken at x = 0 plane, which is into the paper) of a
3D simulation. The flyer-plate (left) is created from an optimised quartz system. The
simulation atoms (right) are moving towards the flyer-plate. The flyer-plate and the
simulation atoms were separated by a vacuum gap to avoid interactions at the start of
the simulation. Periodic boundary conditions were used throughout.

simulation. Behind the shock front there is clearly little structure, which indicates an
amorphous state. The radial distribution function is plotted in figure 5.26. From the
figure, it is clear that structural information is lost after the first oxygen-oxygen dis-
tance (approximately 2.6 Å). Therefore it was concluded that quartz transforms to an
amorphous state when subjected to a strong shock compression.

Figure 5.23: Average particle velocity profiles for a shock wave in quartz. up =
5.74 km/s.

The Hugoniot for quartz using the flyer-plate momentum mirror is shown in figure
5.27. Much better agreement is observed at lower pressures with the experimental
data, indicating that the new momentum mirror is an improvement over the old mo-
mentum mirror. However, at high-pressure the Hugoniots diverge to very high pres-
sures away from the experimental data. In this region, the pressures caused the atoms
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Figure 5.24: 2D slice of a 3D shock wave simulation taken at x = 0 plane. Snapshot of
3600 atoms of quartz half-way through the simulation. Left of dotted line is the flyer-
plate momentum mirror. To the right of the dotted line the shock wave is propagating
away from the flyer-plate and creating an amorphous region behind the shock front.

Figure 5.25: 2D slice of a 3D shock wave simulation taken at x = 0 plane. Snapshot of
3600 atoms of quartz at maximum compression. Left of dotted line is the flyer-plate.
Right of dotted line it can be seen that there is no discernible structure in the system,
indicating an amorphous state.

to be closer than could be modelled using the BKS potential and the modification for
high-pressures was used almost exclusively. As this potential was a numerical fit to the
BKS potential at the point of inflection and had no precise justification for this form,
this diversion is unsurprising. It was concluded that this extension to the BKS potential
should be re-visited to give a much stronger repulsion.

5.4.3 Stronger repulsive BKS extension

A single calculation using the flyer-plate momentum mirror was performed to see the
effect on the Hugoniot of a BKS potential with a stronger repulsion term for the exten-
sion to high pressures. The form of the fitting term was:

U(r) =
α
r4 +

β
r12 + γ r < r∗ (5.5)

Table 5.4 gives the fitted values of the extension at the point of inflection.

The effect on the Hugoniot can be seen in figure 5.28. The datum point is in much
better agreement with the experimental data, although it is clear that the datum point
still is above the experimental data.
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Figure 5.26: Radial distribution function of quartz system in the shocked state. The
loss of structural information indicates the system is in an amorphous state.

Table 5.4: Numerical values of the fitting parameters used for BKS correction.

α(eV Å2) β (eV Å6) γ(eV )
Si-O 31.422 -15.048 -6.095
O-O 56.943 506.444 -0.810
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Figure 5.27: Hugoniot of shocked quartz using the flyer-plate momentum mirror tech-
nique along with experimental data of Wackerle [1962] and Marsh [1980]. Inset: De-
tailed view of 0 GPa to 40 GPa region.
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Figure 5.28: Hugoniot of shocked quartz using the flyer-plate momentum mirror tech-
nique. Red data highlights use of more repulsive BKS extension. Experimental shock
wave data of Wackerle [1962] and Marsh [1980] is also plotted for comparison.

5.5 Summary

This chapter showed that simulations on quartz using the well-known BKS potential
of van Beest et al. [1990] had issues with low temperature and pressure calculations
due to the equilibrium structure of quartz (for this potential) being β -quartz. With that
knowledge, hydrostatic compression and shock wave simulations were performed on
β -quartz and it was found that under hydrostatic compression, a second-order phase
transformation to α-quartz occurs at 7 GPa. It was also found that the BKS potential
failed (went beyond the point of inflection of the pair part of the potential) at 50 GPa.
An extension to the pair part of the BKS potential was proposed that was used when
the interatomic separation became smaller than at the point of inflection. Any shock
simulation that generated a pressure greater than 50 GPa would result in using the ex-
tension to the BKS potential and therefore would not necessarily provide an accurate
description of high-pressure quartz, but should give an indication of the structure at
that pressure.
The problem with using the current methodology for a periodic system containing
point charges was outlined; that a dipole moment which is created when adding a vac-
uum gap to the shock direction creates an unstable system unsuitable for shock com-
pression. This problem was overcome by using a correction to the three-dimensional

107



Chapter 5 Simulations of quartz

Ewald summation as proposed by Yeh and Berkowitz (EW3DC). The EW3DC was
shown to give the correct long-range limit result for a 3D Ewald summation, and al-
lowed for a stable system to be created in which to perform the shock wave simulations
with less computational effort than that required for a completely 2D Ewald summa-
tion. The momentum mirror used for the Lennard-Jones systems was found to be
too hard for the quartz systems, and resulted in a “fluid-like” response. It is known
that above the HEL quartz does indeed lose all rigidity [Wackerle, 1962], however the
computed Hugoniot was a poor fit to the experimental data and showed much larger
pressures and smaller specific volumes. A new momentum mirror was devised that
behaved similar to the flyer-plate shock wave experiments and was called the flyer-
plate momentum mirror. The simulations involving the flyer-plate showed much better
agreement with the experimental data at low pressures but still diverged at higher pres-
sures. This was due to the extension to the BKS potential that allowed such pressures
to be simulated, as it was the predominant function term of the potential being used at
those pressures. This extension was a numerical fit to the point of inflection using a
polynomial. An exemplar calculation was performed with a much stronger repulsion
and showed a lowering in the calculated pressure which corresponded well with ex-
perimental data. It was concluded that a stronger repulsion polynomial would provide
better agreement with the experimental results. It was found that the structure of the
shocked state was amorphous which agrees with the “fluid like” response of quartz
observed by experimental researchers. With regard to whether α-quartz (or β -quartz)
transforms to stishovite or coesite, the high-pressure polymorphs of quartz, the result
that the shocked state is amorphous does not mean that the transformation does not
take place. Indeed, after the shocked state is released these polymorphs may crys-
tallise out of the amorphous structure. Although the release structures are for future
work, it is important to remember that stishovite was first located in meteorite craters
[Chao et al., 1962; Martini, 1978] and coesite and stishovite are now readily achievable
in high-pressure laboratory experiments [Stishov and Belov, 1962].
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Chapter 6

