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Abstract

Liquid water exhibits a well-known maximum of density at 4◦C and 1 atm pressure.

The temperature at which this density maximum occurs is known to increase when

hydrogen in the water molecule is replaced with a heavier isotope; such an isotope

with a reduced degree of nuclear quantum delocalisation causes water to behave

less like a simple liquid.

The structure of water close to the density maximum has been studied by computer

simulation, using the technique of path integral molecular dynamics. It was found

that the magnitude of quantum spreading seen in the liquid is in good agreement

with theoretical calculations for a proton or deuteron in a harmonic potential with

respect to hydrogen bond bending, and is essentially unaffected by changes in tem-

perature and density over the range considered here.

First and second neighbour characteristics were analysed in relation to hydrogen

bond bending and first neighbour orientational characteristics. Quantum versus

classical simulation demonstrated destructuring effects in the quantum fluid con-

sistent with an increase in temperature over the classical counterpart. When the

quantum simulation of heavy water was compared to that of light water, a stronger

intermolecular bonding network was found to exist. Second nearest neighbour

molecules at a reduced radial distance would seem to be surrounded by regions

with a higher degree of local structure. Building on previous ideas concerning the

mechanism by which the density maximum occurs, it is therefore proposed that the

inflated density seen in heavy water compared with light water at its density max-

imum is the result of a cooperation between a greater level of tetrahedrality in the

liquid structure and a greater degree of saturation of that structure with molecular

interstitials.
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“Lead me, O Lord . . . make thy way plain before my face.”

Psalms 5:8

To the glory of God.
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My life is but a weaving

Between my Lord and me,

I cannot chose the colours

He worketh steadily.

Oft times he weaveth sorrow,

And I in foolish pride

Forget he sees the upper

And I, the underside.

Not till the loom is silent

And the shuttle cease to fly

Shall God unroll the canvas

And explain the reason why.

The dark threads are as needful

In the Weaver’s skillful hand

As the threads of gold and silver

In the pattern He has planned.

Author unknown
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Chapter 1

Introduction

1.1 Water

Water is the only substance which occurs naturally as a solid, liquid and vapour

(Franks, 1983). It is essential for life; our own bodies are ∼ 65–70% water (Franks,

1972). We drink it, and we wash in it as indicated by Figure 1.1.

Yet despite the apparent simplicity of the water molecule, water in the liquid phase

has many anomalous properties, as we shall see in Chapter 2. A snapshot of liquid

water from the present calculations is shown in Figure 1.2.

Among the liquid anomalies sits the famous density maximum at 4◦C below which

water begins to expand on cooling, contrary to simple liquid behaviour. If it were

not for the preference of water to expand as it cools — and hence freeze from the

top downwards — life on Earth would not have survived the first winter.

Scientific consensus states that the anomalous properties are a consequence of hy-

drogen bonding; the desirable formation of hydrogen bonds counteracts an arrange-

ment into a more close-packed structure. Further, the literature highlights the im-

portance of the second nearest neighbour configuration, which therefore plays a key

part in the analysis presented here.

1.2 Motivation

As we shall see in Chapter 2, the temperature at which the density maximum occurs

— or the temperature of maximum density (TMD) — is strongly influenced by the

isotope of hydrogen which in part forms the water molecule. We shall go on to see

24
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Figure 1.1: Distribution of washing techniques amongst people in the author’s class
at Austwick Primary School (1988/89).

Figure 1.2: Snapshot of liquid water from the present work. Oxygen atoms are
shown as red, and hydrogen as white.
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that the TMD in heavy water is higher than that seen in light water. In other words,

when a heavier isotope of hydrogen is included in the water molecule, the TMD

is shifted upwards; the expected reduction in quantum effects owing to the heavier

deuterium atoms results in water behaving less like a simple liquid!

It is the purpose of this thesis to study the role which the quantum mechanical

nature of atomic nuclei has to play with regard to the local structure of water close

to the density maximum. Comparisons are made between a classical and a quantum

model for water, and the change in quantum behaviour is studied under isotopic

substitution.

1.3 Molecular dynamics

Though molecular dynamics simulation is dependent upon our theoretical knowl-

edge of atomic interactions, it is inexpensive in comparison with experiment and

affords direct access to a microscopic view of structural behaviour; structure func-

tions, for example, are easy to calculate.

Water was simulated here using both classical and path integral molecular dynam-

ics. As we shall see in later chapters, the former yields access to ensemble averages

for a classical system through time averages. Path integral molecular dynamics

builds upon this and allows access to quantum ensemble averages by averaging

over both real and imaginary time.

Since nuclear quantum properties are of interest here, an explicit account of elec-

tronic quantum behaviour was sacrificed so as to facilitate simulation with a suffi-

ciently large number of molecules; indeed, a suitable number is required to build

structure functions, and path integral molecular dynamics makes heavy computa-

tional demands.

1.3.1 The MUDPIES code

The molecular dynamics calculations for the present work were performed using the

computer program MUDPIES, written by the author. The program name is a tenu-

ous acronym of MolecUlar Dynamics using Path Integrals for Empirical Systems.

Later chapters describe elements of theory from which it is built. For now, however,

MUDPIES is a parallel code written in Fortran90 with message passing. It boasts

a dual communicator topology, allowing parallelism to work for both accuracy and

speed.
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1.4 Outline of thesis

A summary of the the current understanding of water, with particular reference to

the density maximum is given in Chapter 2. Chapters 3 to 5 concern the ideas

behind molecular dynamics, the description of intermolecular interactions and the

incorporation of nuclear quantum effects into the framework of molecular dynam-

ics. Chapters 6 and 7 present an analysis of the raw degree of quantum spreading,

and structural consequences of the same. Chapter 8 draws the thesis to a conclusion.

While Chapter 5 sets out the conceptual foundation of path integrals, a derivation

of the path integral starting from Schrödinger’s equation is left to Appendix A.



Chapter 2

Water

2.1 Introduction

In this chapter we shall meander through current understanding as regards the be-

havioural anomalies observed in liquid water, from both microscopic and ther-

modyamic perspectives.

Sections 2.2 and 2.2 describe the water monomer and dimer. Anomalous behaviour

of the liquid is outlined in Section 2.4. The structure of solid water — ice — is

touched upon in Section 2.5. Section 2.6 discusses the nearest neighbour character-

istics of the liquid, and Section 2.7 considers hydrogen bonding. Section 2.8 looks

at properties of water in terms of macroscopic quantities. The nature of quantum

fluctuations in the liquid is considered in Section 2.9, and Section 2.10 brings the

chapter to a close.

2.2 The water molecule

Before we look at water in condensed phases, we first consider the isolated water

molecule.

Working with orbitals of the hydrogen atom, we note that hydrogen in its ground

state has the electronic configuration 1s and oxygen has the configuration 1s22s22p4.

Oxygen therefore has two electron vacancies in its outer shell. Hydrogen atoms in

the water molecule can be understood to form covalent bonds with the oxygen atom,

with the hydrogen and oxygen atoms acting as an electron donor and acceptor re-

spectively. The model thus far would predict a value of 90◦ for the H-O-H bond

28
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Figure 2.1: Hydrogen atoms in a water molecule bonding with the p-orbitals of an
oxygen atom. If this was a complete description of O-H bonding within the water
molecule, the bond angle would be 90◦. Redrawn from Coulson (1961).

angle. So how can we account for the experimental value of 104◦? Coulson (1961)

has summarised the main reasons:

1. The hydrogen atoms in the water carry a net positive charge and hence repel.

Heath and Linnett (1948) determined that this accounts for a widening of the

H-O-H angle of up to 90◦.

2. The electrons brought to the molecule by the hydrogen atoms mean that there

is now an extra electron in both the x and y directions — bond repulsion may

be considered to contribute towards the widened bond angle.

3. 2s2 electrons from the oxygen atom form hydrid orbitals with the 2p4 orbitals.

4. Configurational interaction, which relates to quantum correlation effects.

Coulson covers s-p hybridisation in a little more depth. Constructing linear combi-

nations of orbitals using λ and µ as “mixing parameters”:

|ψi〉 = |s〉 + λ |pi〉 (2.1a)

|ψj〉 = |s〉 + µ |pj〉 (2.1b)

which will be orthogonal if

〈ψi |ψj〉 = 〈s + λpi |s+ µpj〉 = 0 (2.2)
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Figure 2.2: Resultant geometry from hybridisation of s and p-orbitals. Redrawn
from Coulson (1961).

Type of Pure s Digonal sp Trigonal sp2 Tetrahedral sp3 Pure p
hybridisation

Example Acetylene Ethylene Methane
Value of λ 0 1

√
2

√
3

Valence angle 180◦ 120◦ 109.47◦ 90◦

Table 2.1: Some values of λ for which the orthogonality condition in Equation 2.5
is met. (Coulson, 1961).

Expanding the bra-ket in Equation 2.2:

〈ψi |ψj〉 = 〈s |s〉 + µ 〈s |pj〉 + λ 〈pi |s〉 + λµ 〈pi |pj〉 (2.3)

which reduces to

〈ψi |ψj〉 = 〈s |s〉 + λµ cos θij 〈pi |pi〉
= 1 + λµ cos θij (2.4)

and if the hybrids are equivalent, then we are left with the condition that

1 + λ2 cos θij = 0 (2.5)

So we may choose any combination of λ and θij such that λ2 cos θij = −1. Some

values of λ for which this condition is met are given in Table 2.1. We see that

for λ =
√

3, we recover the tetrahedral angle of 109.47◦ — which is closer to the

experimental value than that predicted by bonding only through p-orbitals.
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Bond Energy / KJ mol−1 Energy / eV per molecule
Intramolecular OH 492 a 5.10
Intermolecular HO 23.3 b 0.242

a Ruscic et al. (2002)
b Suresh and Naik (2000)

Table 2.2: Intramolecular and intermolecular dissociation energies.

2.3 The water dimer

The water dimer is the simplest possible example of bound water molecules. We

shall take some time here to discuss the configuration of the dimer, and the mecha-

nism by which the molecules are bound.

2.3.1 Hydrogen bonding

Hydrogen bonding was first proposed as the mechanism for the binding of water

molecules by Latimer and Rodebush (1920). A hydrogen bond is formed when

a hydrogen atom lies between two highly electronegative atoms, such as oxygen

atoms. Martí et al. (1996) have given a set of geometrical criteria under which two

water molecules may be said to be hydrogen bonded:

1. The distance ROO between the oxygen of both molecules is smaller than

Rc
OO = 3.6 Å.

2. The distance ROH between the oxygen of the acceptor molecule and the hy-

drogen of the donor is less than a given Rc
OH, where Rc

OH is the distance of

the first minimum of the radial distribution function1 gOH(r), and is generally

taken as 2.4 Å.

3. The bond bending angle θbend between the O-O direction and the molecular

O-H direction of the donor is less than some fixed value, such as θc
bend = 30◦.

Table 2.2 gives the dissociation energies of intramolecular OH bonds and also that

of two hydrogen bonded water molecules. Note that the energy associated with the

forming of the hydrogen bond is just 5% of that of the intramolecular OH bond —

a hydrogen bond is comparatively weak.

1Radial distribution functions are introduced in Chapter 3.
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Figure 2.3: Configuration of the water dimer. The hydrogen atoms of the left and
rightmost molecules lie on the axes parallel and normal to the plane of the paper
respectively.

2.3.2 Configuration

The water dimer occurs naturally in the vapour phase, and its configuration has

been studied experimentally by Dyke et al. (1977) and Odutola and Dyke (1980).

A graphical illustration is given in Figure 2.3.

2.4 Anomalous behaviour

Key anomalies of liquid water have been summarised by Cho et al. (1997), and we

shall consider them together with explanations here.

2.4.1 The density maximum

Perhaps the most famous manifestation of the anomalous behaviour of liquid water

is that of the density maximum. Below a temperature of 4◦C — at atmospheric

pressure — the density of the liquid begins to decrease on cooling, in contrast with

simple liquid behaviour; the density profile is shown in Figure 2.4. Insight into

this phenomenon has come from both experiment (Bosio et al., 1983) and computer

simulation (Sciortino et al., 1990; Jedlovszky et al., 2000; Jedlovszky and Vallauri,

2001; Sciortino et al., 1991).

Further, there exists a discontinuity in the density profile upon freezing. The densi-

ties of the liquid and the solid at the freezing point are given in Table 2.3.
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Figure 2.4: Density profile of liquid water as a function of temperature at atmo-
spheric pressure. Data taken from Kell (1967).

Density / Mgm−3

Ice 0.91668 a

Water 0.999840 b

a Ginnings and Corruccini (1947)
b Kell (1967)

Table 2.3: Densities of ice and water the freezing point.

,.-&/01-&/

2�3�4�56387
9�:�;�7�3=<?>A@

B CD
EF
GD
H C I
JK L
MN
O P
QRS

T U P
V H
GD
H C I
JK L
MN
O P
QRS

W#X Y�Z

W#X Y#[

W#X Y!\

W#X Y�W[#Y#Y\#]�Y\�Y#YW&]�YW^Y#Y]�YY

Y�X _�Z

Y�X _#[

Y�X _!\

Y�X _�W

Figure 2.5: Density profile of solid H2O and D2O as a function of temperature at
atmospheric pressure. Densities were calculated using the lattice parameter data of
Röttger et al. (1994).
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2.4.2 Other anomalies

Pressure effect

In contrast with more familiar logic, high pressures inhibit the freezing action of

water, and the melting temperature is made lower. The water now has to push back

harder against the applied pressure in order to form the stiffer, less dense structure.

Temperature dependent vibrations

The frequency of intermolecular modes decreases with increasing temperature. As

the hydrogen bonds are weakened and the more dense structure forms, molecules

find themselves in more shallow and flat potential minima.

Viscosity anomaly

High external pressure inhibits the water from forming the stronger, less dense struc-

ture — the pressure holds the water in the dense and much more loose structure.

Therefore, rather than pressure increasing the viscosity as is the case in simple liq-

uids, it is lowered.

Heat capacity anomaly

The energetically desirable dense structure is strong — it takes a lot of thermal

energy to break bonds. The heat capacity below the density maximum is therefore

seen to be surprisingly high.

Non-Arrhenius behaviour

According to the Arrhenius equation, the diffusion coefficient

D =
1

6N

d

dt

〈

N
∑

i=1

(ri(t) − ri(0))2

〉

(2.6)

may be expressed as (Einsenberg and Kauzmann, 1969)

D = A exp

(

−EA

RT

)

(2.7)
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where A is a constant. Here the diffusion coefficient is related to barrier heights in

the system, with the exponential term expressing a probability that the barrier would

be overcome. The formation of the hydrogen bond network has a significant effect

on barrier heights, inducing a departure from Arrhenius behaviour.

Isotopic substitution

It is this anomaly which will be most relevant to us. Heavy water shows a tem-

perature of maximum density (TMD) at about 11◦C, which is higher than the ob-

served value of about 4◦C in light water. If the density maximum were to be in part

stimulated by increasing nuclear quantum delocalisation, one might expect that the

reduced quantum nature of the deuteron as compared with the lighter hydrogen nu-

cleus would delay the onset of anomalous behaviour as the temperature is lowered.

The reverse is true.

2.5 Ice

Before we go on to consider the structure of the liquid, we shall first look at the

structure of solid water — ice. Figure 2.6 shows the structure of ice Ih, or “ordi-

nary” ice. We see that the ice adopts a tetrahedral arrangement, with each molecule

hydrogen bonded to four nearest neighbours.

Pauling (1935) put forward four assumptions about ice, which we shall quote here:

1. In ice each oxygen atom has two hydrogen atoms attached to it at

distances of about 0.95 Å, forming a water molecule.

2. Each water molecular is oriented so that its two hydrogen atoms

are directed approximately toward two of the four oxygen atoms

which surround it tetrahedrally, forming hydrogen bonds.

3. The orientations of adjacent water molecules are such that only

one hydrogen atom lies approximately along each oxygen-oxygen

axis.

4. Under ordinary conditions the interaction of non-adjacent molecules

is not such as to appreciable stablize any one of the many config-

urations satisfying the preceding conditions with reference to the

others.
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Figure 2.6: Structure of ice Ih. The grey and white balls represent oxygen and
hydrogen atoms respectively. Taken from Isaacs et al. (2000).

Pauling was able to give credibility to these assumptions by obtaining a theoretical

value for the entropy of ice which was in good agreement with the experimental

value. The first and third of these assumptions have become known as the “ice

rules” (Petrenko and Whitworth, 1999).

We note here that in ice, the nearest neighbour oxygen–oxygen separation ROO is

reduced from 2.976 Å in the dimer to about 2.8 Å (Xantheas and Dunning, 1993).