Re-parameterising the BKS Potential

6.1 Introduction

In this chapter the BKS potential for silicates as proposed by van Beest, Kramer, and
van Santen [1990] which is a well known and used potential is re-parameterised us-
ing ab initio density functional theory data. The BKS potential has some limitations,
such as predicting the wrong phase at zero kelvin and also the equation of state is not
well reproduced. B.W.H. van Beest et al. used Hartree-Fock ab initio calculations and
also experimental data for the original parameterisation. Carre et al. [2008] have re-
parameterised the BKS potential using Car-Parrinello ab initio calculations and fitted
the parameters for the charge, the silicon-oxygen terms, the oxygen-oxygen terms and
also the silicon-silicon terms. The latter was excluded in the original BKS parameteri-
sation as it was implicitly calculated using the functional form of the pair-potential. In
this chapter the BKS parameters are re-evaluated by fitting to Density Functional The-
ory (DFT) calculations (using the GGA functional of Perdew-Burke-Ernzerhof (PBE)
[Perdew et al., 1996]) as the input vector to a non-linear fitting technique using the
Newton method.

6.2 Non-linear fitting technique

A non-linear fitting technique using the Newton method was used to fit the BKS pa-
rameters to the DFT data. The Newton method is outlined as follows:

Consider a dataset as a sum of non-linear basis functions:

y(x) =
M

∑
m=1

fm(x,am) (6.1)

where am is a vector of input values into the function, f (x). We seek to minimise the
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error between the desired values and those that are generated using the above equation.
The chi-squared function is a useful measure of the error:

χ2(a) =
N

∑
n=1

�
yn− y(xn,a)

σn

�2
(6.2)

where σn is a measure of the error in the data that is to be fitted. We require an iterative
search to find the best solution. If we evaluate the gradient of the error with respect to
the input parameters (equation 6.2) and also its second derivative (the Hessian) we get
equations 6.3 and 6.4 respectively.

(∇χ2)k =−2
N

∑
n=1

yn− y(xn,a)
σ2

n

∂y(x,a)
∂ak

(6.3)

Hkl =
∂ 2χ2

∂ak∂al
= 2

N

∑
n=1

1
σ2

n

�
∂y(xn,a)

∂ak

∂y(xn,a)
∂al

− [yn− y(xn,a)]
∂ 2y(xn,a)

∂al∂ak

�
(6.4)

It is customary in non-linear fitting to exclude the second term in the Hessian as it
represents the sum of terms proportional to the residual between the model and the
data and should be small if close to the minimum [Gershenfeld, 1999]. By taking
a step in the direction that the error is decreasing the most rapidly, we can improve
the parameters ak and update the estimate in the error. This is the method of steepest
descent as discussed in section 3.5 and the new values of the fitting parameters are
given by:

anew = aold−λ∇χ2(aold) (6.5)

where λ is the step size. However, if we are close to the minimum we can use Newton’s
method and expand χ2 about a point a0 to second order:

χ2(a) = χ2(a0)+∇χ2(a0) · (a−a0)+
1
2
(a−a0) ·H · (a−a0) (6.6)

which has a gradient:

∇χ2(a) = ∇χ2(a0)+H · (a−a0) (6.7)

The new parameters are then given by iterating:

anew = aold−H−1 ·∇χ2(aold) (6.8)
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where ∇χ2(a) = 0 at the minimum.

6.3 Sensitivity analysis

Prior to force matching with DFT data, the sensitivity of each of the BKS input vari-
ables was determined. Starting from the initial parameters, each parameter was per-
turbed from its value (up to ±10%) and the effect on the pair potential plot was
observed. Figure 6.1 shows that the AOO and ASIO parameters were most robust to
changes in their values as a large change in the “A” parameters resulted in a negligible
effect for the equilibrium values (interatomic distance=2.5 Å and 1.61 Å for O-O and
Si-O bonds, respectively) of the BKS potential. Deviations from the original param-
eterisation only occured at high-pressure, when the interatomic distance is less than
2.5 Å. In contrast, the potential was quite susceptible to changes in the “b” parame-
ters as a change of only ±20% resulted in large deviations from the original potential.
The CO−O parameter was also very robust to large perturbations, more so than the
CSi−O parameter. Overall the analysis showed that a positive increase in the potential
parameters would give the potential a stronger core repulsion and this was useful for
shock wave simulations. However to maintain a physical justification for increasing
the potential values force matching was still performed. It was expected that the force
matching would yield increases in the variables’ values.

6.4 Force matching

The force matching procedure adopted here was fitting (matching) the pair potential
part of the BKS potential to ab initio DFT data. The details are as follows: An α-
quartz system of 243 atoms (3× 3× 3 unit cells) was equilibrated at zero pressure
using the BKS empirical potential with a Berendsen thermostat set to 300 K and then
a further 15 ps using the NVE ensemble. This structure was not geometry optimised,
as that would have resulted in a β -quartz state and our aim was to reparameterise the
BKS pair potential for α-quartz. A single configuration of atoms was taken from the
(NVE) molecular dynamics data to use as the input simulation system for the DFT
calculations. A single MD step was performed using both the LDA functional and
the GGA functional of Perdew-Burke-Ernzerhof (PBE) [Perdew et al., 1996]) at a
cut-off energy of 600 eV and a k-point spacing on 0.04 Å−1. The computed forces
on each atom were used to make an input vector of 729 components for the force
matching procedure (3 force components per atom). The input parameters to the BKS
potential were ASiO, AOO, bSiO, bOO, CSiO, COO and qSi. However the latter was kept
fixed at qSi = −1.2 due to Mulliken population analysis of DFT calculations using
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Figure 6.1: Variation of the pair-potential part of the BKS potential with input
paramters. The dotted line represents the original BKS parameterisation. The “A”
and “C” parameters were most robust to changes in their values whereas the “b” pa-
rameters showed most sensitivity.

CASTEP [Segall et al., 2002] on α-quartz and β -quartz (for both LDA and GGA
functionals) which showed that this was a good value to use. Therefore the Coulombic
forces calculated by Ewald summation would be the same for the empirical and the ab
initio DFT calculations and so the Ewald force was subtracted from the input vector.
Therefore, in essence, the force matching was performed only on the pair-potential
part of the BKS potential.

6.4.1 Previous re-parameterisations

The BKS potential has been re-parameterised recently by Carre et al. [2008] for amor-
phous silica. They used Car-Parrinello molecular dynamics simulations to obtain a
pair-correlation function that they used to match the BKS potential variables using an
iterative Levenberg-Marquardt algorithm. Figure 6.2 shows the form of their pair part
of the BKS potential. The parameters used in the potential of Carre et al., which they
called CHIK, are given in table 6.1. The CHIK potential allowed the charge on the
silicon and oxygen atoms to be used as fitting parameters and one can see that their
final fitted parameters were different from those that were calculated from Mulliken
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population analysis of DFT. They also included a silicon-silicon pair potential that in
the original parameterisation was not required [van Beest et al., 1990]. The CHIK po-
tential gave good agreement for the structural and dynamic properties of amorphous
quartz when compared to experimental values.
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Figure 6.2: Plot of the pair part of the BKS potential using the parameters of Carre
et al. [2008]. Dotted line represents the original BKS parameterisation.

6.4.2 Results of the force fitting

Force matching using the Newton method was performed on both the LDA and GGA
functionals and each converged the value of χ2 per degree of freedom to ∼ 10−5. The
fitted BKS parameters for the functionals are given in table 6.2. The form of the fitted
potentials as compared with the original BKS pair potential is shown in figure 6.3. It
can be seen from the figures that the Si-O term gave a much stronger repulsion at small
distances which is good for shock wave simulations. The parameters were used in a
geometry optimisation of an α-quartz system of 243 atoms and the optimised structure
remained that of α-quartz. The incorrect phase transformation to β -quartz did not take
place. It is interesting to note that these are quite different numerically than those of
the CHIK potential. This was likely due to the exclusion from the fitting of the charges
on the silicon and oxygen and the fitting being performed on high-pressure α-quartz
and not amorphous quartz as was done for the CHIK potential.
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Table 6.1: Fitted parameters for CHIK potential [Carre et al., 2008] used for amor-
phous quartz.

Parameter CHIK Units
qi 1.910418 C

AOO 659.595398 eV
bOO 2.590066 Å−1

COO 26.836679 eVÅ6

ASiO 27029.419922 eV
bSiO 5.158606 Å−1

CSiO 148.099091 eVÅ6

ASiSi 3150.462646 eV
bSiSi 2.851451 Å−1

CSiSi 626.751953 eVÅ6

Table 6.2: BKS pair potential parameters for quartz calculated using the LDA and
GGA functionals

Functional A (eV) b(Å−1) C(eV Å6)
LDA Si-O 11820.1278 5.2835 26.8727

O-O 1787.3151 2.5472 628.1307
GGA Si-O 11746.8622 5.2696 25.0866

O-O 1814.6628 2.5346 645.2397
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Figure 6.3: Plot of BKS pair potential with fitted parameters using LDA functional
(top) and GGA functional (bottom). Original parameters plotted dashed for compar-
ison. The Si-O term is much stronger, whereas the O-O term is softer for the fitted
parameters than the original BKS parameters.
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6.4.3 Hydrostatic compression

The new parameters for the BKS potential were tested for high-pressure behaviour
by performing a series of hydrostatic compression calculations on 243 atom systems
of α-quartz and β -quartz, a 864 atom system of coesite and a 1296 atom system
of stishovite. The fitting parameters chosen were from using the GGA functional.
The resulting pressure against specific volume plot can be seen in figure 6.4 along-
side the original BKS parameterisation and an ab initio DFT calculation using the
GGA functional of Perdew et al. [1996]. The structure of quartz remains that of α-
quartz throughout the pressure range using the re-parameterised BKS potential and the
pressure-volume curve much more closely follows the curve calculated from DFT us-
ing the PBE GGA functional. Although the re-parameterised BKS curve still tends to
overbind much more than the ab initio curve there is a much better agreement at small
pressures and compressions.
Using the re-parameterisation, the geometry optimisation failed to find a stable struc-
ture for the stishovite system. This was surprising as the original BKS parameterisa-
tion was able to optimise the same structure. The failure was put down to a number
of factors such as the higher coordination number of stishovite (6 as opposed to 4
for the other polymorphs of quartz) and the fitting being performed on low pressure
quartz whereas stishovite is a very high pressure polymorph of quartz. In fact, some
researchers believe it to be quite distinct from the rest of the quartz “family”, as it is
regarded as an oxide rather than a silicate due to its structure being identical to other
oxide minerals such as rutile (TiO2) Sinclair and Ringwood [1978]. With the inclusion
of high-pressure configurations of quartz in the fitting process, it is expected that a
stable geometry-optimised structure of stishovite would be found.