Ding et al. (1987) used a Density Functional Theory2 (DFT) scheme which pre-

dicted correctly that water freezes to the hexagonal lattice of Figure 2.6; further, the

observed density in the computer model was found to be 10% lower than that of liq-

uid water, which they comment as being in good agreement with the experimental

value of 8.3%.

2.6 Neighbour characteristics

Now that we have an awareness of the structure of ice Ih, we shall go on to compare

its nearest neighbour characteristics with those in the liquid.

2Density Functional Theory is described briefly in Chapter 4.
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Coordination number
Close packing 12
Liquid sodium 10

Water 4

Table 2.4: Number of particles present in the first coordination shell for a few dif-
ferent systems. Water clearly may not be represented by a close packed system of
spheres — the coordination number is radically different to that for such a system.
Data quoted in Morgan and Warren (1938).

Radius of first peak / Å
Ice Ih 2.76

Water at 1.5◦C 2.90
Water at 83◦C 3.05

Table 2.5: Location of the first peak of the RDF in both water and ice. Data quoted
in Morgan and Warren (1938).

We find an indication of the similarities of the structure of solid and liquid water by

comparison of the coordination numbers; that is, the number of molecules appearing

in the first nearest neighbour peak of the radial distribution function3 (RDF). In a

face-centered cubic (FCC) lattice where we see close packed spheres, any atom has

12 nearest neighbours. Morgan and Warren (1938) note that sodium forms an FCC

lattice in its solid phase, and as such we would expect the number of first nearest

neighbours in the liquid phase to be slightly less than 12; indeed, liquid sodium has

a coordination number of 10. Table 2.4 compares the number of nearest neighbours

present in sodium with that in water. The fact that the coordination number in liquid

water is so very much smaller than that in sodium indicates that the liquid is not at

all close-packed; indeed, the coordination number in the liquid is approximately

that of ice Ih. The above provides evidence pointing to the imposing presence of

the tetrahedral hydrogen-bonded ice-like structure in the liquid phase.

Narten et al. (1967) measured the radial distribution function in H2O at various

different temperatures. The location of the peaks and troughs are centered roughly

around those neighbour distances seen in ice I, but smeared out. However, a smeared

radial distribution for ice does not account for the RDF seen for liquid water. Prins

and Petersen (1936) applied an error function to the crystal RDF; it failed to account

for 3.4 nearest neighbours seen at a radius of about 3.6 Å.

If ice were a perfectly tetrahedral structure, we may calculate the expected distance

of the second coordination shell given our knowledge of the first nearest neighbour

3See Chapter 3.
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Temp ◦C 1.5 13 30 62 83
Number 4.4 4.4 4.6 4.9 4.9

Table 2.6: Number of nearest neighbour molecules present in the first coordination
shell in liquid water for a range of different temperatures. The liquid has approx-
imately the four-fold coordination as seen in ice Ih. Data quoted in Morgan and
Warren (1938).

distance:

r = 2.76 ×
(

8

3

)
1

2

= 4.51 Å (2.8)

Note that this calculated second nearest neighbour distance agrees not only with the

location of the second peak in the RDF for ice Ih, but it also lends further support

approximately tetrahedral structures appearing in liquid water; the peak at about

4.5 Å is also seen there. This has lended support to the picture in which water

is composed of a distorted hydrogen bond network. This notion is supported by

the work of Tanaka (2001), who notes that strong vibrational peaks are observed

in the liquid at the same positions as those in ice Ih; further, the peaks are better

defined for four-fold hydrogen bonding over those due to molecules forming fewer

H-bonds. Moreover, the ab initio computer simulations of Sato and Fumio (1999)

indicate that “water largely retains the short range structure which is characteristic

to ice . . . in the normal density”.

Table 2.6 gives the number of molecules in the first coordination shell at a range

of different temperatures. We see here the increasing distortion of the four-fold

structure with increasing temperature; in contrast with sodium, however, the num-

ber of nearest neighbours increases with temperature. As we shall see, this may

be viewed as the increased close-packing of molecules collapsing from the second

nearest neighbour shell.

As Bernal and Fowler (1933) point out, simply stating four-fold coordination is not

enough to fix the structure of water. They describe various four-fold coordinated

structures present in the liquid as presented in Table 2.7. Bernal and Fowler go on

to highlight the similarities and differences between first and second nearest neigh-

bour distances of the tridymite-like and quartz-like structures, which are given in

Table 2.8; although the first nearest neighbour distance remains the same in both

structures, the inward movement of the second nearest neighbour peak would ac-

count for a 17% decrease in volume. Note that it is not the first nearest neighbour

separation which differs in the two structures, but rather the second nearest neigh-
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Type Description Dominance
Water I Tridymite-ice-like Corresponds to ordinary ice.

Present to some degree
at temperatures below 4◦C.

Water II Quartz-like Predominant at ordinary temperatures.
Water III Ammonia-like Predominant at high temperatures but

some distance below the critical point at 374◦C.

Table 2.7: Different types of four-fold coordinated structures present in liquid water,
as given by Bernal and Fowler (1933).

First NN distance / Å Second NN distance / Å
Tridymite-ice-like 2.8 4.5

Quartz-like 2.8 4.2

Table 2.8: Nearest neighbour distances in different four-fold crystal structures
present in liquid water, as quoted in Bernal and Fowler (1933).

bour separation. Indeed, the first nearest neighbour oxygen-oxygen separation is

the same in all forms of liquid water and ice (Bosio et al., 1983; Einsenberg and

Kauzmann, 1969).

An inward collapse of the second nearest neighbour distance has been seen by ex-

periment, yet by a larger degree than that predicted by the above changing-structure

scenario painted by Bernal and Fowler. Bosio et al. (1983) found that under the

action of hydrogen bond bending, second nearest neighbour O–O distances at 4.5 Å

collapse inward to a distance of 3.4 Å in heavy water; as temperature is increased,

the structure collapses to one which is more dense and less stable.

In the light of computational studies, Sciortino et al. (1990) suggested that these

interstitial second nearest neighbours may form bifurcated bonds with the central

molecule. That is to say, the interstitial molecules may jointly hydrogen bond to

an arm of the central molecule; the authors note that the mean energies of a single

bond and a bifurcated bond are roughly the same. It is possible, then, for a water

molecule to be “five-or-more bonded”.

This notion of a second neighbour collapse has been borne out by the computer

simulations of Jedlovszky et al. (2000); Jedlovszky and Vallauri (2001) who, on

analysing isochoric water on each side of the density maximum, found that heating

the liquid reduced the number of 4-bonded molecules; the proportion of molecules

having 1–3 and 5–6 hydrogen bonded nearest neighbours increased — this is shown

in Figure 2.7. The density maximum, then, is thought to be the result of a compe-

tition between the effects of H-bond network breakdown — which acts to increase



Chapter 2. Water 40

Figure 2.7: Isochoric differential of the fraction of molecules f(i) having exactly
i bonded neighbours. The separation between the two temperatures ∆T = 20 K,
one state point on each side of the density maximum. Taken from Jedlovszky et al.
(2000).

the density — and common thermal expansion; the density maximum marks the

watershed.

Cho et al. (1996a) were able to construct an explanation of the density maximum

which hinged on a double well potential relating to second nearest neighbour in-

teractions, as illustrated in Figure 2.8. The outer, deeper well corresponded to the

more distant O-O separation at 4.5 Å characteristic of ice; upon heating, second

neighbours may hop into the inner well — thus increasing the density. They went

on to investigate computationally a potential which had a minimum designed to ex-

ist at an O-O separation of 3.4 Å, and successfully reproduced water-like anomalous

behaviour (Cho et al., 1997).

2.7 Hydrogen bonding

So far we have a picture of water containing molecules with several degrees of

hydrogen bonding. The anomalous density behaviour is thought to be induced by

the formation of approximately linear hydrogen bonds which require a more open

tetrahedral-like structure. Indeed, relationships between translational and tetrahe-

dral order have been found in simulated water by Errington and Debenedetti (2001),

revealing a strong correlation between the order parameters for each. Further, dif-

fusive and thermodynamic anomalous behaviour was found to be contained within

an envelope of structural anomaly.
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V (r)

r

Figure 2.8: Double well potential relevant to second nearest neighbour interactions.
Cho et al. (1996a) have proposed such a double well to explain the density anomaly.

2.7.1 Hydrogen bond formation

Models have been investigated which focus on the degree of connectivity; that is,

purely on number of hydrogen bonds formed (Némethy and Scheraga, 1962; Stanley

and Teixeira, 1980; Khan, 2000; Borick and Debenedetti, 1993; Truskett and Dill,

2002). Recently, Tanaka (1998b) obtained an excellent description of the density

maximum using a potential of the form:

V (r,Ω) = V (r) + ∆V (r,Ω) (2.9)

where Ω describes molecular orientation. The first term in Equation 2.9 depends

upon the density, and the second on the orientational configuration of molecules. In

the model, neither of the two potential terms alone describe the density maximum;

rather it is the competition of the two which shows the desired result. Tanaka goes

on to make the assertion that

“the anomaly of ρ, κT and CP is primarily due to neither thermody-

namic singularity4 nor cooperativity of hydrogen bonding5, but due to

the coupling between density and bond order parameters”.

Sastry et al. (1993) note that orientational entropy competes against the formation

of linear hydrogen bonds, which are energetically more favourable; even in regions

4Thermodynamic characteristics of water are explored in Section 2.8.
5Cooperativity is discussed in Subsection 2.7.3.
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Figure 2.9: Illustration of lengths and bending angle in a water-water hydrogen
bond; values are given in Table 2.9.

where the thermal energy is significantly less than the well depth of hydrogen bond-

ing, the liquid state still persists. They saw anomalous behaviour consistent with

water in a lattice-based model, which incorporates three basic features as quoted

here:

1. The low temperature state (ground state) of the system should

have an open, low density structure like that of ice.

2. Linear hydrogen bonds can form between two molecules only

when (a) the local configuration is open and (b) the participating

molecules are properly oriented.

3. Increased local density with respect to the open structure must

result in an increase in the (a) local energy and (b) the local en-

tropy. The normal lowering of energy on increasing the number of

neighbours is reversed in water due to the distortion of hydrogen

bonds.

Hydrogen bonding, then, is fundamental to our understanding of water; as we saw in

the previous section, the anomalous behaviour of the liquid would seem to be rooted

in the desire to form an energetically favourable open hydrogen-bonded network.

2.7.2 Hydrogen bond geometry

Hydrogen bonds are not linear within the liquid system. Modig et al. (2003) have

determined the typical HB configuration using a combination of experiment and ab

initio calculation, as shown in Figure 2.9 and Table 2.9.

Cho et al. (1997) write that the proportion of hydrogen bonds in the liquid remains

less that 5% (Cho et al., 1996b) — though bonds are continuously breaking and

reforming; however the experiments of Myneni et al. (2002) put the number of

hydrogen bonds per molecule at 2.4–2.8, corresponding to at least 30% proportion

of broken H-bonds.



Chapter 2. Water 43

ROO 2.82 Å
rHO 1.88 Å
θbend 12◦

Table 2.9: Values for the lengths and angles depicted in Figure 2.9, as determined
by Modig et al. (2003).

Figure 2.10: Distribution of hydrogen bond bending angles θbend (≡ β here) taken
from Modig et al. (2003). The experimental curves shown represent temperatures
of — from top to bottom — 0, 4, 15, 27, 50 and 80◦C.

Pople (1951) noted much earlier that bond bending explains the apparent increase in

the number of first nearest neighbour molecules over the figure of 4 for ice and also

the filling of the region between first and second nearest neighbour shells at 3.5 Å

as seen by Morgan and Warren (1938). Pople employed a statistical mechanical

analysis of water using hydrogen bond bending. Using simple force constants of

HB bending, he achieved a good reproduction of the radial distribution functions as

such those which Morgan and Warren had obtained by experimental means.

Despite the directionality of the hydrogen bond appearing to be significant in in-

ducing the tetrahedral structure of ice, the bond is more stable with respect to bond

bending than with stretching; Espinosa et al. (1998) found that HB strength de-

cays exponentially with distance. Indeed, the configurational criteria for the forma-

tion of a hydrogen bond is not well resolved, and is a judgement which must be

made by the researcher. For example, Khan (2000) used values of ROO = 3.10 Å

and ∠OHO = 146◦, whereas Schwegler et al. (2000) used the more lax values of

ROO = 3.5 Å and ∠OHO = 140◦.

2.7.3 Polarisation & cooperative bonding

Frank (1958) tells of how bonding between water molecules promotes bonding be-
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Figure 2.11: Cooperative effects in hydrogen bonding. Redrawn from Frank (1958).

tween the formed cluster and other molecules. For an illustration of this concept,

see Figure 2.11. The covalent interaction between molecules a and b in structure III

results in a greater charge separation in the donor molecule, thus encouraging inter-

actions with other non-bonded molecules as represented in the figure by molecules

c and d. Frank and Wen (1957) postulated that these cooperative bonding effects

are seen in the liquid; water molecules form clusters which appear and dissolve

together, promoting regions of high local order.

Tanaka (1998a) found by means of computer simulation that clustering behaviour is

very different in the low density liquid (LDL) form to that in the high density liquid

(HDL)6. According to Tanaka, clusters in the high density phase are disconnected,

whereas the connectivity of clusters in the low density phase “spreads over the entire

system”.

More recently, Errington et al. (2002) found evidence for cooperative bonding be-

haviour in simulated water using the SPC/E potential7. There they studied the vol-

ume per molecule in ice-like water clusters. As the cluster size increased, the clus-

ter showed a decrease in density up until some limiting size; beyond this size, the

density of the cluster remained unchanged. Curiously, the SPC/E model for water

uses rigid molecular constraints; there is no change in the intramolecular charge

site geometry. Any cooperativity, then, would seem to have come about through

many-body intermolecular effects and not from electronic polarisation.

6High and low density forms of liquid water are discussed in Section 2.8.2.
7The SPC/E potential for water is described in Chapter 4
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The inclusion of molecular polarisation in empirical models for water is somewhat

of an esoteric thing. The SPC/E potential of Berendsen et al. (1987) was intended

to include some description of polarisation effects in the form of an effective po-

tential. They essentially reparameterised the existing Simple Point Charge (SPC)

model. The effect was to give a better description of the second nearest neighbour

peak in the O-O radial distribution function. There has also been work to suggest

that the Polarisable Point Charge (PPC) model gives a good description of liquid

state properties (Svishchev et al., 1996) and the liquid-vapour coexistence curve

(Svishchev and Hayward, 1999).

Stern and Berne (2001) performed classical and path integral calculations using a

flexible and polarisable model, simulating water in the liquid and the gas phase.

The ∠HOH angle was seen to decrease as the water entered the liquid phase, in

contrast with experiment. Stern and Berne go on to comment that polarisation from

surrounding molecules encourages the water molecule to form a larger dipole mo-

ment, and hence a smaller ∠HOH; yet the angle should become larger, since the

liquid adopts something of the tetrahedral character seen in ice.

2.7.4 Model types

We have seen the importance of hydrogen bonding in the determination of the struc-

ture of water, but how are hydrogen bonded structures arranged in the liquid? The

different types of proposed models for bulk water have been summarised by Frank

(1972), which fall into three categories. We shall describe their qualitative features

here.

Mixture

Here the liquid contains pockets of bonded and non-bonded molecules; when ice

melts, it is pictured as forming a liquid containing “icebergs”.

Uniformist

Uniformist models are concerned with hydrogen bond bending rather than breaking,

leading to a remaining but distorted H-bond network.
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Interstitial

Interstitial models are concerned with the notion that upon heating molecules fall

out of the tetrahedrally coordination lattice structure and occupy vacancies between

lattice sites.

Note that the picture of the real liquid which we have leaned towards so far is of the

interstitial type.

2.8 Thermodynamic approach

So far we have considered the behaviour of water from the perspective of micro-

scopic structure. For the sake of completeness, we now consider briefly the inter-

pretations of the density maximum from a more macroscopic perspective.

2.8.1 Stability limit conjecture

It has been found that some thermodynamic quantities appeared to diverge below the

temperature of homogeneous nucleation TN, below which water always crystallizes.

The correspondance between TN and the temperature at which the liquid becomes

mechanically unstable led to proposals that it is the approach towards the spinodal

line of mechanical instability which is behind behavioural anomalies (Speedy and

Angell, 1976; Speedy, 1982b,a, 1987).