6.4.4 Energy-volume curves

Figure 6.5 gives the energy-volume relationship for α-quartz, β -quartz and the high-
pressure polymorphs, coesite and stishovite using both the original and the re-parameterised
BKS potential. The energy-volume relationship between the two phases of quartz at
the equilibrium volume (14 Å3) is almost identical using the original BKS potential
(with β -quartz being slightly lower), whereas the α-quartz energy-volume curve is
quite distinct from the β -quartz curve when using the re-parameterisation. The or-
dering of the coesite and stishovite polymorphs was the same for both parameteri-
sations, however the re-parameterisation slightly favoured the coesite phase (lowest
enthalpy). The β -quartz structure still had the lowest enthalpy for the larger volumes,
away from the equilibrium volume and therefore the re-parameterisation offers no im-
provement over the original parameterisation for those situations, however overall the
re-parameterisation was an improvement over the original.
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Figure 6.4: Hydrostatic compression curves of quartz. Plotted are re-parameterised
BKS potential curve (with GGA functional fit parameters), original BKS parameteri-
sation curve and an ab initio GGA functional of Perdew et al. [1996] DFT curve.

It was concluded that the re-parameterisation was an improvement on the original BKS
potential for the low pressure phases of quartz but not for the high-pressure phases, as
it yielded no improvement (however, it was not worse than the original parameterisa-
tion). This was a favourable result, noting that the fitting procedure was performed
on low pressure α-quartz. Therefore to account for the high-pressure phases further
configurations of high-pressure quartz would be needed in the DFT fitting process.
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Figure 6.5: Energy-volume curves for hydrostatic compression of quartz and poly-
morphs. Top: Simulation using BKS parameters of van Beest et al. Bottom: Simula-
tion using parameters calculated by fitting to DFT data.
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6.4.5 c/a ratio

The c/a ratio for the (GGA functional) re-parameterised BKS potential was computed
and can be seen in figure 6.6. The curve does not have the discontinuity of the original
parameterisation (shown in figure 5.9) as the structure remains α-quartz throughout
the pressure range.

Figure 6.6: c over a ratio of hydrostatic compression of quartz using re-parameterised
BKS potential with GGA functional fit parameters.

6.5 Summary

The well-known BKS potential has a number of shortcomings, such as the incorrect
phase at zero pressure and the equation of state is not well reproduced. In this chapter
the BKS potential was re-parameterised by force-fitting to ab initio density functional
theory data on a low-pressure configuration of α-quartz using both the LDA and GGA
functionals. The new parameters correctly gave α-quartz as the lowest phase for both
functionals. The GGA functional re-parameterisation was then used to perform hydro-
static compression simulations and the pressure-volume curve much closely followed
the ab initio DFT curve using the GGA functional over the original BKS parameter-
isation and did not result in any phase change across the pressure range considered.
When considering the energy-volume curves, the reason for the re-parameterisation
correctly giving α-quartz was apparent, as it had the lowest enthalpy of the two quartz
phases. Calculations on coesite and stishovite were also performed and showed the
same trend as the original parameterisation, although coesite was slightly lower in en-
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thalpy than α-quartz for the re-parameterisation. A stable structure for stishovite could
not be found using the re-parameterisation, however, the fitting was performed on low
pressure α-quartz and so it was concluded that further configurations of high-pressure
quartz were required in the fitting process to correctly describe the high-pressure struc-
tures. The re-parameterisation also allowed for compressions up to 70 GPa to be
achieved, which is also an improvement on the original BKS parameterisation. Un-
fortunately, shock wave compression simulations using this re-parameterised potential
were unable to be performed due to time constraints, however it is recommended that
a Hugoniot is plotted for this re-parameterised potential as work for the future.
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Chapter 7

Future work and conclusions

7.1 Introduction

The purpose of this chapter is to give an outline of future work that has been made
possible from the work in this thesis, and to provide an overall conclusion to the study.

7.2 Future work

7.2.1 Large-scale simulations

Although it has been shown that successful shock wave simulations are possible with
just a few thousand atoms, there are a number of areas that are unable to be inves-
tigated. Large-scale simulations involving many hundred of thousands of atoms are
capable of being simulated on modern supercomputer clusters. These simulations are
desirable as they reveal features not available to the small systems such as atomic dis-
locations as well as crack propagation. The role of crack propagation is unable to
be modelled in the systems studied here, and so large-scale simulations are required.
Multi-thousand atom simulations are best performed (if not exclusively) on supercom-
puting resources. Therefore the focus of future work should be in allowing the current
molecular dynamics code to be optimised for parallelisation to distribute the workload
across the many nodes available. In any parallel computer code, the bottleneck in the
speed of computation is the time it takes to perform the serial parts of the code. The
BFGS algorithm for geometry optimisation is currently both serial and memory inten-
sive which created an upper limit on the size of systems that could be investigated.
Future work should focus on replacing this algorithm with a parallel version that is
essential to allow for large-scale simulations to be performed.

124



Chapter 7 Future work and conclusions

7.2.2 Extension to BKS potential

It has been evident that shock waves in quartz produce pressure in excess of the max-
imum allowable pressure using the functional form of the BKS potential of van Beest
et al. [1990]. Therefore a number of researchers have adopted various schemes to fit a
repulsive potential for these higher pressures. In this thesis a polynomial approach was
discussed that was analytically fitted at the point of inflection. This polynomial is by no
means unique, and future work should investigate the effects this has on high-pressure
quartz and also to investigate higher-order polynomials for the fitting, possible based
on experimental data to provide a physical justification. However, the form of the ex-
tension proposed in equation 5.5 works well for the high-pressure Hugoniot of shock
loaded quartz by comparison to experimental data.

7.2.3 Re-parameterisation of the BKS potential

The extension to the BKS potential at high-pressures could yield good results, however
it is not based on any physical assumptions. Re-parameterising the BKS potential
over a variety of pressures to ab initio density functional theory calculations of quartz
gives the potential a physical basis, albeit within the errors of DFT. The original BKS
potential was first derived using a mixture of Hartree-Fock calculations on a cluster of
silicon dioxide, with experimental results also used in the fit. It is expected that DFT
would perform much better than this approach and the work presented in this thesis
gives this assertion credence. Future work could re-visit the same technique by the
BKS authors but using DFT plus more recent experimental data to create a potential
that mitigates some of the current failings of the original BKS empirical potential.
The functional form of the potential used for force fitting could be also investigated.
Choosing a functional form that has a strong core repulsion (for example a Lennard
Jones type potential) to fit the high-pressure DFT data could yield a potential that
would never fail if the atoms got too close together. Experimental data could also be
used in the fitting procedure to constrain the potential to give realistic responses at
high-pressures.

7.2.4 Shock unloading

This work considered shock loading and analysis of the shocked state. Investigating
the physics involved in shock unloading and the relaxation mechanisms involved would
provide a rich area to explore. One such method of obtaining the state that a system
would be in a long time after the shock wave has passed through is known as a Hugo-
niostat [Maillet et al., 2001]. The Hugoniostat is an equilibrium molecular dynamics
method that uses perturbed equations of motion that obey the Rankine-Hugoniot re-

125



Chapter 7 Future work and conclusions

lations. In this way, the equilibrium MD simulations result in the long-time relaxed
structure after shock compression. A Hugoniostat has been used with some success by
Ravelo et al. [2004] and Barmes et al. [2006] although it has not yet been applied to
materials other than Lennard-Jonesium.

7.3 Conclusions

Experimental shock waves have been studied for many years with great success. These
have given researchers creating computer simulations results to work towards re-creating.
The advantages of computer simulations are manifold: being able to perform experi-
ments on various time scales and over an endless range of materials quickly and cost-
effectively to name but a few. Atomistic simulations can obtain information on the
structure of the material and have been shown to also give good agreement with the
macroscopic properties of materials obtained from experiment. The limiting factor for
an atomistic computer simulation of shock waves lies in the choice of the interatomic
potential. All interatomic potentials have been parameterised on either experimental
data, ab initio data or sometimes a mixture of both. It is unlikely that any potential that
has been designed to work well for equilibrium properties will also work well under
conditions far from equilibrium.
Hydrostatic compression simulations were performed using the interatomic pair po-
tential as parameterised by van Beest et al. [1990], which has been used successfully
to model the equilibrium properties of quartz. This potential when coupled with a
quasi-Newton geometry optimisation technique known as the BFGS algorithm [Broy-
den, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970] was found to give the lowest
stable state of β -quartz. However, it is known that α-quartz is the lowest stable state.
The optimised structure underwent a second-order phase transformation at 8 GPa to
α-quartz. This hydrostatic compression was continued until the BKS potential was
unable to model the system due to the interatomic distances being so small that the
spurious attractive region of the BKS potential was reached. This point was reached
at 50 GPa and therefore it was concluded that any shock wave simulation that reached
pressures beyond this were no longer using the BKS potential but a correction term that
researchers have fitted to the BKS potential. These fits have no physical reasoning and
therefore are not guaranteed to correctly model the high-pressure dynamics of quartz.
The failure of the BKS potential has led some researchers to use alternative potentials
[Tsuneyuki et al., 1988] or to re-parameterise the potential for their particular problem
[Carre et al., 2008]. Re-parameterisation of the pair part of the potential has its merits
as the original potential was parameterised using a mixture of ab initio Hartree-Fock
calculations and experimental data on clusters. Density functional theory calculations
have performed much better than Hartree-Fock and have given accurate descriptions of
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matter, therefore using data from these calculations should result in a much better po-
tential for quartz. This approach was used in this thesis, using the same functional form
for the BKS potential. The resultant parameters for the re-parameterised BKS poten-
tial correctly gave the most stable equilibrium state (T=0, P=0) of quartz as α-quartz,
although it did not perform well for the high-pressure polymorphs. It was concluded
that the re-parameterisation was an improvement over the original BKS potential for
the low pressure polymorphs, but further high-pressure configurations were required
to be used as input configurations for the fitted procedure. This would improve the
performance of the BKS potential for the high-pressure phases. The re-parameterised
potential also allowed pressures up to 70 GPa to be achieved before requiring the use
of an extension to prevent the system becoming infinitely attractive, which gained a
further 20 GPa (+40%) on the original BKS parameterisation.
Shock wave simulation is an exciting and vibrant field with much work ongoing with
experimentation and at the mesoscale. The complete spatial scales have still yet to be
exploited fully, but with the advancement of large-scale computing coupled with mod-
ern computer simulation techniques the gaps between the atomistic and mesoscale,
and the mesoscale and macroscopic will diminish, opening up the possibilities of ex-
plaining on all spatial scales the properties of matter. It is hoped that then shock wave
simulations on ever more complex materials will be achievable.
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Appendix A

The Rayleigh line

The Rayleigh line comes from considering a Hugoniot. It is the straight line that con-
nects the initial state of the material with the final state of the material. The equation for
the Rayleigh line is derived from the Rankine-Hugoniot conservation relations. Here,
u0 is the initial particle velocity, Us is the velocity of the discontinuity (shock front),
up is the piston velocity that creates the discontinuity, V0 and P0 are the initial velocity
and pressure (if initial conditions, we have no external pressure, then P0 = 0).