Defining the isothermal compressibility κT and the thermal expansivity α

κT ≡ − 1

V

(

∂V

∂P

)

T

(2.10)

α ≡ 1

V

(

∂V

∂T

)

P

(2.11)

then for a particular path Ps(T ) which represents the locus of points for which the

liquid becomes mechanically unstable,

α =
1

V

(

dVs

dT

)

+ κT

(

dPs

dT

)

. (2.12)

Under normal conditions, the stability criterion is met:
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Figure 2.12: Schematic representation of the reentrant spinodal and liquid-liquid
critial points scenarios. Taken from Sastry et al. (1996).

(

∂P

∂V

)

T

< 0 or κT > 0. (2.13)

However as P → Ps,
(

∂P
∂V

)

T
→ 0 and hence κT → +∞.

Since
(

dVs

dT

)

and
(

dPs

dT

)

remain finite except at singular points on the Ps(T ) line,

Equation 2.12 tell us that

α
(

dPs

dT

) → +∞. (2.14)

This tells us that α and dPs

dT
have the same sign close to the spinodal pressure Ps.

Under the stability limit conjecture (SLC), pressure decreases with temperature and

goes through a minimum in the negative pressure region of the phase diagram. Since
dPs

dT
changes sign, α must do the same; there must therefore be a path such that

α(P, T ) = 0 — the density maximum (or minimum). Further, if the TMD line

remains negatively sloped in the (P, T ) plane, then its intersection with the liquid-

gas spinodal must render the spinodal line reentrant8; the TMD line must intersect

the spinodal at the minimum in the (P, T ) plane. The reentrant spinodal is illustrated

in Figure 2.12.
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Figure 2.13: Phase diagram of water showing the hypothesised second critical point.
Taken from Stanley et al. (2000).

2.8.2 Liquid-liquid phase transition

Poole et al. (1992, 1993) studied water by simulation, and found inflections in

isotherms of the phase diagram which increased in magnitude deeper into the su-

percooled region, perhaps providing evidence for a second critical point in super-

cooled water; below this critical point, it has been postulated that there exists two

forms of liquid water – the High Density Liquid (HDL) and Low Density Liquid

(LDL). A schematic diagram of this idea is shown in Figure 2.12, and a phase dia-

gram showing the second critical point is shown in Figure 2.13. Though the second

critical point itself is thought to lie in the supercooled region of the phase diagram,

the anomalous behaviour of water at ambient pressure and temperature may be at-

tributed to the onset of critical behaviour in the liquid.

Experimental analysis of the HDL and LDL forms of supercooled water are not pos-

sible, since the second critial point lies below the temperature at which homogenous

nucleation of the liquid into solid ice begins to occur. However, some insight may

be achieved by noting that the HDL–LDL transition line may be seen as a continu-

ation of the High Density Amorphous (HDA) and Low Density Amorphous (LDA)

phases of ice into the supercooled liquid region of the phase diagram; indeed, the

8The spinodal line must retrace back into positive pressures.
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Figure 2.14: Coexistence curves and P-T phase diagrams, taken from Poole et al.
(1994). Coexistence curves are shown as solid lines, spinodal lines as dashed and
dot-dashed, and lines of density maxima are shown as fine dotted lines.

HDA–LDA has been achieved between the two amorphs at temperatures of 77 K

and 140 K, with the transition seen to happen at about 200 MPa (Mishima, 1994).

Mishima noted the absence of any intermediate amorphous states between the LDA

and HDA phases; if there is a clear phase boundary just below the glass transition

temperature, it is reasonable to suppose that there may be a similar boundary just

above it.

In the same year came a theoretical derivation of liquid-liquid phase separation at

low temperature. Poole et al. (1994) constructed a free energy of the form:

A = AVDW + 2AHB. (2.15)

They followed the practice of distinguishing two strengths of hydrogen bond: strong

and weak, with energies εweak = 0 and εstrong = εHB < 0. It was found that for

|εHB| > 16.5 kJ mol−1, the liquid-gas coexistence curve splits in two, with a region

of instability lying between them as illustrated in Figure 2.14. There is evidence,

then, that two phases of liquid water exist in the supercooled region.

Further experimental evidence came from observations of the melting curves of

various phases of heavy water ice (Mishima, 2000). It was found that one phase

demonstrates a smooth melting curve, whereas the curve becomes kinked for phases

with a lower melting temperature at a given density, as shown in Figure 2.15.
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Figure 2.15: The melting curves of D2O ices (III,V,IV,XIII) taken from Mishima
(2000), from the region of 0–0.2 GPa pressure and 200–250 K temperature. Left:
the experimental data, with the open circles marking the onset of a change in tem-
perature. Right: schematic diagram representing the hypothesised HDL–LDL tran-
sition line and the second critical point.

It is the TIP5P model for water9 which is employed for the molecular dynamics

calculations presented here. We shall therefore take a moment to note the work

of Yamada et al. (2002). These authors have found evidence for a liquid-liquid

critical point in TIP5P water by observing inflections in P − T curves, as shown in

Figure 2.16. It is also worth noting — recalling the stability limit conjecture — that

the spinodal line which they construct is not reentrant, and does not intersect the

TMD line. These conditions are not required by the singularity-free interpretations,

to which we turn our attention now.

2.8.3 Singularity-free interpretation

Later, Sastry et al. (1996) presented an interpretation of the behaviour of water

which was free of any singular behaviour which came as a result of the SLC. From

thermodynamic arguments, they derive the expression given in Equation 2.16:

(

∂κT

∂T

)

P,TMD

=
1

v

∂2v/∂T 2

(∂P/∂T )TMD

(2.16)

where v is the volume per particle. This equation indicates that a negatively sloped

9Described in Chapter 4
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Figure 2.16: Pressure as a function of temperature for simulated water using the
TIP5P potential. Each curve is shifted upwards by n × 150 MPa for clarity. Inflec-
tions are evident until the lowest temperature, perhaps where a phase coexistence
region has set in. Taken from Yamada et al. (2002).
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TMD in the (P, T ) plane gives rise to an increasing isothermal compressibility at

constant pressure as temperature is decreased. The increase in compressibility, then,

does not necessarily point to any singular behaviour. After intersecting the line of

compressibility maxima, the TMD retraces, or takes on a positive slope in the (P, T )

plane — which is consistent with the picture for the liquid-liquid phase transition

hypothesis shown in Figure 2.12.

2.9 Nuclear quantum effects

We saw in Section 2.2 that 2s2 electrons from the oxygen atoms form hybrids with

electrons in the 2p4 state. They therefore become valence electrons and hence chem-

ically active; the only two remaining core electrons are those in the 1s2 state in the

oxygen atom.

Considering, then, that 80% of the electrons in the water molecule are chemically

active, it is striking to note the radical shift in the TMD upon isotopic substitution.

The switch from light to heavy water generates a dramatic change in the TMD, even

though the electronic configuration remains the same! Indeed, there is experimental

verification from X-ray diffraction experiments that the electron densities in H2O

and D2O are virtually indistinguishable (Neuefeind et al., 2002).

Heavy water is slightly more ordered than light water at the same temperature

(Tomberli et al., 2000). Further, Némethy and Scheraga (1964) point out that the

inflated viscosity, melting point, TMD and heat capacity in heavy water serve to

indicate a higher degree of structural order than exists in light water at the same

temperature; deuterium bonds would appear to be stronger. There is evidence from

crystallographic data that the hydrogen and deuterium bond lengths the respective

waters are almost identical (Megaw, 1934), yet the maximum densities of light and

heavy water differ; the maxima of density and corresponding temperatures are given

in Table 2.10. Increasing the mass on the ends of two arms of the water molecule

can conceivably have two effects. The first is that the resultant dynamics of those

heavier particles might be slower when acted upon by the same forces as present in

the light water system. The second is quantum mechanical in origin: the magnitude

of quantum delocalisation decreases with increasing mass.

So, then, it would appear critical to include nuclear quantum effects in calculations

of the water system. This has been done for bulk water by a number of researchers

using a range of methods for handling electronic and nuclear behaviour (Billeter

et al., 1994; Kuharski and Rossky, 1985; Del Buono et al., 1991; Lobaugh and
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H2O D2O T2O
Max. of density (g cm−3) 1.0a 1.11a 1.22a

TMD (◦C ) 3.98b 11.2c 13.4d

a Franks (2000)
b Watanabe (1991)
c Kirshenbaum (1951)
d Goldblatt (1964)

Table 2.10: The effect of isotopic substitution on the temperature of maximum
density.

Voth, 1997; Guillot and Guissani, 1998; Shiga et al., 2000; Stern and Berne, 2001).

In particular, Kuharski and Rossky (1985) found that the inclusion of quantum ef-

fects had a similar effect on the liquid structure as an increase in temperature of

approximately 50 K; hydrogen bonds showed a greater degree of bending, and fur-

ther they saw an increase in the number of molecules situated at a radial distance

of ' 3.4 Å at the expense of those at the tetrahedral value of ' 4.5 Å. Calculations

performed with heavy water demonstrated structural characteristics between those

found classical and path integral simulations of light water. Kuharski and Rossky

further note that it is most the orientational characteristics of molecules which are

affected by nuclear quantum properties. Del Buono et al. (1991) performed similar

calculations using other empirical potentials, demonstrating similar relaxations in

hydrogen bond linearity, and an outward movement and broadening of the second

neighbour peak upon activation of the path integral treatment.

2.10 Summary

The isolated water molecule owes its V-shaped geometrical form to p-type covalent

bonding; molecules form dimers through hydrogen bonding — a bond with cova-

lent characteristics in which electrons involved in intramolecular covalent bonding

are now also taking part in covalent bonding with the oxygen atom of the second

molecule.

The hydrogen bond is directionally dependent, preferring to exist with a hydrogen

atom lying on a straight line between two oxygen atoms. This directional depen-

dence is thought to play a key part in the density anomaly below 4◦C at 1 atm by

encouraging the formation of an open tetrahedral-like structure; at this pressure and

temperature range, water expands as it is cooled contrary to simple liquid behaviour.

The four-fold symmetry of the molecule is thought to be responsible for the tetra-
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hedral structure which persists in the liquid phase. As water is heated towards the

density maximum, molecules from the second neighbour shell move from a radial

distance of about 4.5 Å to about 3.4 Å; they become interstitial molecules, filling

vacancies in the tetrahedral lattice. The density maximum itself is thought to come

about as the result of a competition between the formation of interstitial molecules

and thermal expansion familiar in simple liquids.

It is not only thermal fluctuations which induce the growth of the 3.4 Å neighbour

peak; there is evidence from computer simulation that nuclear quantum fluctuations

have a significant impact, creating structures consistent with those of a sizeable tem-

perature increase in the liquids. Electrons, owing to their very much smaller mass,

display more pronounced quantum mechanical behaviour in general; this would

seem to be of reduced significance, however, when considering the location of the

density maximum — the TMD shows a significant shift when exploring isotopes

of hydrogen. Further, the maximum density of heavy water is approximately 10%

greater than that seen in light water. Nuclear quantum fluctuations, then, would

seem to be playing a key role as regards the liquid water structure.
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Molecular Dynamics

3.1 Introduction

Molecular dynamics (MD) aims to simulate real systems as closely to nature as

possible on the microscopic scale. Of course, we must look to experiment to val-

idate simulation data. However, if simulation proves reliable, molecular dynamics

affords access to a wealth of information about a system which cannot necessarily

be obtained from experiment; molecular structure, for example, may be visualised

easily.

During the course of a molecular dynamics run, positions and velocites are propa-

gated according to Newton’s equations of motion. In doing so, possible phasespace

configurations are explored. We may extract structural, dynamical and thermody-

namical information by sampling those phasespace configurations.

In this chapter we will look at the ingredients of molecular dynamics, and the infor-

mation which it affords.

Section 3.2 looks at the fundamental building blocks of molecular dynamics simu-

lation. Section 3.3 concerns required lengths for molecular dynamics runs, and Sec-

tion 3.4 discussed serial correlation between timesteps. The thermostat emploted to

maintain the water system at the desired temperature is described in Section 3.6,

and the method by which rigid molecular constraints were applied is given in Sec-

tion 3.7. Sections 3.8 to 3.11 describe some quantities which are measureable from

molecular dynamics simulation, including water specific structure functions as pre-

sented in later chapters. Section 3.12 brings the chapter to a close.

55
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3.2 Fundamentals

We first take a walk through issues relating to the fundamental nature of molecular

dynamics simulation.

3.2.1 Ergodic hypothesis

The ensemble average is an average taken on the assumption that all microstates are

equally accessible. The ergodic hypothesis1 is central to molecular dynamics and

says that if the phasespace trajectory of a system passes through every point in phase

space without bias, then time averages become equivalent to ensemble averages;

that is, the phasespace trajectory samples possible microstates of the system without

bias. Mathematically,

A = 〈A〉ens (3.1)

where A denotes the time average of some quantity of interest, and 〈A〉ens denotes

the ensemble average.

We must then ensure that during a molecular dynamics run we have generated a

suitable representative sample of phasespace configurations. We shall pick up on

this idea again in later sections.

3.2.2 Initialisation & equilibration

While it might seem desirable to initiate the water system with random positions,

this is a dangerous practice. In this case it is easy for particles to be unphysically

close and feel exceedingly high forces, which may potentially result in numerical

instability. For this reason, molecules were set up on a regular face centred cubic

(FCC) lattice2.

Initial velocities were chosen from the Maxwell-Boltzmann distribution seen in an

equilibrium system. Having assigned velocities from the normal distribution and

rescaled such that the linear momentum was zero, the velocities were rescaled to

the desired temperature on the assumption of no constraints:

1The ergodic hypothesis is discussed by Frenkel and Smit (1996), pp. 15–17.
2The reason for a specifically FCC lattice is discussed in Subsection 3.2.3.
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Figure 3.1: Graphical demonstration of periodic boundary conditions in two di-
mensions. The central cell is the simulation cell, and those which surround it are
periodic images of the simulation cell. The periodic image cells extend out to infin-
ity in each dimension.

v′
i = vi

√

3NTdesired
∑N

i=1miv2
i

(3.2)

Equation 3.2 is not quite accurate for a system of constrained water molecules, yet it

is satisfactory since the system is yet to undergo an equilibration phase — a period

of time must be allowed at the start of a simulation to allow the system to come to

a state of equilibrium before meaningful measurements can be taken of the system

properties. An equilibrated system will not care how it was started. Only once

observables have ceased to show any systematic drift with simulation time may we

begin the production phase over which quantities are sampled.

3.2.3 Periodic boundary conditions

In the simulation of bulk properties, it is desirable to use period boundary condi-

tions (PBC) to remove surface effects. Under this scheme, the simulation cell is

surrounded by cells which are identical to it, as shown in Figure 3.1. Atoms inside

the simulation cell we shall call real atoms, and atoms in the image cells we shall

call image atoms. If an atom was to leave the simulation cell, an image atoms would

come into the simulation cell from the opposite side.

The system being simulated is known to be large enough when the system properties

have converged with respect to particle number; there is no point in simulating larger
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systems than is necessary if no significant improvement can be seen in the results.

Some output properties such as the mean square displacement require “unpacked”

atomic positions — the positions of those atoms which were initially in the sim-

ulation cell at some later time through the simulation. From an implementational

perspective, it is therefore desirable to maintain a vector for each atom which trans-

lates from the simulation cell to the image cell in which it currently resides.

Commensurate particle numbers

Repeating the simulation cell in all dimensions in the way described above carries

with it a restriction of the numbers of atoms or molecules which can be included

in a simulation. Choosing an inappropriate number of particles can result in the

presence of artifical defects upon freezing; the otherwise preferred lattice structure

just cannot fit correctly into the simulation cell.

Argon, for example, forms a 4-atom FCC unit cell. A suitable number of argon

atoms for simulation in a cubic box would therefore be 3 × 3 × 3 × 4 = 108. Ice

Ih forms an eight-molecule orthorhombic unit cell (Röttger et al., 1994). Conse-

quently, for water in a cubic simulation cell, a suitable number of molecules would

be 3 × 3 × 3 × 8 = 216 molecules, or 648 atoms — double the number in the FCC

configuration. It is for this reason that a compressed FCC lattice was used as the

starting configuration.

Whilst solid water is not simulated here, simulations are performed close the the

solid-liquid phase boundary; a commensurate number of particles was always used

for the sake of prudence. Indeed, short-ranged order persists in the liquid phase.

Minimum image criterion

The minimum image criterion is used when calculating the separation between

atoms. It says that out of all atoms in our infinitely periodic system, we use that

which gives the smallest separation. This is demonstrated graphically in Figure 3.2.

3.2.4 Choice of ensemble

The most simple approach to molecular dynamics simulation would be to use con-

stant particle number, simulation cell volume and energy — the canonical or “NVE”

ensemble. This, however, is somewhat unphysical. In the real world, water exists
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Figure 3.2: Illustration of the minimum image criterion. The separation between
the real and image atoms within the circle is smaller than the distance between the
equivalent real atoms in the simulation cell.

in thermal equilibrium with its surroundings; it is coupled to a heat bath of constant

temperature. The canonical or “NVT” ensemble, then, employs constant particle

number, volume and temperature. Indeed, the NVE ensemble provides no means

for the temperature control which is so desired when analysing the dependence of

system properties with temperature. It is further possible to take a further step closer

to real life, and replace the constancy of volume with that of pressure.

For ease of computation, the NVT ensemble was chosen for the present work. In-

deed, constant volume simulation has the advantage of allowing direct control over

the density of the system; in Chapter 7 we shall find it desirable to study changes

the water structure with respect to such changes in density.

3.2.5 Reduced units

MUDPIES performs calculations using quantities in atomic units. Reduced units

keep numbers of order unity and hence the risk of numerical inaccuracies is reduced;

the use of atomic units performs this function.

Base units of mass, length and temperature are defined in Table 3.1, and units de-

rived from these are given in Table 3.2.
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Quantity Symbol Unit
Mass M Electron mass me

Length L Bohr a0 = ~/αcme

Temperature T meα
2c2/kB

Table 3.1: Mass, length and temperature in atomic units. α is the fine structure
constant, me is the electron rest mass, c is the speed of light and a0 is the Bohr
radius. The symbols are for use in conjuction with Table 3.2.

Quantity Reduced unit Quantity Reduced unit
Density L−3 Volume L3

Time L
√

M/kBT Velocity
√

kBT/M
Energy kBT Force kBT/L

Momentum
√
MkBT Pressure kBT/L

3

Table 3.2: Reduced units of various quantities as derived from base units of mass,
length and temperature in atomic units. M , L and T are mass, length and tempera-
ture in atomic units, as given in Table 3.1. e is the charge on the proton.

3.2.6 Centre of mass constraint

To ensure that the system was held in the laboratory frame, particle velocities were

rescaled on initialisation such that the centre of mass momentum in each dimension

was held at zero:

miv
′
i = mivi −

1

N

N
∑

i=1

mivi. (3.3)

Thereafter, forces were rescaled such that there was no net force on the centre of

mass of the system:

f ′
i = f i −

1

N

N
∑

i=1

f i. (3.4)

A rescaling of this type at each timestep becomes important when we employ the

thermostatting techniques of Section 3.6; Indeed, the only function of Equation 3.4

thoughout the remainder of the simulation is to ensure that the Langevin forces —

to be introduced there in Section 3.6 — sum to zero at each timestep; all internal

forces due to the intermolecular potential, for example, sum to zero.
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3.2.7 Integrating the equations of motion

The Verlet algorithm (Verlet, 1967) can be obtained by subtracting a backwards-in-

time Taylor expansion from one which is forwards-in-time:

r(t+ ∆t) = 2r(t) − r(t− ∆t) + r̈(t)∆t2 +O(∆t4). (3.5)

where ∆t is the integration timestep.

Equation 3.5 clearly does not make explicit use of atomic velocities. The velocity

information is implicit in the form of positions at two previous times. Position

Verlet has one advantage in that it is accurate to third order, despite its third order

term being zero. It does, however, have two important drawbacks. Firstly, it is

not self-starting; an Euler step must be performed for the first timestep so as to

generate the two positions required by Position Verlet. Also, the lack of availability

of atomic velocities renders the calculation of quantities which are dependent upon

the phasespace configuration very cumbersome; this algorithm focusses on one of

two dimensions per atom in phase space.

Defining

ṙ(t) =
r(t+ ∆t) − r(t− ∆t)

2∆t
(3.6)

we can find a much better algorithm to work with which retains the accuracy of

Position Verlet - the Velocity Verlet algorithm (Swope et al., 1982):

r(t+ ∆t) = r(t) + ṙ(t)∆t+ r̈(t)
∆t2

2
(3.7a)

ṙ(t+ ∆t) = ṙ(t) + [r̈(t) + r̈(t+ ∆t)]
∆t

2
(3.7b)

Velocity Verlet has another strong advantage: we do not need to worry about the

possibility that periodic boundary conditions were applied to an atom at the previ-

ous iteration. Such a situation under Position Verlet yields an apparent very high

velocity of an atom!
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Setting the timestep size

When setting the length of the timestep there is a balance to be struck. If the

timestep is too long, the integration of the equations of motion will become un-

stable. Conversely, if the timestep is too small then calculations will take a good

deal longer for no extra gain. A very small timestep may also result in numerical

inaccuracies due to rounding errors! The method by which the optimum timestep

was determined is given in Section 3.5.

3.3 Simulation times

The required simulation should be long enough to sample a representative propor-

tion of phasespace, and this is in part determined by the measured property of in-

terest. Different quantities such as temperature and pressure converge at different

rates. We are presently interested in local structure, and hence production times

— the simulation time over which quantities were measured — were sufficient to

reduce noise in relative frequency plots to a tolerable level. A production time of

75 ps was found to be sufficient for this. A more general rule of thumb when de-

ciding on a ballpark production time is that it should be greater than ten times the

Langevin damping time, to be introduced in Section 3.6.

The time given for the system to come to equilibrium was 15 ps. The production

phase was conducted in 15 ps segments; noting the lack of significant variation

in the radial distribution functions3 between the segments demonstrated that the

system was indeed showing an equilibrium structure.

3.4 Statistics and correlation

In molecular dynamics, positions and velocities are propagated using deterministic

equations of motion. The degree of serial correlation between data from consecu-

tive timesteps is therefore very high. Here we shall explore methods of analysing

and correcting for such correlations.

3To be introduced in Section 3.9.
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3.4.1 Autocorrelation function

The correlation function4 is a function whose modulus varies between 0 and 1 for

low and high serial correlation respectively.

Defining

∆A = A− 〈A〉 (3.8a)

∆B = B = 〈B〉 (3.8b)

the correlation function is given by

CAB =
〈∆A∆B〉
σ(A) σ(B)

(3.9)

where σ(A) and σ(B) are the RMS fluctuations onA andB respectively. In the case

where A and B are uncorrelated, the numerator reduces to the product 〈∆A〉 〈∆B〉,
which is zero.

A and B may represent the same quantity with some time interval between them, in

which case we speak of an autocorrelation function; the numerator 〈∆A(t)∆A(t + t′)〉
is averaged over all time origins. The autocorrelation function provides a measure

of the timescales over which serial correlations decay to zero. An important exam-

ple is the velocity autocorrelation function (VACF):

Cvv(t) =
1

N
lim

T→∞

N
∑

i=1

∫ T

0

vi (t
′) · vi (t

′ + t)

vi (t′) · vi (t′)
dt′ (3.10)

where the vi are single particle velocities; we average over all atoms in the system

to improve the statistics. An example is shown in Figure 3.3, which indicates that it

takes approximately three times longer for oxygen correlations to die away than is

the case for hydrogen.

3.4.2 Data blocking

When taking results from MD simulation we must be careful not to oversample the

data, because not every phasespace configuration contributes entirely new informa-

4Correlation functions are discussed by Allen and Tildesley (1987), pp. 58–64.
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Figure 3.3: Velocity autocorrelation functions for hydrogen and oxygen motion in
TIP5P water at ' 277 K. The density was ρ = 1.0 g cm−3.

tion to the average. While the mean — with its status as an unbiased estimator —

will be unaffected, the standard error on the mean may be significantly underesti-

mated.

Friedberg and Cameron (1970) defined a quantity called the statistical inefficiency s:

s = lim
τb→∞

τb σ
2 (〈A〉b)
σ2(A)

(3.11)

where τb is the block “time” — the number of timesteps which form each of the

blocks. It represents the number of timesteps which must be performed in order to

arrive at a phasespace configuration which contributes entirely new information to

the average. Once s is known, the standard error on the mean may be estimated

through:

δ 〈A〉run =

(

s

τrun

)
1

2

× σ(A). (3.12)

where τrun is the number of samples which constitute the entire run. Moreover, s

affords a handle a suitable number of timesteps between phasespace samples taken

from an MD run. While it is desirable to take a sample as frequently as possible

to minimise the MD run length, it would be insensible to take a sample at every

timestep. This would result in a large volume of highly correlated data; moreover,

there would be a good deal of computational effort wasted in doing so. A good

rate of output, then, would be every s timesteps, with s representing the smallest

statistical inefficiency among the output quantities of interest. Here we use a time

of 30 fs between output samples.
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A similar method has been reported by Flyvbjerg and Petersen (1989) which affords

an estimate of the uncertainty in the uncertainty of the mean, however it is the

method of Friedberg and Cameron (1970) which we use here.

3.4.3 Structure functions

Though data blocking analyses of the types described above are essential if we are

not to underestimate error bars on time averaged scalar quantities, we do not need

to worry so much when calculating structure functions such as the radial distribu-

tion function — to be met later — which divide quantities such as particle number

into bins of different radii from a molecule, for example. The mean is an unbiased

estimator, and hence the result of adding too many contributions to a structure func-

tion is not to make the mean value in a given bin systematically incorrect; rather it

serves to speed the smoothing of the resultant curve or surface.

3.5 Vibrational properties

Recall the correlation function from Section 3.4 (unnormalised here):

C(t) =

∫ ∞

−∞

dt′A (t′)B (t′ + t) (3.13)

The convolution theorem tells us that

Ĉ(ω) = Â∗(ω)B̂(ω) (3.14)

where hats denote Fourier transforms. Hence the Fourier transform of the velocity

autocorrelation function gives us a handle on the characteristic frequencies of mo-

tion in the system, and is “proportional to the density of normal modes in a purely

harmonic system” (Allen and Tildesley, 1987).

Figure 3.4 shows the Fourier transform of the VACF separately for oxygen and

hydrogen atoms; integration timesteps and Langevin damping times5 used are given

in Tables 3.3 and 3.4.
5Langevin damping times are introduced in Section 3.6.
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Figure 3.4: Fourier transformed velocity autocorrelation function for a system of
light water at T = 275 K. This information is useful for the determination of the
optimal integration timestep and Langevin damping time. The density was ρ =
1.0 g cm−3.

Water type Highest freq. Period Integration
mode / fs−1 / fs timestep / fs

Light 0.06 17 2
Heavy 0.03 33 3

Table 3.3: Integration timestep derived from the Fourier transformed velocity auto-
correlation functions, for temperatures ' 277 K.

Water type Lowest freq. Period Langevin
mode / fs−1 / fs time / fs

Light 0.003 333 3500
Heavy 0.002 500 5000

Table 3.4: Langevin damping times derived from the Fourier transformed velocity
autocorrelation functions. Temperatures are those calculated in the microcanonical
ensemble, and are presented with RMS fluctuations.
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3.6 Thermostat

In order to simulate a system in the canonical ensemble — with constant particle

number, volume and temperature — we require a thermostat of some description to

ensure that the temperature averages to the desired value. Here we discuss how this

was achieved.

3.6.1 Temperature and temperature fluctuation

We demand two things of a thermostat algorithm. Firstly, it must hold the desired

mean value of temperature. Secondly, we look for the same fluctuation of instanta-

neous temperature as is predicted by statistical mechanics.

The expected instantaneous temperature fluctuation may be obtained as follows. We

start by noting that the instantaneous temperature may be found from:

1

2

N
∑

i=1

miv
2
i =

ν

2
kBT (3.15)

where N is the particle number and ν is the number of degrees of freedom. Note

that a system of N atoms of which rigid water molecules are constructed has 2N −
3 degrees of freedom, having substracted three to account for the centre of mass

constaint of Subsection 3.2.6. If all the particles have the same mass, we may write

T =
m

νkB

∑

i

v2
i (3.16)

and the mean square fluctuation in temperature may be written as

∆T 2 =
N
∑

i=1

[

∂T

∂(v2
i )

]2

∆(v2
i )

2
. (3.17)

To find the mean square deviation of speeds, we note that

∆(v2
i )

2
=
〈

(

∆v2
)2
〉

=
〈

(

v2
)2
〉

−
〈(

v2
)〉2

(3.18)

and



Chapter 3. Molecular Dynamics 68

〈

(

v2
)2
〉

=

∫∞

0
v4n(v) dv

∫∞

0
n(v) dv

(3.19)

〈(

v2
)〉2

=

∫∞

0
v2n(v) dv

∫∞

0
n(v) dv

(3.20)

Solutions of the integral

In =

∫ ∞

0

yne−by2

dy (3.21)

are well known, and may be found in many books such as the text by Mandl (1988):

I0 =
1

2

√

π

b
(3.22a)

I1 =
1

2b
(3.22b)

In =

(

n− 1

2b

)

In−2 (3.22c)

Noting that the Maxwell-Boltzmann speed distribution take the form

n(v) = const × v2 exp

(

− mv2

2kBT

)

(3.23)

we see that

〈

(

v2
)2
〉

=
I6
I2

(3.24a)

〈(

v2
)〉2

=
I4
I2

(3.24b)

(

δ(v2
i )
)2

=
I6
I2

− I4
I2

=
3

2b2
=

3

2

(

2kBT

m

)2

(3.25)

and thus for any one particle contributing to the temperature, the resulting tempera-

ture fluctuation may be expressed as6

6The notion of the temperature of a single particle only makes sense when the speed may be
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∆(v2
i )

2
=

3

2

(

2kBT

m

)2

(3.26)

The total square fluctuation on the temperature may now be written as

∆T 2 =
N
∑

i=1

[

∂T

∂(v2
i )

]2

∆(v2
i )

2
= 6N

(

T

ν

)2

(3.27)

and hence

∆T

T
=

√
6N

ν
. (3.28)

3.6.2 Langevin thermostat

The Langevin thermostat (Chandrasekhar, 1943) satisfies the above requirement for

the temperature and its fluctuation. It simulates the Brownian buffeting of the atoms

under study by solvent atoms at the desired temperature. Mathematically, the force

on the ith atom becomes:

F i(t) → F i(t) − γmivi(t) + Ri(t) (3.29)

with

Rα
i (t+ ∆t) =

√

2mikBT

τ ∆t
N(0, 1) (3.30)

where α is a cartesian component index and N(0, 1) represents a normal random

deviate with mean 0 and variance 1.

Note that the force on an atom is dependent upon its velocity. Therefore, to calculate

the velocities at the next time step we require the forces which we are attempting to

calculate. We can escape this vicious circle by substituting the velocity propagator

of Equation 3.7b into Equation 3.29 to obtain the result given in Equation 3.31.

F i(t+ ∆t)

[

1 +
γ∆t

2

]

= F raw
i − γmivi

(

t+
∆t

2

)

+ Ri(t+ ∆t) (3.31)
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Centroid thermostatting

We shall see in Chapter 5 that a quantum particle may be represented as a “necklace”

of possible position realisations. Although we shall leave the reason why until later,

we note here that applying Equation 3.31 to each point on the loop separately will

tend to result in little or no net force on the loop as a whole. For this reason, in

our implementation of the Langevin thermostat, a Langevin force was applied to

the whole loop in addition to the Langevin forces acting on any single bead on the

necklace with the extra caveat that the individual bead forces are scaled such that

they sum to zero. The new Langevin forces with centroid thermostatting included

takes the form:

F i(t+ ∆t)

[

1 +
γ∆t

2

]

=
1

P
F raw

i

+ Rbead
i (t+ ∆t) − γmiv

bead
i

(

t+
∆t

2

)

+ Rcentroid
i (t+ ∆t) − γmiv

centroid
i (3.32)

where

Rα
i,centroid(t + ∆t) =

√
P

P

√

2mikBT

τ ∆t
N(0, 1) (3.33)

This ensures efficient sampling of classical phasespace when performing path in-

tegral calculations without destroying the value of the average temperature or its

RMS fluctuation; we are not waiting for the loops to drift around at an otherwise

much slower rate.

3.6.3 Langevin dynamics, serial correlation & ergodicity

In simulations using the microcanonical ensemble, serial correlation is high because

the motion at one timestep depended upon the positions, velocities and forces at the

previous timestep. The beauty of the Langevin thermostat is that it introduces a

stochastic influence. Random numbers influence the forces at each timestep, and

those random numbers are uncorrelated between timesteps. A further benefit of

Langevin dynamics is that an MD run is guaranteed to be ergodic, provided that the

run length is sufficiently long. This point results from the fact that the random noise
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term in the Langevin forces is Gaussian, and hence has infinitely long tails; if we

wait long enough, then, we will see a force large enough to get the system out of a

local minimum.