From the equation of conservation of mass:

V = V0

�
Us− (up−u0)

Us

�
(A.1)

Noting that V0 = 1/ρ0 then

UsV ρ0 = Us− (up−u0) (A.2)

Multiply by ρ0Us

VUs
2ρ0

2 = Us
2ρ0−ρ0Us(up−u0) (A.3)

Using this with the equation of conservation of momentum:

P = P0 +ρ0Us(up−u0) (A.4)

we get:

VUs
2ρ0

2 = Us
2ρ0− (P−P0) (A.5)
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Re-arranging,

P−P0 = Us
2ρ0−VUs

2ρ0
2 (A.6)

= Us
2ρ0

2
�

1
ρ0
−V

�

= Us
2ρ0

2(V0−V ) (A.7)

For Rayleigh Line from equilibrium initial conditions, we have P0 = 0 therefore the
equation becomes:

P = Us
2ρ0

2(V0−V ) (A.8)

Figure A.1 shows a schematic of a Rayleigh line.
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Figure A.1: Schematic of a Rayleigh line.
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Ewald summation method

In this section a detailed description of the Ewald summation method is given. This
method is used to calculate the long-range electrostatic forces in a simulation by sur-
rounding each point charge with a set of “screening” Gaussian charge distributions.
These distributions are then compensated in the simulation by another set of Gaussian
charge distributions. The Ewald method first evaluates the electrostatic contribution
to the potential energy, in Fourier space, due to the background charge then for the
spurious “self” charge - the interaction between the point charge and the compensat-
ing charge distribution and finally, in real-space, the contribution from the screened
charges.

The Ewald summation method makes use of the properties of a Gaussian charge dis-
tribution of the form:

ρG(r) =−qi

�α
π

� 3
2 e−αr2

(B.1)

The energy of a charge distribution is given by solving Poisson’s equation for the
electrostatic potential. It is convenient to solve this in reciprocal space, making use
of the Fourier transformation. Poisson’s equation in CGS notation is:

−∇2φ(r) = 4πρ(r) (B.2)

where the charge density ρ(r), for a collection of point charges is

ρ(r) =
N

∑
i=1

qiδ (r− ri) (B.3)

As the system is periodic, we can use the Fourier series:
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f(r) =
1
V

∞

∑
l=−∞

f̃(k)eik·r (B.4)

where V is the volume of the system, k = (2π/L)l and l = (lx, ly, lz) the lattice vectors
in Fourier space. The Fourier coefficients, f̃ (k) are calculated using:

f̃(k) =
�

V
drf(r)e−ik·r (B.5)

In Fourier space, Poisson’s equation becomes:

−∇2φ(r) =
1
V ∑

k
k2φ̃(k)eir·k (B.6)

and the charge density becomes:

ρ(r) =
1
V ∑

k
ρ̃(k)eir·k (B.7)

Substituting the above into equation B.2 gives the Poisson equation in Fourier space:

k2φ̃(k) = 4πρ̃(k) (B.8)

For a collection of point charges, P each with a charge density given by equation B.3,
we can write:

ρ̃P =
N

∑
i=1

qie−ik·r (B.9)

Substituting in the Green’s function, g̃(k) for a unit charge:

g̃(k) =
4π
k2 (B.10)

we find that the energy of a charge distribution is given simply by multiplying g̃(k)
by ρ̃(k) for all k vectors. The electrostatic potential at a point ri due to a charge
distribution given by a periodic sum of Gaussians is:

ρ(ri) =
N

∑
j=1

∑
n

q j

�α
π

� 3
2 e[−α|r−(r j+nL|2] (B.11)

Fourier transforming this charge density we get:

ρ(k) =
N

∑
i=1

q je−ik·r j e
�
−k2
4α

�

(B.12)
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Using Poisson’s equation, we get

φ(k) =
4π
k2

N

∑
j=1

q je−ik·r j e
�
−k2
4α

�

(B.13)

and by Fourier transformation,

φ(r) =
1
V ∑

k�=0
φ(k)eik·r

= ∑
k�=0

N

∑
j=1

q je−ik·r j e
�
−k2
4α

�

(B.14)

Hence the potential energy due to this charge distribution is given by

U =
1
2

N

∑
i=1

qiφ(ri)

=
1
2 ∑

k �=0

N

∑
j=1

4πq jqi

V k2 e−ik·r j e
�
−k2
4α

�

=
1

2V ∑
k �=0

g̃(k)|ρ(k)|2e
�
−k2
4α

�

(B.15)

This contribution to the potential includes the “spurious” term that comes from the
interaction between the point charge located at the center of the Gaussian charge dis-
tribution and the Gaussian charge distribution itself. Poisson’s equation can again be
used to give:

−∂ 2rφG(r)
∂ r2 = 4πrρG(r) (B.16)

By integration,

rφG(r) =
� r

0

� r

∞
4πrρG(r)dr2

=
� r

0

�
−2πqi

α
π

3
2
� ∞

r
e−αr2

dr
�

dr

= −2qi
α
π

1
2
� r

0
e−αr2

dr (B.17)

= qier f (
√

αr) (B.18)

where er f (x) is the error function. This, computed at the center of the Gaussian charge
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distribution (r = 0) is:

ρG|r=0 = 2qi
α
π

1
2 (B.19)

Therefore the spurious energy contribution is:

Us =
α
π

1
2

N

∑
i=1

qi
2 (B.20)

This term does not depend on particle positions, and therefore provided that the values
of the charges remains constant during a simulation, then this term too remains con-
stant. This term needs to be subtracted from the sum of both the real-space and Fourier
space contributions to the (Coulomb) potential energy.
The final part of the Ewald method requires the computation of the energy associ-
ated with point charges screened by oppositely charged Gaussian charge distributions.
From the result of equation B.17 we can write down the electrostatic energy for this:

φscreened(r) =
qi

r
− qi

r
er f (

√
αr)

=
qi

r
er f c(

√
αr) (B.21)

where er f c(x) is the complementary error function. The contribution to the Coulomb
potential energy is thus:

Uscreened =
1
2

N

∑
i �= j

qiq jer f c(
√

αr)
ri j

(B.22)

Therefore the total electrostatic contribution to the potential energy is:

UCoulomb =
1

2V ∑
k�=0

g̃(k)|ρ(k)|2e
�
−k2
4α

�

− α
π

1
2

N

∑
i=1

qi
2

+
1
2

N

∑
i�= j

qiq jer f c(
√

αr)
ri j

(B.23)
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Methodology for a shock wave
simulation

This appendix gives the steps necessary for a successful shock wave simulation.