3.7 Constraint dynamics

In cases for which the intermolecular potential is defined for a fixed molecular ge-

ometry, we need to perform constraint dynamics to preserve that fixed molecular

geometry throughout the simulation. This was achieved using the so-called RAT-

TLE algorithm, which shall be our next topic.

3.7.1 RATTLE

There exists a technique for coping with constraints in the framework of a Velocity

Verlet integration scheme, known as RATTLE (Andersen, 1983). This scheme uses

Lagrange multipliers which, in effect, add in extra forces to keep the molecular

geometry constant.

We begin by writing down the new forces:

m1r̈1 = f1 + g1 (3.34a)

m2r̈2 = f2 + g2 (3.34b)

m3r̈3 = f3 + g3. (3.34c)

The constraints we require

In order to preserve the molecular required for the TIP5P water model, we need

to constrain three lengths: the bond lengths and also the distance between the two

hydrogen atoms required to constrain the bond angle. This technique to preserve the

bond lengths and also the bond angle is is referred to as triangulating the molecule

(Allen and Tildesley, 1987).

Deriving the equations

In practice we do not know the precise forces gi, but we can find approximations to

them using an iterative method. Inspecting Figure 3.5 we may write
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Atom 2

Atom 1

r12

r23

Atom 3

r13

Figure 3.5: The atom labels used in the derivation of the RATTLE equations.

g1 = +λ12r12 + λ13r13 (3.35a)

g2 = +λ23r23 − λ12r12 (3.35b)

g3 = −λ13r13 − λ23r23 (3.35c)

where the λij are the Lagrange multipliers. Substituting these into Equation 3.34

and using the Velocity Verlet propagators of Equation 3.7 we find

r1(t+ ∆t) = r′
1(t+ ∆t) + [+λ12r12 + λ13r13]

∆t2

2m1

(3.36a)

r2(t+ ∆t) = r′
2(t+ ∆t) + [+λ23r23 − λ12r12]

∆t2

2m2

(3.36b)

r3(t+ ∆t) = r′
3(t+ ∆t) + [−λ13r13 − λ23r23]

∆t2

2m3
(3.36c)

Equations 3.36a to 3.36c can be used to find expressions the separation vectors r1,

r2 and r3. It is the magnitude of the vectors that we are interested in constraining.

If we square the equations for the separation vectors we find
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|r12(t+ ∆t)|2 − |r′
12(t+ ∆t)|2 = [terms linear in ∆t2]

+ [terms quadratic in ∆t2] (3.37a)

|r13(t+ ∆t)|2 − |r′
13(t+ ∆t)|2 = [terms linear in ∆t2]

+ [terms quadratic in ∆t2] (3.37b)

|r23(t+ ∆t)|2 − |r′
23(t+ ∆t)|2 = [terms linear in ∆t2]

+ [terms quadratic in ∆t2] (3.37c)

We desire that the left-hand sides of Equation 3.37 are zero — in this case the

propagated velocities are the same is the (unknown) actual velocites at the next

timestep. Our task, then, is to find the Lagrange multipliers with which this is

achieved.

3.7.2 Implementing RATTLE

In practice, we find the Lagrange multipliers by using linear algebra and interative

techniques.

The equations of motion are first updated without any constraints applied. To find

the required Lagrange multipliers, the terms in Equation 3.37 which are quadratic

in ∆t2 are initially set to zero (i.e. no constraints), and the remaining linear equa-

tions are solved for the λij by straightforward matrix inversion. If A is a matrix

containing the linear terms without Lagrange multipliers, then







λ12

λ13

λ23






= A−1







|r12(t+ ∆t)|2 − |r′
12(t+ ∆t)|2 − O(∆t4)

|r13(t+ ∆t)|2 − |r′
13(t+ ∆t)|2 − O(∆t4)

|r23(t+ ∆t)|2 − |r′
23(t+ ∆t)|2 − O(∆t4)






. (3.38)

When “guesses” for the Lagrange multipliers have been generated from the matrix

inversion, the quadratic terms are evaluated, added in and a better guess is gen-

erated using the linearised equations. This cycle is continued until the Lagrange

multipliers have converged to better than one part in 1010.

In practice, two sets of Lagrange multipliers are required to complete the update of

the positions and the velocities, since the velocity propagator also requires the force

at the next timestep, which is dependent upon the positions at the next timestep. To
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get around this difficulty, we must converge the Lagrange multipliers at the current

timestep, update the positions and also the velocities as far as we can; we must

then converge the Lagrange multipliers again (corresponding to those at the next

timestep) in order to complete the velocity update procedure.

Finally, since the positions and velocities are updated without constraints at the

beginning of the constraint routine, we can add the constraint effects to those quan-

tities to obtain the new constrained positions and velocities.

When applying constraint dynamics, it is important remember that the “extra forces”

which are applied to hold the molecules together contribute to the pressure of the

system, to which we shall move now.

3.8 Pressure and the stress tensor

The pressure tensor7 in the context of TIP5P water may be expressed as

Jαβ =

n
∑

i=1

Miviαviβ +

n
∑

i<j

FOO
ijα r

OO
ijβ − ∂E

εαβ

+

3
∑

i<j

λijrijαrijβ (3.39)

where Mi is the molecular mass, n is the number of molecules and the viα represent

components of molecular centre of mass velocities. The first term represents the

kinetic contribution to the pressure, the second is the pressure due to oxygen-oxygen

Lennard-Jones interactions, and σαβ represents the stress tensor due to charge site

interactions to be introduced in Equation 3.42. The final term is the contribution

to the intramolecular constraints which were mentioned at the end of the previous

section; the λij are the corresponding Lagrange multipliers. Not included in the

pressure tensor are contributions due to Langevin forces, which average out to zero

over the course of an MD run.

The scalar pressure is then given by

P =
1

3Ω

〈

∑

α

Jαα

〉

(3.40)

where Ω is the simulation cell volume.

There is a further contribution to the pressure from charge site interactions to be

met in Chapter 4, and may be calculated by means of the stress tensor . . .

7The pressure tensor is discussed by Haile (1992), pp. 242.
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Figure 3.6: Pressure as a function of temperature from path integral simulations.
Error bars were estimated using block averaging, but include RMS fluctuations due
to the distribution in imaginary time, which is introduced in Chapter 5.

Let the columns h be vectors of the simulation cell. We can then define the strain

tensor ε such that

h′ = (I + ε)h (3.41)

where h′ represents some new shape of the simulation cell. We may now define the

stress tensor:

σαβ =
1

Ω

∂E

∂εαβ

(3.42)

where Ω is the simulation cell volume. The stress tensor is just the negative of the

pressure tensor.

While simulation times were sufficient to yield good structure functions, the pres-

sure was not well converged with the present data and carries an uncertainty in the

order of a few tens of MPa — the measured pressure as a function of temperature

is shown in Figure 3.6. Consequently, the presence of a density maximum could

not be justified by searching for a minimum of pressure; the measured pressures at

T = 277 and T = 293 K, for example, are not statistically resolved.

3.9 Radial distribution function

The Radial Distribution Function (RDF) is something of a staple measurement in

MD:
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g(r) =
V

4πr2N2

〈

∑

i

∑

i6=j

δ(r − rij)

〉

(3.43)

where ∆r is the radial width of the bins into which atomic separations are divided.

The RDF represents the ratio of the density at a given distance from a particle (aver-

aged over all atoms), to the uniform ideal density. In an ideal gas it would therefore

assume the value of unity. On average, the density at a distance r from a particle is

therefore given by

ρ(r) = ρuniformg(r). (3.44)

3.10 Coordination numbers & hydrogen bonding

3.10.1 Coordination number

The coordination number refers to the number of particles which appear out to the

the first minimum in the radial distribution function; that is, they appear in the first

coordination shell. Note that this is not quite the same as the number of nearest

neighbours which the Voronoi construction of Subsection 3.11.1 presents. There it

is possible for a particle to define a face of the Voronoi polyhedron (and hence be

identified as a first nearest neighbour) and yet be in the second coordination shell;

this is demonstrated graphically in Figure 3.7.

We may also define the cumulative coordination number as expressed in Equa-

tion 3.45:

N(r) = 4πρH

∫ r

0

gOH(r′) r′
2
dr′ (3.45)

This form of presentation affords an appreciation of how rapidly the number is

changing with increasing radius. The coordination number is then obtained by set-

ting r = Rmin, where Rmin is the position of the first minimum in the RDF.

3.10.2 Number of hydrogen bonds

We may take the idea of coordination numbers further and use them to quantify the

number of hydrogen bonds present. Sato and Fumio (1999) point out that a common
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Figure 3.7: Graphical demonstration in two dimensions to show that a particle iden-
tified as a nearest neighbour by the Voronoi construction may not lie in the first
coordination shell. Here the topmost particle defines a face of the Voronoi polygon,
yet lies outside the dashed circle which approximates the minimum in the RDF.



Chapter 3. Molecular Dynamics 78

definition for the number of hydrogen bonds is that given in Equation 3.46.

Na = 4πρH

∫ Rmin

0

gOH(r) r2dr (3.46)

where ρH is the number density of hydrogen atoms and Rmin is the distance to the

first minimum of gOH. This definition suffers from a lack of ability to distinguish

between the case where hydrogen bonding is occuring and when hydrogen atoms

are simply close to oxygen atoms. Sato and Fumio (1999) go on to present a more

rigorous scheme. For our purposes, however, the estimate given by Equation 3.46

will be quite sufficient; indeed, we will estimate the number of intact hydrogen

bonds using a geometrical analysis.

3.11 Local structure

We now move on to discuss more specific methods of analysing local bonding struc-

ture in water which are employed. Note that the analysis techniques to be described

are based on water forming an approximately tetrahedral network as illustrated in

Figure 3.8, and are not primed to detect bifurcated hydrogen bonding, as spoken

of by Sciortino et al. (1990). When we speak of bonded molecules we refer only

to those molecules which are closest to the central molecule, as for tetrahedral-like

structures. That is to say, an increase in the number of non-bonded molecules refers

to the possibility of many more molecules surrounding the central molecule, yet

there remains only four “best” candidates for hydrogen bonding.

3.11.1 Voronoi analysis

Voronoi analysis8 affords a technique for the analysis of nearest neighbours. We

may define a Voronoi polyhedron which represents the region of space around a

particle which is closer to that particle than to any other. A two-dimensional repre-

sentation of this is shown in Figure 3.9.

We may now define the nearest neighbours of a particle at those atoms which define

the faces of the Voronoi polyhedron; that is, an atom is counted as a nearest neigh-

bour if the bisector between itself and the central atom forms a face of the Voronoi

polyhedron. In the analysis to follow, the first four such nearest neighbours were

taken into account when identifying hydrogen bonds.

8Voronoi analysis is addressed by Rapaport (1995), pp. 91–95.
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Figure 3.8: Representation of a tetrahedral network of water molecules. Hydrogen
atoms are not shown. The solid lines indicate hydrogen bonds, whereas the the
dotted line shows the second nearest neighbour separation.

Figure 3.9: Schematic diagram of the procedure of Delauney triangulation for a
two-dimensional system of argon. Lines are drawn from the central molecule out
to some cut-off radius, and those lines are bisected. The corresponding Voronoi
polygon is shown by the solid line. The cut-off radius is represented by the dashed
circle.
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θbend

θacceptor

Figure 3.10: Illustration of the donor, acceptor and bond bending angles.

3.11.2 Nearest neighbours and hydrogen bonds

Though the Voronoi construction determines all nearest neighbours (NN) of a

molecule9, we saw in Figure 3.7 that the NN molecules which it identifies need

not lie within the first coordination shell; indeed, there may be some variation as to

how many molecules do lie within that shell. We proceed by treating the liquid as

if it had a tetrahedral character, as in ice Ih.

It might be a concern that hydrogen bonds could be straighter — and hence stronger

— with NN molecules that are further away from the central molecule than the

closest four. We recall here the information about HB bending and stretching given

in Chapter 2: the HB is more sensitive to stretching than to bending. Our central

molecule is much less likely to be hydrogen bonded to those molecules which are

further away than strongly bent.

Once the four nearest neighbour molecules to be used were identified, the hydrogen

atom involved in the hydrogen bond then had to be found; that is, the hydrogen

atom which forms the smallest value of the bending angle θbend. The bending angle

is illustrated in Figure 3.10. The first NN distance and the θbend could then be

calculated.

Second nearest neighbours were taken as the first nearest neighbours of the first

nearest neighbours. The four nearest neighbours of the two first NN acceptor

molecules were identified and those which were not the central molecule were in-

cluded in resultant distributions. Restricting the analysis to neighbours of the two

first NN acceptor molecules compliments the analysis of the acceptor angle which

we discuss now.
9Oxygen atoms were taken as a reference point for the molecule.
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3.11.3 Acceptor angle

In the construction of the TIP5P model, Mahoney and Jorgensen (2000) noted that

a commonly missing feature in existing empirical potentials for water was a double

well in the potential energy with respect to the acceptor angle, where the acceptor

angle is defined as in Figure 3.10.

It should be noted that the acceptor angle as calculated from simulation here is

purely the angle between the bisector of the acceptor molecule and the ROO separa-

tion vector (pointing from donor to acceptor), and as such is positive definite. The

double minima in the potential energy is strictly only identified the special case in

which the bending angle θbend is zero and the plane in which the donor molecule

hydrogen atoms lie is orthogonal to that plane in which the acceptor molecule H

atoms lie. However, a demonstration of preference for the acceptor angle to assume

a value consistent with a tetrahedral lattice — approximately 55◦C — would be

suggestive of a tetrahedral structure in the liquid.

After identifying the two first NN acceptor molecules, θacceptor could be calculated.

A strengthening of the hydrogen bond network in the liquid would be expected to

manifest itself in a more localised value of θacceptor and a more linear first NN bond

bending angle; second NN distances may be analysed in relation to each of these.

3.12 Summary

Possible phasespace configurations for a molecular system may be generated by

calcuating forces and updating positions and velocities according to Newton’s equa-

tions of motion.

After a period of equilibration, it is then possible to sample those phasespace con-

figurations during the course of a molecular dynamics production run. Provided

that phasespace is sampled in an unbiased — or ergodic — manner, time aver-

ages of structural, dynamical and thermodynamical information become equivalent

to ensemble averages. Provided, then, that a representative sample of phasespace

is explored, we may find ensemble averages of structural information such as the

equilibrium bonding geometry and nearest neighbour characteristics.

The water in the simulations presented here was equilibrated for at least 15 ps, and

a production phase of 75 ps was found to be sufficient to generate good structure

functions of interest. Samples were output every 30 fs.
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Structure analysis focusses on first and second neighbour distances, particularly as

they relate to hydrogen bond bending and first NN orientation.

The methodology behind the calculation of intermolecular forces is the subject of

the following chapter. The molecular dynamics thus far deals only with classical

simulation. The technique by which quantum properties were accounted for is de-

scribed in Chapter 5.



Chapter 4

Molecular Modelling

4.1 Introduction

The success of molecular dynamics simulation rests in the most part with the model

which is used to evaluate forces. There exists a hierarchy of methods available to

us for perfoming this task, each at varying levels of complexity and accuracy.

In this chapter we shall discuss ideas behind the empirical potential used in the

present simulations, together with further implementation techniques. Comparisons

with ab initio calculations are made.

Section 4.2 introduces component terms of the empirical potential used here; the

potential is introduced in Section 4.3. Energy surfaces are compared with ab initio

calculations in Section 4.4. Notes concerning nuclear quantum corrections are made

in Section 4.5, and Section 4.6 brings the chapter to a close.

4.2 Features of empirical potentials

4.2.1 Lennard-Jones potential

The Lennard-Jones interaction models the van der Waal dipole–dipole interaction

between atomic charge clouds1, and has the form:

V (r) = 4εO

[

(σO

r

)12

−
(σO

r

)6
]

(4.1)

1van der Waal forces are discussed by Walton (1983), pp. 48–51

83
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Figure 4.1: Lennard-Jones potential for oxygen, using parameters dictated by the
TIP5P potential of Section 4.3.

where σO is the distance from r = 0 to the first zero of potential, and εO denotes the

depth of the potential well. The curve is shown in Figure 4.1 using parameters for

oxygen which are used in the classical form of the empirical potential used here.

The dipole–dipole interaction has the form

V (r) ∼ − 1

r6
(4.2)

where r is the magnitude of the separation between the dipole centres of charge.

Dipoles may be either permanent, induced, or spontaneous. By spontaneous we

mean that fluctuations in charge clouds may give rise to temporary situations in

which the centre of electronic charge in an atom does not lie on the same point as

the centre of positive charge.

The Lennard-Jones potential also contains a strongly repulsive core of the form

V (r) ∼ 1

r12
(4.3)

which acts to minimise the overlap of electron clouds. Note that this term is just the

square of the 1
r6 for reasons of computational speed.