Choosing the system

As with all simulations the choice of system will determine the steps.

A simulation cell can be obtained from many different sources, such as the literature,
dedicated databases of structures or even made up from scratch. The most important
thing to remember is the choice of the potential - does it accurately reflect the high-
pressure response of the material? Is it well established or new?

Optimisation

Once a system has been chosen, it is a good idea to test the potential by running a
geometry optimisation on the bulk system. The questions that need answering in this
step are: Did it optimise? i.e. is the structure stable and well behaved? Does it give the
equilibrium properties of the material chosen?

Create a shock wave simulation cell

The shock wave simulation cell has a free surface at the opposite end to where the
momentum mirror will be located (usually chosen to be at maximum z). Therefore a
vacuum gap must be added to the system that is greater in length than the maximum
cut-off range of the potential. Another consideration at this stage is to whether the

135



Appendix C Methodology for a shock wave simulation

system’s atoms have charge. i.e. will there be a long-range electrostatic force in the
system? If so then the Ewald correction scheme of Yeh and Berkowitz must be used
for correcting the long-range forces. This simulation cell should then be geometry
optimised to ensure no residual forces remain in the system. The momentum mirror is
then placed as z=0 and these atoms are to remain fixed into position during the shock
wave simulation.

Shock velocity and the simulation

The system should be ready to perform shock wave simulations. Once a piston velocity
has been chosen, each atom in the system is given this velocity so as to move each atom
towards the momentum mirror. The shock wave simulation can now be performed.
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Shock wave simulations of alpha-quartz
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Abstract

Silicon dioxide is one of the most abundant minerals in the Earth’s con-
tinental crust and is thought to comprise a large part of the Earth’s mantle
where it is at high-pressures and temperatures. There are several high-
pressure phases associated with silicon dioxide and there is still some debate
where the phase boundaries lie. With this in mind, this paper presents the
results of shock compression simulations of alpha-quartz and a comparison
with experimental data.

Introduction

Silicon dioxide, SiO2, is most commonly known as quartz and is the second
most abundant mineral in the Earth’s crust. It is thought to comprise a large
part of the Earth’s mantle where it is at high-pressures of up to 136GPa and
high-temperatures up to 1200K. At room temperature, quartz is naturally
found in the α-quartz phase, where each silicon atom is 4-fold coordinated
with the oxygen atoms. Quartz has a number of high-pressure polymorphs,
with coesite and stishovite the most well-known, the latter being 6-fold co-
ordinated. It is also known that quartz becomes amorphous between 25
to 35 GPa at 300K using static experiments, such as diamond anvil cells
[4]. However, there is still some debate about where the phase boundaries
between the high-pressure polymorphs lie, and to the mechanisms that un-
derlie such phase changes. Computer simulation is a powerful technique
that is now widely used to study many materials. Modern computing power
has allowed for million atom calculations to be performed on the latest su-
percomputers. However, such calculations are still rare and most research
is performed on a smaller scale. Large-scale, empirically determined po-
tentials are still the mainstay of this research as ab-initio calculations are
still too computationally expensive to perform. In our study we have used
atomistic molecular dynamics (MD) applied to the non-equilibrium state
achieved during a shock compression of quartz using a well-known empirical
potential.
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Simulation details

We used non-equilibrium molecular dynamics (NEMD) in the micro-canonical
ensemble (NVE) with 3-D periodic boundary conditions (PBC). The in-
teratomic potential chosen was the so called BKS potential of Van-Beest,
Kramer and Van-Santen [7]:

U(r) =
�

i>j

qαiqβj

rij
−

�

i>j

�

Aαiβjexp(−bαiβjrαiβj)−
Cαiβj

r6
αiβj

�

(1)

where α and β are atomic species, q, is their charges and A, b, and C
are constants derived from fitting to Hartree-Fock ab-initio calculations and
selected empirical measurements. These force-field parameters have been
shown to be reasonably successful in describing the dynamic and structural
properties of quartz and some of its polymorphs [9, 6]. We used cut-off
radii of 2.0 Å and 6.0 Å for the silicon-oxygen bonds and oxygen-oxygen
bonds, respectively. The long-range Coulomb forces were calculated by
Ewald summation and the pairwise forces only operated over oxygen-oxygen
and silicon-oxygen bonds. The BKS potential has an unphysical maxima in
the pair-potential at small bond lengths, corresponding to high-compressions
that can occur during shock simulations. Several methods have already been
employed to correct for this behaviour: Barmes et al [1] have used a 2nd
order polynomial, whereas Guissani and Guillot [3] have added a Lennard-
Jones type potential to the BKS. We chose a form similar to the latter
method, and have replaced the pair potential part of the BKS potential at
small bond lengths with the following polynomial form:

U(r) =
Dαiβj

r2
αiβj

+
Eαiβj

r6
αiβj

+ Fαiβj (2)

where D, E and F are calculated analytically to match the BKS pair poten-
tial and derivatives at its point of inflection. Table 1 gives numerical values
of these parameters and figure 1 shows the form of the potential.