Truncation

To limit the number of molecules that are considered to be exerting a force on a

given molecule, a cut-off radius was defined such that the Lennard-Jones tail reaches

a zero of force at that radius; the cut-off was less than half the length of a simula-
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Figure 4.2: Lennard-Jones force for oxygen. The LJ parameters are those defined
by the TIP5P model of Section 4.3.

tion cell side length to prevent atoms interacting with themselves through periodic

boundary conditions.

To ensure that the force remains continuous across the cut-off boundary, the force

may be shifted in order that it goes to zero at that point as shown in Figure 4.2.

The energy corresponding to the shifted force may be approximated by the first

order integration scheme given in Equation 4.4.

Vshifted = VLJ(r) − VLJ (rcut) + (r − rcut)FLJ (rcut) (4.4)

In practice, the magnitudes of the force and energy shifts for a cut-off radius of

8.7 Å are:

Force shift: − 4.02 × 10−5 eV/Å

Energy shift: − 5.89 × 10−5 eV.
(4.5)

The force shift is tiny — three orders of magnitude smaller than the maximum

attractive force. The Lennard-Jones force is illustrated in Figure 4.2; though both

shifted and unshifted curves are shown, they are indistinguishable.
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4.2.2 Coulomb interactions

Charge site interactions are described using Coulomb’s law familiar from the clas-

sical theory of electrostatics. The force exterted by qi on qj is given by:

F ij =
1

4πε0

qi qj r̂ij

|rj − ri|2
(4.6)

where qi and qj are the charges on the particles i, j and ε0 is the permittivity of free

space. r̂ij is a unit vector pointing from qi to qj.

Coulomb interactions fall off as 1
r
, which may be compared with the 1

r6 dependence

in the tail of the Lennard-Jones potential.

Since the interaction is so long-ranged, it demands a rigorous treatment of electro-

statics over many surrounding image cells; this may by achieved using the Ewald

summation2 (Ewald, 1921). Here each point charge is given a Gaussian halo of

charge which has the same magnitude but the opposite sign. The haloes screen the

point charges making them short-ranged. In order to compute the Ewald energy, we

must sum over these new short-ranged interactions in real space, and those of the

haloes and their anti-haloes in reciprocal space (which are periodic due to periodic

boundary conditions).

The Ewald sum is based on the identity

∑

l

1

|R1 + l − R2|
=

2√
π

∑

l

∫ ∞

η

exp
(

− |R1 + l − R2|2 ρ2
)

dρ

+
2π

Ω

∑

G

∫ η

0

exp

(

−|G|2
4ρ2

)

exp (i(R1 − R2) · G)
1

ρ3
dρ. (4.7)

where l and G are real and reciprocal space lattice vectors respectively. Ω is the

simulation cell volume.

The Ewald energy is then given by

2The Ewald sum is discussed in some detail by Frenkel and Smit (1996), pp. 347–354.
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EEwald =
1

2

∑

i,j

∑

l
′

erfc (η |Ri + l − Rj|)
|Ri + l − Rj|

+
1

2

∑

i,j

ZiZj

4π

Ω

∑

G 6=0

1

|G|2 exp

(

−|G|2
4η2

)

cos ((Ri − Rj) · G)

− 1

2

∑

i,j

ZiZj

π

η2Ω
−
∑

i

Zi

η√
π
. (4.8)

Higher values of the parameter η give narrower haloes, and consequently shorter

ranged Coulomb interactions that must be dealt with in real space. However, as the

haloes get narrower, a larger number of plane waves in reciprocal space are required

to model them making the reciprocal space summation more expensive. We must

therefore find an optimum value of η which reaches a compromise between the real

and reciprocal space summations.

In the implementation used here, η was estimated through Equation 4.9:

η =

√
π

(|a| |b| |c|)
1

3

(4.9)

where a, b and c are simulation cell vectors (?). Further, there exists a cut-off

radius in the real term of magnitude rcut = η |R1 + l − R2|, and a similar spherical

cut-off in recipocal space gcut = (|G| /2η); rcut = gcut is hard-wired into the code.

An expression for the Ewald forces may be found by differentiating Equation 4.8:

F Ewald
i =

1

2
Zi

∑

j

Zj

∑

l

η3

(

2√
π

exp
(

−η2 |Ri + l − Rj|2
)

η2 |Ri + l − Rj|2
+

erfc (η |Ri + l − Rj|)
η3 |Ri + l − Rj|3

)

(Ri + l − Rj)

+
1

2
Zi

∑

j

Zj

4πη

Ω

∑

G6=0

G

|G|2
exp

(

−|G|2
4η2

)

sin ((Ri − Rj) · G) (4.10)

In addition, the Ewald contribution to the stress tensor

σαβ =
1

Ω

∂EEwald

∂εαβ

(4.11)
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is given by (Nielsen and Martin, 1982):

∂EEwald

∂εαβ

=
1

2

∑

i,j

ZiZj

∑

l

−η3

(

2√
π

exp
(

−η2 |Ri + l − Rj|2
)

η2 |Ri + l − Rj|2
+

erfc (η |Ri + l − Rj|)
η3 |Ri + l − Rj|3

)

× (Ri + l − Rj)α
(Ri + l − Rj)β

+
1

2

∑

i,j

ZiZj

4π

Ω

∑

G6=0

1

|G|2
cos ((Ri − Rj) · G)

(

2GαGβ

|G|2

(

|G|2
4η2

+ 1

)

− δαβ

)

+
1

2

(

∑

i

Zi

)2
π

Ωη2
δαβ. (4.12)

4.3 Empirical potentials for water

Many properties of water models — empirical or otherwise — have been sum-

marised by Guillot (2002). Path integral molecular dynamics — to be met in Chap-

ter 5 — makes heavy computational demands. It is therefore desirable for inter-

molecular interactions to be calculated as cheaply as possible. Empirical models

for water have a huge speed advantage over ab initio methods, particularly consid-

ering the number of molecules which are simulated. A suitable empirical potential

was therefore chosen for the present simulations. Here, after a brief digression,

follows a description of the empirical model used.

4.3.1 SPC/E potential

Before we come to discuss the TIP5P potential, we shall mention the SPC/E poten-

tial in passing. The Simple Point Charge (Extended), or SPC/E model (Berendsen

et al., 1987), has been used ubiquitously for the simulation of water and constitutes

a first attempt to build something of the electronic polarisation into a rigid body

intermolecular potential.

The functional form is given in Equation 4.13:

V (r) =

3
∑

i=1

3
∑

j=1

qiqj
rij

+ 4ε0

[

(

σ0

rOO

)12

−
(

σ0

rOO

)6
]

(4.13)
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Figure 4.3: Molecular geometry of the SPC/E model for water.

rOH (Å) 1.0
θHOH (deg) 109.47
qH (e) +0.4238
qO (e) -0.8476
σO (Å) 3.166
εO (kcal/mol) 0.155

Table 4.1: Parameterisation of the SPC/E model for water (Berendsen et al., 1987).

The molecular geometry for the SPC/E potential is shown in Figure 4.3, and the

parameterisation is given in Table 4.1.

The SPC/E model does show a density maximum, though it occurs at -38◦C and

1 atm pressure (Baez and Clancy, 1994). Even though the model was parameterised

to capture something of electronic polarisation, the TMD remains far removed from

experiment.

4.3.2 TIP5P potential

Having been found to give an excellent description of the density maximum, the

TIP5P potential (Mahoney and Jorgensen, 2000, 2001) was chosen for the present

simulations. This model has a fixed molecular geometry which is approximately

tetrahedral; this reflects the roughly tetrahedral character of the electron density in

a water molecule. It is not, however, the first tetrahedral–like model; the ST2 model

before it (Stillinger and Rahman, 1974) adopted such a form, although it involved

computational complexities which have been shed in the TIP5P potential.

The potential has the mathematical form given in Equation 4.14:
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V (r) =

4
∑

i=1

4
∑

j=1

qiqj
rij

+ 4εO

[

(

σO

rOO

)12

−
(

σO

rOO

)6
]

. (4.14)

The molecular geometry is illustrated in Figure 4.4, and the parameterisation given

in Table 4.2. Note that there are two sets of parameters; one set is for use with

classical calculations, and the other for a path integral treatment. Both parameter-

isations were constructed so as to reproduce the correct liquid density at 25◦C and

1 atm pressure.

The number of molecules for the present simulations was chosen to the 216 for

which the TIP5P(PI) potential was parameterised. The same particle number was

kept for classical simulation, though the TIP5P model was strictly parameterised

for 512 molecules, for reasons of computational speed. However, we shall see in

Chapter 7 that any structural changes caused by a small shift in the precise location

of the density maximum due to finite size effects in classical water is tiny when

compared with the structural changes upon activation of path integrals, and hence

in no way hinders the relevant discussion presented there.

The necessity for the special quantum parameterisation has its origin in the method

by which the model was parameterised — to comply with experiment. Experimental

data already has the quantum effects included, and consequently the classical pa-

rameterisation will capture something of those quantum effects, but the description

will be incomplete. Indeed Mahoney and Jorgensen (2001) applied path integrals

to the TIP5P (classical) parameterisation and the density maximum was seen to

become much worse, undergoing a significant downward shift. Employing the clas-

sical parameterisation in a path integral calculation will result in quantum effects,

to some extent, being included twice. It is worthy of note that Mahoney and Jor-

gensen (2001) found that path integral simulation — using the TIP5P(PI) potential

— performs better than classical simulation; Mahoney and Jorgensen note that the

energy, density and heat capacity are better than those given by the TIP5P model.

It should be noted that while Table 4.2 lists eight parameters, there are in fact only

four free parameters: rOL, qH, σO and εO. (qLP is taken to be equal and opposite

to qH to give molecular charge neutrality. The parameters rOH and θHOH are set to

their experimental gas phase values, and θLOL is set to the the angle between arms

of a perfect tetrahedron.

Mahoney and Jorgensen point to previous work when they comment that a common

problem with empirical potentials may be the lack of a double minimum in the po-

tential energy as a function of the acceptor angle θacceptor; the double well in the
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Figure 4.4: Molecular geometry of the TIP5P model for water.

Classical Quantum (5 beads)
rOH (Å) 0.9572 same
rOL (Å) 0.70 same
θHOH (deg) 104.52 same
θLOL (deg) 109.47 same
qH (e) +0.241 +0.251
qLP (e) -0.241 -0.251
σO (Å) 3.12 same
εO (kcal/mol) 0.16 same

Table 4.2: Parameterisation of the TIP5P and TIP5P(PI) models for water.
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Figure 4.5: Potential energy as a function of acceptor angle (τ ≡ θacceptor here).
Curves for other TIPnP potentials are shown. The solid line results from ab initio
calculation. Taken from Mahoney and Jorgensen (2000).

TIP5P potential is illustrated in Figure 4.5, together with curves using other meth-

ods. Such a double well serves to encourage the lone pair lobes to point towards the

donor hydrogen atom, and in doing so promotes tetrahedral order.

Path integral calculations3 have been performed using the TIP5P model, and it was

found that there was a downward shift in the density maximum to T . 248 K; in

light of this, Mahoney and Jorgensen (2001) have reparameterised the TIP5P poten-

tial for use with path integral calculations — the new parameterisation is known as

the TIP5P(PI) model.

Recent concerns have been raised over long-range interactions (Lísal et al., 2002),

which seem to result from the fact that the TIP5P model was parameterised using a

cut-off radius for both the Lennard-Jones and Coulomb interactions. These authors

note that the density maximum is slightly shifted upon application of an Ewald sum-

mation. The resulting density profile ρ(T ), however, is broader than that obtained

by TIP5P with a simple cut-off scheme — visually closer to the broadness of the

experimental profile. While there is perhaps a case for the reparameterisation of

the TIP5P potential incorporating the Ewald sum, for the moment we note that both

the classial and quantum models were parameterised using the same cut-off radius.

The possibility that the precise location of the TMD may be shifted is of little con-

sequence to the results presented in this thesis. Indeed, we shall see that structure

functions presented in Chapter 7 point to the density maximum being located at the

3Path integrals are introduced in Chapter 5.
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correct temperature.

Constructing lone pair site positions

Lone pair interactions influence the force on the molecular centre of mass, and

also the torque about it. While they are needed for a true implementation of the

model, they cannot be treated dynamically as atoms — they have no mass and there

is nothing for intermolecular forces to act upon. Rather than storing the position

vectors of the lone pair interaction sites, they can be constructed from the oxygen

and hydrogen position vectors. This section describes a method by which this may

be achieved.

The direction ŷ′ is easily found by subtracting one hydrogen atom position vector

from the other. Taking the cross product of their position vectors with the oxygen

atom as the origin gives us x̂′. The unit vector ẑ′ can then be found by crossing the

unit vectors x̂′ and ŷ′.

Mathematically,

ŷ′ =
r1

OH − r2
OH

|r1
OH − r2

OH|
(4.15)

and it follows that

x̂′ =
r2

OH × r1
OH

|r2
OH × r1

OH|
(4.16)

and finally

ẑ′ = x̂′ × ŷ′ (4.17)

Having found the body-fixed coordinates of the molecule, we can then use spherical

polar coordinates to place the interaction sites in the correct places. Recalling that

x′ = r sin θ cosφ (4.18)

y′ = r sin θ sinφ (4.19)

z′ = r cos θ (4.20)

we see that
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x′ = ±rOL sin

(

1

2
θLOL

)

(4.21)

y′ = 0 (4.22)

z′ = rOL cos

(

1

2
θLOL

)

(4.23)

Finally, we need to project these on to the space-fixed frame, and add the oxygen

position vector to give us position vectors relative to the global origin.

r1
L =







rOL sin
(

1
2
θLOL

)

x̂′ · x̂
0

rOL cos
(

1
2
θLOL

)

ẑ′ · ẑ






+ rO (4.24)

r2
L =







−rOL sin
(

1
2
θLOL

)

x̂′ · x̂
0

rOL cos
(

1
2
θLOL

)

ẑ′ · ẑ






+ rO (4.25)

Force and torque contribution from lone pair sites

We have just shown how lone pair positions may by calculated, eliminating the need

to propagate them explicitly in a simulation. The difficulty now is that we must find

a way of accounting for their contribution to the force on the centre of mass (CM)

of the molecule as a whole, and also the torque.

The first task, is to compute the force on the molecular centre of mass, and also the

torque about the same:

fCM =
4
∑

i=1

f i (4.26a)

τ =

4
∑

i=1

ri × τ i (4.26b)

where position vectors are those relative to the centre of mass and i is an index

representing the four charged interaction sites in the molecule.

The forces required to reproduce the desired force on the centre of mass are:
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f i =
mi

M
fCM (4.27)

where M is the the total mass of the molecule, and the i runs from 1 → 3 and is an

index of the three atoms in the molecule. With the correct force weighting according

to the atomic masses — as above — there will be no unwanted torque generated by

these forces.

Calculating the forces required to generate the desired torque may be achieved

through the use of a system of Lagrange multipliers such that

fd
i = f

g
i + λif

g
i (4.28)

where i is an index representing the three atoms within the molecule. f d and f g

denote desired and guessed forces respectively. The λi are calculated so as to ensure

that the torques about the three Cartesian axes are simultaneously those which are

desired.

Forces required to generate desired torques — i.e. the guessed forces — may be

estimated using the relation

τ × r = r2f − r (r · f) (4.29)

in the special case where (r · f) = 0. We must now find three position vectors

for each atom, each orthogonal to one of the Cartesian directions (such vectors are

subsequently primed). Once achieved, we may calculate the moment of inertia of

the molecule about each Cartesian axis:

Iα =

3
∑

i=1

mi |r′iα|
2 (4.30)

where α is an index of a Cartesian direction. Note that the oxygen atom also con-

tributes to the moment of inertia, since it does not quite lie on the centre of mass.

Employing the rotational analogue of Equation 4.27, the initial guesses at the re-

quired forces are

f i =

3
∑

α=1

mi

Iα
(τα × r′

iα) . (4.31)
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We may now move on to calculate the Lagrange multipliers required to correct our

initial guess such that the desired torque on the molecule is recovered. τ d and τ g

shall represent the desired and “guessed” torques respectively. To do this we define

a matrix A with elements of the form (rα × fα)β, where α runs from 1 → 3 and

denotes an atom in the molecule, while β also runs from 1 → 3 and is the index of

a component of torque. The matrix A then has the form

A =







(r1 × f1)1 (r2 × f 2)1 (r3 × f3)1

(r1 × f1)2 (r2 × f 2)2 (r3 × f3)2

(r1 × f1)3 (r2 × f 2)3 (r3 × f3)3






. (4.32)

such that







τ d
1 − τ

g
1

τ d
2 − τ

g
2

τ d
3 − τ

g
3






= A







λ1

λ2

λ3






(4.33)

where each element represents the total torque around each Cartesian axis, and in-

cludes contributions from all three atoms in the molecule with multipliers λ1, λ2

and λ3. It follows that

A
−1







τ d
1 − τ

g
1

τ d
2 − τ

g
2

τ d
3 − τ

g
3






=







λ1

λ2

λ3






. (4.34)

The λi may then be obtained by straight-forward matrix inversion. With the knowl-

edge of the Lagrange multipliers, the force on each atom which must be applied to

generate the desired torque may then be found through Equation 4.28.