Table 1: Numerical values of the parameters used for correcting the BKS pair potential
at small bond lengths

αβ Dαβ(eV Å2) Eαβ(eV Å6) Fαβ(eV )

Si-O 24.1700 23.8086 -3.5872

O-O 12.3435 18.9662 -6.9426
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Figure 1: Plot of the interatomic potential used in this work. Dashed lines show the
unphysical behaviour of the original BKS potential at small interatomic distances.

Periodic boundary conditions (PBC) in all directions were used through-
out, and a shock wave was created in the system by using the so-called
momentum mirror technique [5]. The mirror was located at z=0. All atoms
in the system were given a ”piston velocity” of −Up towards the momentum
mirror. A shock wave thus propagated in the positive z direction at velocity
Us. Our systems incorporated a vacuum gap in the z-direction which was
created to be larger than the cut-off radii to ensure that the potential was
not acting on atoms through the momentum mirror. This initially creates
a large dipole moment in the system that needed to be removed in order
to get a stable system. Our system is essentially periodic in 2-D and finite
in the shock direction. In order to overcome this problem we adopted a
correction to the 3-D Ewald summation technique as proposed by Yeh and
Berkowitz [11]. They showed that their correction to 3-D is much more com-
putationally efficient than using a 2-D Ewald summation technique. Figure
2 shows how the 3-D corrected Ewald summation gives the long-range limit
convergence of the 3-D Ewald summation technique. Thus it is clear that
a small vacuum gap will give the same answers as that of the infinite limit,
i.e. a non-periodic in the z-direction system.

Their energy correction, J(M,P) is shape dependent and depends on the
Ewald summation geometry, P. M is the total dipole moment and is given
by:

M =
N�

i=1

qiri (3)

Our system had the geometry of a rectangular plate (P=R) and our
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Figure 2: How the energies of Ewald 3-D with correction for 2-D systems gives the same
value as the long-range limit of the 3-D Ewald summation technique.

energy correction term is given by

J(M, R) =
2π

V
M

2
z (4)

A correction is also applied to the force calculation, which is obtained
by differentiation of the energy term. The system was geometry optimised
using a BFGS technique to ensure a stable system prior to shock wave sim-
ulation. This optimisation removed the dipole moment of the system by
rotating the surface layers whilst leaving the main bulk of the system unal-
tered. Figure 3 shows the radial distribution function (RDF) of the system
prior to shock wave simulation initiation. The structure is that of α-quartz.

The system studied contained 486 atoms of α-quartz (3 × 3 × 6 unit
cells). The system was equilibrated to 300K using a Berendsen thermostat
then further equilibrated for 2 ps using standard NVE dynamics before the
shock wave was initiated. The shock wave simulations ran until the system
reached the shocked state which typically took up to 2 ps.

Results

The resulting Pressure-Volume Hugoniot for the shock compression calcula-
tions are shown along with experimental data from Wackerle [10] in figure
4.

It can be seen that the Hugoniot lies lower than the experimental data,
indicating a softer response than expected. One possible reason for the softer
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Figure 3: Radial Distribution Function of α-quartz prior to shock compression
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Figure 4: P-V Hugoniot of α-quartz. Experimental data from Wackerle [10]
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response is that the momentum mirror used was that of a perfectly reflecting,
infinite mass and zero temperature piston. This is not realistic and may be
the reason for the larger compressions for lower pressures we observe in figure
4. We shall test this assumption in the future by creating a softer momentum
mirror replacing the piston with a few unit cells of α-quartz to act as the
momentum mirror [2]. This method will have the advantage of creating a
piston that interacts with the system via the interatomic potential. Figure 5
shows the piston, Up and shock, Us velocity Hugoniot. As can be seen from
the figure, our piston and corresponding shock velocities are very large. This
is similar to that of a meteorite impact. Meteorites have a mean impact
velocity of between 17 -20 km/s but can be as low as 10 km/s [8]. A near
linear dependance can be seen, with the deviation from linear probably a
result of finite size effects.
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Figure 5: Up-Us Hugoniot of α-quartz

We found that at maximum shock compression, the system was in an
amorphous state as can be seen from the RDF in figure 6. This was gener-
ated from a shock wave that was initiated by a 3 km/s piston velocity, that
corresponds to half the speed of sound in α-quartz.

Conclusion

We have performed atomistic MD shock compression simulations on α-
quartz with the aim determining into which high-pressure phase the system
transforms. We chose the so-called BKS interatomic potential. In order to
avoid complications with the unphysical maxima of the BKS potential we
created a polynomial expression with an analytically determined fit to the
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Figure 6: Radial Distribution Function of α-quartz at maximum shock compression
using a 3 km/s piston velocity

BKS potential’s point of inflection and its derivatives. Our analysis of the
radial distribution functions showed that the shock compression transforms
α-quartz into an amorphous phase. This was using a piston velocity of 3
km/s, corresponding to only half the sound velocity of bulk α-quartz. We
found that in order to create a realistic simulation using the standard MD
technique of PBC, a vacuum gap larger than the cut-off radii of the inter-
atomic potential should be used to removed any spurious interactions be-
tween atoms either side of the momentum mirror. This vacuum gap means
that charged systems require a correction to the long-range energies and
forces to maintain equilibrium. In this study, we adopted the Ewald sum-
mation correction for 3-D systems as proposed by Yeh and Berkowitz due
to its computational efficiency over a 2-D Ewald summation. We found that
this correction gave a successful geometry optimisation prior to the shock
compression calculations without changing the structure of the system.

Finally, we found that the although momentum mirror implementation
(that of an infinitely massive piston) tended to underestimate the Hugoniot,
a reasonable agreement was evident. Possible reasons for this underestima-
tion could be the momentum mirror was too hard. We plan to test this
in the future by replacing the mirror with unit cells of the material to be
shocked. This would lead to interaction with the material and the piston via
the empirical potential. Another possible reason for the underestimation of
the Hugoniot is that of finite size effects. We will test this in the future by
using a much larger simulation cell.
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