4.4 Energy surfaces

The TIP5P contains no account of the electronic quantum properties of water. Here

we shall compare the potential energy surface of the dimer as a function of the O-O

separation and the bond bending angle θbend calculated by empirical means with a

surface using a rigorous treatment of electronic quantum behaviour.
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4.4.1 Density functional theory

Hohenberg and Kohn (1964) showed that the ground state energy of a system was

uniquely determined by the ground state charge density:

n (r) = N

∫

· · ·
∫

|Ψ(r2, . . . , rN)|2 d3r2 . . .d
3rN (4.35)

where N is the number of interacting electrons. Later, Kohn and Sham (1965)

showed that the total energy of the system could be expressed in terms of orbitals

of non-interacting quasi-particles {ψi} in some external potential; the total energy

is expressed in Equation 4.36:

E [{ψi}] = 2
∑

i

∫
[

− ~
2

2m

]

∇2ψi d
3r +

∫

Vion(r)n(r) d3r

+
e2

2

∫

n(r)n(r′)

|r − r′| d3r d3r′ + Eion (|RI |) + Exc [n(r)] . (4.36)

The first term is that which relates to quasi-particle kinetic energy. The second

handles electron-ion interactions, the third concerns electron-electron interactions

and the fourth describes ion-ion interactions. Exc is an energy term into which all

remaining effects of electron exchange and correlation are packed. The exchange

energy relates to the lowering of the Coulomb energy as a result of the spatial sep-

aration between electrons with parallel spins, due to wavefunction antisymmetry;

correlation refers to the lowering of the Coulomb energy owing to the spatial sepa-

ration between electrons with opposite spins. The problem, then, reduces to solving

a system of Schrödinger-like single particle equations:

[

− ~
2

2m
∇2 + Vion (r) + VH (r) + Vxc (r)

]

ψi (r) = εiψi (r) (4.37)

where the {εi} represent eigenvalues of the orbitals and VH is the electronic Hartree

potential given by

VH(r) = e2

∫

n (r′)

|r − r′| d3r′ (4.38)

and Vxc is the exchange-correlation potential given by the functional derivative
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Figure 4.6: Total energy of the water dimer as a function of basis set size. The
energy is sufficiently converged at about 380 eV.

Vxc(r) =
δExc [n(r)]

δn(r)
. (4.39)

Single point energies were calculated here using the Density Functional Theory

code CASTEP (Segall et al., 2002). The Perdew Burke Ernzerhof (PBE) functional

(Perdew et al., 1996) was chosen to handle electron exchange and correlation, in

line with recent simulation (Schwegler et al., 2000).

4.4.2 Converging energy & cell size

In theory, an infinitely large basis set size is required to fully match the wavefunc-

tion. In practice, properties such as total energy are sufficiently converged at some

finite basis set size. Figure 4.6 shows the total energy of a water dimer as a function

of basis set size.

We may further reduce the number of required plane waves by choosing a supercell

which is just sufficiently large to prevent the dimer interacting with itself through

periodic boundary conditions. Figure 4.7 shows the total energy of the dimer as

a function of box size for each of the different dimensions. Here a box size of

(x, y, z) = 9 × 9 × 12 was used, ensuring enough padding so that the dimer does

not interact with itself for all configurations for which the energy was calculated.
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Figure 4.7: Total energy of the water dimer as a function of simulation cell size.
The dimer lies along the x-axis.

4.4.3 Potential energy & bond bending

Figure 4.8 shows the potential energy as a function of oxygen-oxygen separation

rOO and bending angle in the water dimer4, as calculated using the PBE functional.

It is worthy of note that the surface shows a minimum at rOO ' 2.8 Å, which as

we shall see is the the position of the first peak in the radial distribution function in

water close to the density maximum.

4.4.4 Comparison with TIP5P and SPC/E

Having calculated the potential energy surface with respect to bond bending angle,

me may now compare the surface with those generated by the TIP5P and TIP5P(PI)

potentials by subtracting the ab initio surfaces from them; these difference sur-

faces are presented in Figures 4.9(a) and 4.9(b). The TIP5P and TIP5P(PI) surfaces

would appear to be relatively identical beyond an O-O distance of about 2.8 Å, be-

low which very few molecules reside in the condensed phase!

4.5 Quantum corrections

Quantum effects may be cheaply accounted for, to some degree, through the Feynman-

Hibbs variational treatment5. This method adds something something of quantum

4The acceptor angle was constrained to the value of 1

2
θLOL as given by the TIP5P potential.

5Feynman and Hibbs (1965), Chapter 11.
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functional.
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Figure 4.9: Classical and quantum TIP5P minus ab initio difference surfaces.
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effects to a classical intermolecular potential to form an effective potential. Guillot

and Guissani (1998) applied this method to the simulation of water, and found good

agreement path integral calculations. The advantage of the variational approach lies

in the massively reduced computational load, though at the expense of also reducing

the information which may be extracted from such simulations, such as the radius

of gyration to be met in Chapter 5.

Grigera (2001) noted that some past attempts at the simulation of heavy water sim-

ply use the SPC/E model with doubled proton masses (Steinbach et al., 1991; Guzzi

et al., 1999), which is not quite correct due to the important differences in nuclear

quantum behaviour. Grigera gives credit to the simulations of Kuharski and Rossky

(1985) and Del Buono et al. (1991) which used path integral techiques on top of

classical potentials. The zero-point motion and tunnelling in the differing isotopes

would therefore have a proper treatment. Grigera, then, has reparameterised the

SPC/E potential for use with heavy water. This was necessary because a classical

potential must capture at least something of the quantum mechanics when doubling

the proton masses.

The TIP5P(PI) potential has never been tested for heavy water. Path integral calcu-

lations of heavy water have been attempted with the original TIP5P parameterisation

(Mahoney and Jorgensen, 2001), and the density maximum was found to undergo

an upward shift, though by an inflated amount when compared with experiment.

Such quantum differences are incorporated automatically as a result of performing a

proper quantum treatment of nuclei; there is no need to attempt to build differences

into the modelling potential. We may therefore apply the TIP5P(PI) potential to

heavy water with a grounding of confidence.

4.6 Summary

Empirical models offer a comparatively inexpensive alternative to more rigorous

methods such as ab initio simulation, which becomes important when faced with

the computational demands of path integral simulation, to be met in Chapter 5.

The TIP5P model was chosen for this work, owing its very good density profile

ρ(T ) as reported by Mahoney and Jorgensen (2000, 2001). 216 molecules were

used in the simulations for this work, as dictated by the parameterisation of the

TIP5P(PI) model.

The potential energy surfaces of both the TIP5P and TIP5P(PI) parameterisations
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demonstrate excellent agreement with ab initio calculation above an O-O radial

separation of ' 2.8 Å.



Chapter 5

Path Integrals

5.1 Introduction

The path integral formulation of quantum mechanics (Feynman and Hibbs, 1965;

Feynman, 1948) affords a computationally simple way of accounting for quantum

mechanical zero point motion and tunnelling in molecular dynamics. In this chapter

we shall explore the fundamentals of path integrals through to their application in

computer simulation.

Sections 5.2 and 5.3 describe the path integral itself. Section 5.4 shows how the path

integral may take on the form of a partition function and in so doing builds a bridge

between quantum and statistical mechanics. The practical implementation of path

integrals in molecular dynamics is the topic of Section 5.5, and Section 5.6 concerns

itself with two particular cases: the harmonic oscillator and the free particle.

5.2 The path integral

Under the path integral scheme, the probability amplitude of a particle being at

some particular position at some particular time is the summation of the probability

amplitude of having come from some starting point, with all possible starting points

summed over. This is expressed mathematically in Equation 5.1.

Ψ(x′, t′) =

∫

dx û(x′, t′; x, t)Ψ(x, t) (5.1)

The term û(x′, t′; x, t) is called the propagator; it represents the probability of a

103
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particle arriving at point (x′, t′) having travelled from point (x, t) on the assumption

that it was certainly at (x, t) to begin with. The product of the propagator and the

wavefunction Ψ(x, t) represents the probability amplitude that the particle arrives at

(x′, t′) having travelled from (x, t), since Ψ(x, t) represents the probability ampli-

tude of the particle being at (x, t) in the first instance. In this way, by summing over

all possible positions, we may arrive at Ψ(x′, t′) — the total probability amplitude

at (x′, t′).

The path integral formulation of quantum mechanics, then, is concerned with likely

paths between different points in space and time; we go on to develop this notion of

likely and unlikely paths in the following section.

5.3 The propagator

The path integral propagator sums over possible paths between two points, and it is

this to which we turn our attention now.

5.3.1 Principle of least action

In classical mechanics, the trajectory of a particle between two points is that which

minimises the action; that is, the path x(t) which minimises the functional S[x]:

S[x(t)] =

∫ t2

t1

dt L[x(t)] (5.2)

where L is the Lagrangian function L = T − V .

The path represented in Figure 5.1 is an unlikely path for a free particle, for exam-

ple; that would travel in a straight line between two points, because if it were to

follow curved trajectory it would either have to travel at the same speed but take

more time to complete the journey, or it would have to travel faster. Both of these

act to push up the action. Figure 5.2 shows the height of a ball thrown upwards in a

gravitational field as a function of time. While it is desireable for the ball to gain as

much height as possible as quickly as possible — for this reduces the action through

the negative potential term — a rapid height gain would necessitate a large kinetic

energy, which acts to increase the action. The path we see is therefore a trade-off

between maximising the potential energy and minimising the kinetic energy over

the path.
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Figure 5.1: A possible path through space and time. The dotted lines indicate pos-
sible positions through which a path could pass at each time slice. The propagator
integrates over all such possible positions, keeping the end points fixed.
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Figure 5.2: Height of a ball thrown upwards in a gravitational field as a function of
time. The solid line shows the classical path, and the broken line shows a line which
is close to the classical path. The trajectory is a trade-off between the desire for a
large potential energy as soon as possible against the resulting large kinetic energy.
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Figure 5.3: Illustration of the deviation δ from the classical path at a single slice in
time.

5.3.2 Form of the propagator

Refer again to Figure 5.1, and note that time is divided into a series of slices. The

summation over all possible paths is achieved by summing over all possible posi-

tions at each time slice. With this in mind, we examine the form of the propagator

as given in Equation 5.3:

û(x′, t′; x, t) =

∫ x(t′)=x′

x(t)=x

Dx(t′′) exp

{

i

~
S[x(t′′)]

}

. (5.3)

Dx denotes integrations over all possible positions at each time slice. A rigor-

ous derivation of this result starting from Schrödinger’s equation is given in Ap-

pendix A.

When S[x] is a minimum, its first order correction with respect to small changes

in x is zero. The exponential terms corresponding to paths close to the S[x] =

minimum path have similar phases and will tend to constructively interfere, thereby

increasing the value of û(x′, t′; x, t). Conversely, far away from the action minimum

the larger phase difference between neighbouring paths will cause the exponentials

to destructively interfere. The most probable paths are therefore those close to the

S[x] path.

Figure 5.3 defines a quantity δ which represents the magnitude of deviation from

the straight line trajectory of a free particle at a single time slice. The real part of the

complex exponential in the propagator is shown as a function of δ for two wildly

different particle masses in Figure 5.4. Note that the spatial frequency of oscillation

increases with increasing |δ|. As the action is increased, neighbouring paths have

more wildly different phases; when all possible paths are summed over, paths with
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Figure 5.4: Real part of the complex exponential for light and heavy free particles,
both at room temperature.

high action tend to destructively interfere and cancel each other. On careful exam-

ination of the scales on the abscissa axes, there is a striking difference between the

spatial frequency corresponding to the two masses. For the 1 kg mass, the magni-

tude of δ at which phase cancellation begins to set in is vanishingly small. This is

not so for the hydrogen nucleus; here the magnitude of δ out to the first trough is

about 0.5 Å, which is on a par with the length scales found in the microscopics of

water. The quantum delocalisation of hydrogen nuclei — even at room temperature

— can be seen to be non-negligible.
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5.3.3 Classical and quantum regimes

We have seen the importance of the location of the action minimum and touched

on differences between classical and quantum behaviour for the 1 kg mass and the

hydrogen nucleus respectively. Let us now ponder further the significance of the

magnitude the action at its minimum. We note that S[x] is dimensionally equivalent

to ~, and [~] = Js. Energies in the microscopic world are so very much smaller than

in the macroscopic world (kBT ≈ 1
40

eV at room temperature), hence the action for

a microscopic particle will also be very much smaller. We see, then, that we enter

the quantum regime when the action becomes of the order of ~. The oscillation of

the exponential term over neighbouring paths becomes much less wild, and there is

more tolerance in how far a path can stray from the S[x] = minimum or the classical

path before cancellation between neighbouring paths begins to occur.

5.4 Path integrals in imaginary time

In this section we shall see that it is possible to express the trace over the quantum

density matrix as a classical partition function in imaginary time.

5.4.1 Propagators as density matrices

We begin with the density matrix itself, as given in Equation 5.4:

ρ(x, y) =
∑

n

φn(x)φ∗
n(y)e−βEn (5.4)

The partition function for the system is then given by

Z =

∫ +∞

−∞

ρ (x, x) dx = Tr [ρ] . (5.5)

Consider now the quantum mechanical state vector expanded on a complete set of

eigenstates of position. To evolve the state vector through time, the appropriate

time evolution operator is applied to each of the eigenstates. Expressions for the

wavefunction at time 0 and a later time t are given in Equation 5.6.
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|Ψ (x, 0)〉 =
∞
∑

n=1

cn |φn(x)〉 (5.6a)

|Ψ (x, t)〉 =

∞
∑

n=1

cne−
iEnt

~ |φn(x)〉 (5.6b)

We have that

cn = 〈φn(y) |Ψ (y, 0)〉 (5.7)

and Equation 5.6b therefore becomes

|Ψ (x, t)〉 =

∞
∑

n=1

|φn(x)〉 〈φn(y) |Ψ (y, 0)〉 e−
iEnt

~ . (5.8)

If we now make the time variable imaginary such that t = −iβ~ and drop out of

Dirac notation, we find

Ψ (x,−iβ~) =

∫ +∞

−∞

∞
∑

n=1

φn(x)φ
∗
n(y)e−βEnΨ(y, 0) dy. (5.9)

Note that Equation 5.9 takes the form of a path integral as expressed in Equation 5.1.

Further, the corresponding propagator takes the form

û (x,−iβ~; y, 0) =
∞
∑

n=1

φn(x)φ∗
n(y)e−βEn (5.10)

which is nothing less than the quantum density matrix! This is a very important

result. It tells us that the path of a particle through imaginary time describes its

quantum characteristics. This notion is elucidated in Subsection 5.4.2.

5.4.2 Path integral as a partition function

We saw above that the path integral propagator is formally equivalent to the quan-

tum density matrix when the time variable is imaginary.

Imaginary time may be thought of as a parameter which allows us to add quantum

characteristics onto a classical world; if we were to look along the axis of imaginary



Chapter 5. Path Integrals 110

���

�

�

�

Figure 5.5: At any slice in real time t there is a range of positions in the quantum
distribution of a particle parameterised by imaginary time τ . Black circles represent
possible positions in the quantum spread, and the jagged lines which connect them
represent harmonic springs. The position x0 denotes the mean or centroid position
of the particle.

time — as we do when we take a snapshot at a single slice in real time — we

would see all possible positions of the particle at that moment in real time. This is

illustrated in Figure 5.5. For a classical particle, the path would be a straight line;

the position would remain to be x0 for all points in imaginary time. However in the

quantum world there is some freedom to deviate from this preferred path and we

see some spread in position. We shall return to Figure 5.5 when we discuss path

integral molecular dynamics in Section 5.5.

To show that the above concept is justified, we follow Simons (2000) and find the

partition function for a piece of string in an external potential, as shown in Fig-

ure 5.6. The string represents the path of a quantum particle through imaginary

time.

The ends of the string correspond to the same point in x. Let a small portion dτ

be displaced by an amount d [x(τ)]. Assuming that the displacement is sufficiently

small to allow the tension T to remain constant, the potential energy stored in the

string due to its extension dτ is1

1Using the compact notation dτx ≡ dx

dτ
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Figure 5.6: A piece of string in an external potential, representing a path through
imaginary time. We will find that we can sample possible quantum states by con-
sidering the motion of this string dynamically in a simulation.

dV1 = T
[√

dτ 2 + dx2 − dτ
]

= Tdτ





√

1 +

(

dx

dτ

)2

− 1





' Tdτ







1 +
1

2

(

dx

dτ

)2

+O

[

(

dx

dτ

)2
]2

− 1







' T

2
(dτx)

2 dτ

(5.11)

Integrating over the whole string,

V1 [dτx] =
T

2

∫ L

0

(dτx)
2 dτ (5.12)

where L is the total length of the string.

We have a second contribution to the total potential energy from the external po-

tential V (x). If length element dτ contributes an energy V [x(τ)] dτ to the total

energy.

V2 [x(τ)] =

∫ L

0

V [x(τ)] dτ (5.13)

The total potential energy is just Vtot = V1 + V2. We may now write down the

partition function for the string:
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Z =

∫ +∞

−∞

dx0

∫

Dx(τ) exp (−βVtot)

=

∫ +∞

−∞

dx0

∫

Dx(τ)

exp

{

−β
∫ L

0

dτ

[

T

2

(

dx

dτ

)2

+ V [x(τ)]

]}

.

(5.14)

Note that we must perform the function integral over all space and integrate over

all possible start (and consequently end) points.

We may recover the classical limit by noting that if the kinetic term is small, ac-

cess to positions x far from the average — corresponding to different potentials

V [x] — will be restricted. In other words so long as deviations from the straight

path are small, the kinetic term becomes negligible and the potential will remain

approximately constant. In this case we can write

Z =

∫

dx0 e−βV (x0) (5.15)

This is just the partition function familiar from classical statistical mechanics! Note

that the functional integral has vanished, since there is no deviation in imaginary

time from x0.

Having found the partition function for the string, we now show that we may obtain

the same result by considering the path integral in imaginary time. First recall the

path integral propagator:

û(x′, t′; x, t) = exp

[

i

~

∫ t′

t

dt′′
(m

2
ẋ2 − V (x)

)

]

(5.16)

Let us make the switch to imaginary time, such that τ = it. It follows that

dx

dt
= i

dx

dτ
(5.17a)

(

dx

dt

)2

= −
(

dx

dτ

)2

(5.17b)

Using Equation 5.17b in Equation 5.16 we obtain
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û(x′, τ ′; x, τ) =

∫

Dx(τ ′′) exp

{

−1

~

∫ τ ′

τ

dτ ′′

[

m

2

(

dx

dτ ′′

)2

+ V [x]

]}

(5.18)

Compare this with Equation 5.14. The path integral has the analytic form of the

partition function for the string when the “time” variable is imaginary!

Taking the kinetic (tension) contribution as being negligible

û(x0, τ
′; x0, τ) =

(

m

2π~(τ ′ − τ)

)
1

2

exp

{

−(τ ′ − τ)

~
V (x0)

}

(5.19)

Also, we integrate the propagator around a closed loop such that

x0 = x(τ = 0) = x(τ = β~):

û(x0, β~; x0, 0) =

(

m

2π~(β~ − 0)

)
1

2

exp

{

−(β~ − 0)

~
V (x0)

}

(5.20)

If we now integrate the propagator over all possible beginning (and consequently

end points), we observe

∫

û(x0, β~; x0, 0) dx = Zclassical =

√

m

2π~2β

∫

e−βV (x0)dx0 (5.21)

which is again the classical partition function, only now the multiplicative constant

is known - this was not possible in classical physics.

5.4.3 Topology

Recall that in Subsection 5.4.2 we integrated around a closed loop when evaluating

the partition function; the paths which were integrated over began and ended on the

same point in space.

Compare the expression for the partition function in Equation 5.5 with the propaga-

tor of Equation 5.10. We obtain diagonal elements of the quantum density matrix

when paths begin and end on the same point; the partition function is then given by

the sum of those diagonal elements.

So then the path integral has periodic boundary conditions in imaginary time, with a

period of ∆τ = β~. Refer again to Figure 5.5, there a path integral loop is stretched

around the curved surface of a cylinder.
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5.5 Path integral molecular dynamics

We now move on to discuss how path integrals may be incorporated into molecular

dynamics simulation.

5.5.1 Discretisation

Section 5.4 revealed that a quantum particle may be thought of as a loop in real

space and imaginary time, which begins and ends on the same point in space. As

we traverse the axis of imaginary time we cycle though possible position realisations

of the particle. In reality the loop is continuous, but we must discretise it in order to

represent it inside a computer.

Denoting then number of points in imaginary time as P , the continuous path integral

takes the form

û(x′, τ ′; x, τ) = lim
P→∞

∫

dxP · · ·dx1

( m

2π~∆τ

)P

2

exp

{

−1

~

∫ τ ′

τ

dτ ′′

[

m

2

(

dx

dτ ′′

)2

+ V [x]

]}

. (5.22)

Since we are integrating over an imaginary time period of τ ′ − τ = β~, it then

follows that ∆τ ′′ = β~

P
. We may then write down the discrete form of the imaginary

time propagator, and hence the discrete partition function ZP :

Z ' ZP =

(

mP

2πβ~2

)
P

2
∫

dxP · · ·dx1

exp

{

−1

~

P
∑

s=1

β~

P

[

m

2

(

∆x

∆τ ′′

)2

+ V [x]

]}

=

(

mP

2πβ~2

)
P

2
∫

dxP . . .dx1

exp

{

−β
P
∑

s=1

[

mP

2β2~2
(xs+1 − xs)

2 +
V (xs)

P

]

}

(5.23)

Note that the exponential term in Equation 5.23 as the form exp−βH with Hamil-

tonian
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H =
1

2

mP

β2~2
(xs+1 − xs)

2 +
V (xs)

P
. (5.24)

That is to say, upon discretisation we may represent a path integral loop as a series

of balls in a loop topology connected with springs. We may easily read off the

required spring constant from Equation 5.24:

C =
mP

β2~2
=
mP (kBT )2

~2
(5.25)

We shall address the question as to how many path integral beads are required in

Subsection 5.5.6.

5.5.2 The classical limit

As temperature is increased, the length of the path through imaginary time — given

by β~ = ~

kBT
— becomes smaller, tending to zero in the limit of infinitely high

temperature. In addition, the spring constant expressed in Equation 5.25 increases.

So then, we may recover the classical particle by considering the high temperature

path integral loop; stiff springs prevent the position from deviating very far from the

centroid position x0 over the path and the path itself becomes shorter, reducing to a

point in the limit of infinite temperature.

We also note that the spring constant is mass dependent. Small masses result in

floppy springs, allowing greater deviation from the centroid position x0; lighter

particles suffer greater delocalisation.

5.5.3 Sampling

Refer again to Figure 5.5. There we see a schematic representation of a quantum

particle in molecular dynamics simulation. At any slice in real time t, the chain of

balls and springs which form the path integral loop take one path through imaginary

time; a path sampled from the distribution of possible paths. As real time progresses

— that is, as the path integral loop slides down the “tube” in Figure 5.5, the centroid

or “classical” position of the particle x0 samples possible points in phasespace. At

the same time, the shape of the path through imaginary time is constantly changing,

hence sampling possible paths through imaginary time. In sampling possible paths

through imaginary time, possible positions are sampled of a quantum particle at a
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Figure 5.7: Two rings in imaginary time representing two quantum particles. The
solid lines indicate harmonic interactions, whereas the dotted lines indicate interac-
tions due to the external potential.

single slice in real time. Note that we do not see real time quantum dynamics, since

we only ever sample one path through imaginary time for any slice in real time.

In Chapter 3 the idea of phasespace sampling was introduced; through the ergodic

hypothesis, time averages from molecular dynamics simulation become equivalent

to ensemble averages. We may now take this idea a little further and say that by

averaging over all real and imaginary time, we have access to quantum ensemble

averages.

5.5.4 Interactions

We have already discussed how the beads for a single particle experience harmonic

interactions with adjacent beads in imaginary time. Figure 5.7 illustrates how the

external potential enters the scene.

Just as the potential energy and forces depend on the phasespace configuration at a

single slice real time only, the same is true through imaginary time. As far as the

external potential is concerned, path integral particles only interact with one another

for independent slices in imaginary time; beads on the necklace for one particle only

see their counterparts on other atoms corresponding to the same point in imaginary

time. Note that Equation 5.24 tells us that each path integral bead only feels one

P th of the calculated external potential.
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5.5.5 Radius of gyration

The radius of gyration (RGY) of a particle is defined as the root mean square dis-

placement of its path integral beads from the centroid position. We can define a

radius-of-gyration matrix, given in Equation 5.26,

∆2
αβ =

1

P

〈

P
∑

s=1

(rα
s − rα)(rβ

s − rβ)

〉

(5.26)

where α and β are Cartesian directions (x, y, z), r represents the centroid position

of the particle, and P is the number of path integral beads. Equation 5.26 can be

rearranged for ease of computation to the form given in Equation 5.27

∆2
αβ =

1

P

〈

P
∑

s=1

rα
s r

β
s

〉

−
〈

rαrβ
〉

(5.27)

To allow for the possibility that a path integral ring for a single particle lies across

the simulation cell boundary, all beads for that particle must have the minimum

image criterion applied to them with respect to the first bead in imaginary time.

5.5.6 Convergence

In Subsection 5.5.1 it was seen that the path integral loop for a quantum particle

must be discretised in order to represent it inside a computer. How many beads

are required on the path integral loop? The radius of gyration provides a conve-

nient indicator of this; the number must be high enough to converge the degree of

quantum delocalisation. It would be a waste of resources to perform a path inte-

gral calculation with many more path integral beads than strictly necessary, as such

a calculation would not yield any more physical insight than a calculation with a

sufficient number of beads.

In applying path integral methods to TIP5P water, Mahoney and Jorgensen (2001)

note that P = 5 is a sufficient number for convergence. Further, the TIP5P(PI)

potential used presently was paratmeterised by Mahoney and Jorgensen using dis-

cretisation of this degree. It is therefore the P = 5 prescription which we use here.
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Figure 5.8: Illustration of a path integral segment. The circles represent path in-
tegral beads, and the jagged lines represent the connecting springs. us denotes the
displacement of bead s from its equilibrium position.

5.5.7 Vibrational modes

In order to ensure ergodicity in both real and imaginary time, the Langevin thermo-

stat described in Chapter 3 was applied separately for each point in imaginary time;

that is to say, the same random forces were not applied to all beads corresponding

to a given particle.

In the same way in which it is desirable for the Langevin damping time to be about

a factor of ten larger than the the slowest mode of interest in a classical system,

we also desire that the Langevin damping time is a similar relation to the slowest

vibrational mode of a path integral loop. To evaluate the slowest mode we may

borrow mathematics familiar from solid state physics, such as that given by Kittel

(1996) which we shall follow here.

We first write down the equation of motion for a single bead of a path integral loop,

as illustrated in Figure 5.8:

m
d2us

dt2
= C (us−1 − us) + C (us+1 − us) . (5.28)

Trying solutions of the form

us±1 = u0e
+iskae±ika (5.29)

we find

−mω2us = C (us+1 + us−1 − 2us) (5.30)

and hence
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ω2 =
2C

m
[1 − cos(ka)] (5.31)

or

ω =

(

4C

m

)
1

2

∣

∣

∣

∣

sin

(

ka

2

)∣

∣

∣

∣

. (5.32)

Recall that the path integral ring has a “circumference” of τ = β~. The allowed

wavenumbers are then given by

kβ~ = 2nπ (5.33)

The lowest wavenumber corresponds to n = 1, and we may therefore write

ω =

(

4C

m

)
1

2
∣

∣

∣
sin
( π

P

)∣

∣

∣
. (5.34)

Substituting in the spring constant revealed in Equation 5.25, we find

ω =

√
4P

β~

∣

∣

∣
sin
( π

P

)∣

∣

∣
. (5.35)

Of course, a path integral loop cannot be linear everywhere, rendering the above

analysis nothing more than an approximation. However, it may be seen from Equa-

tion 5.28 that the resultant force on any one bead due to the harmonic interaction is

smaller than if it were attached to only one nearest neighbour; the forces due to both

nearest neighbours in Figure 5.8 partially cancel, resulting in a smaller frequency

of oscillation in simple harmonic oscillator theory. The linear chain, then, repre-

sents the configuration which yields the vibrational mode with the lowest possible

frequency or longest possible period. This is sufficient for our needs, as we wished

to ensure that the Langevin damping time of Section ?? is longer than the lowest

frequency mode of the path integral loop.

For a temperature T = 275 K (the lowest used presently) and five path integral beads,

the lowest possible period of oscillation was found to be tlowest = 0.2 ps, which is

at least a factor of ten smaller than the Langevin damping times used for both light

and heavy water, as given in Section ??. It should be noted that this figure is the

same for both light and heavy water, since the bead mass drops out of the equations

above.



Chapter 5. Path Integrals 120

5.6 Particular cases

In Subsection 5.5.5 we met the radius of gyration of a quantum particle. Here

we consider the theoretical radius of gyration for the simplest non-zero external

potential — the harmonic potential — and also that for the free particle.

5.6.1 Harmonic oscillator

The expression for the radius of gyration for the harmonic oscillator in one dimen-

sion is given by Gillan (1988), and its functional form is derived in Appendix A:

∆2 =
1

βmω2
0

[

1

2
β~ω0 coth

(

1

2
β~ω0

)

− 1

]

. (5.36)

In Chapter 6 we shall be concerned not only with the magnitude of ∆, but also

with its uncertainty; we therefore find here derivatives required for the estimation

of uncertainties.

Noting the relation ω0 =
√

C/m we may propagate the error in the spring constant

C to find the corresponding theoretical error on the radius of gyration in a given

direction. Defining

α =
β~C

1

2

2m
1

2

(5.37)

and noting that ω0 =
√

C/m for the harmonic oscillator, we may re-write Equa-

tion 5.36 as

∆2 =
kBT

C
[α coth(α) − 1] . (5.38)

The required derivatives are then:

∂∆

∂C
=

(

1

4βC3

)
1

2

[α coth(α) − 1]
1

2

+
~

8C

(

β

m

)
1

2

[

coth(α) − α csch2(α)
]

[α coth(α) − 1]
1

2

(5.39)

and



Chapter 5. Path Integrals 121

∂∆

∂T
=

(

kB

4TC

)
1

2

[

α coth(α) − 1 +
α2 csch2(α) − α coth(α)

α coth(α) − 1

]

. (5.40)

5.6.2 Free particle

The radius of gyration for the free particle may be found by taking the limit as

ω0 → 0 of the expression for the harmonic oscillator seen in Equation 5.36.

Substituting for cosh(x) & sinh(x) with their exponential representations and keep-

ing only leading terms, we find

∆2 =
~

2

12mkBT
. (5.41)

Further, the derivative with respect to the temperature T is also of interest for esti-

mating the uncertainty on ∆ in Chapter 6.

∂∆

∂T
= −1

2

~√
12mkBT 3

(5.42)

5.7 Summary

The path integral formulation of quantum mechanics concerns itself with possible

paths through space and time; likely paths are those which constructively interfere

with their neighbours. The trace of the quantum density matrix may be expressed

as a classical partition function in imaginary time, thus providing a neat bridge

between the domains of quantum and statistical mechanics. Motion in imaginary

time may be thought of as a way of adding quantum effects to a classical world.

Incorporating path integrals into molecular dynamics allows a particle to explore

likely paths through imaginary time, and further to explore possible centroid posi-

tions; this extends the ensemble averages of classical molecular dynamics to quan-

tum ensemble averages for the system.
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Delocalisation

6.1 Introduction

In this chapter we shall take a look at the magnitude of quantum delocatisation on

activation of the quantum treatment of nuclei. Figure 6.1 shows a shapshot of water

taken from such a calculation. The white hydrogen atoms take on a “cloud-like”

character; each one is seen there as a few possible position realisations at a single

slice in real time.

Our principal tool for measuring the magnitude of delocalisation will be the radius

of gyration tensor, as introduced in Subsection 5.5.5. For non-spherical delocalisa-

tion, the RGY tensor will be in general highly non-diagonal. To extract meaningful

information from PI simulation, the RGY matrix was diagonalised, yielding a set

of three eigenvalues representing the magnitude of delocalisation in three orthog-

onal spatial directions. The mean square delocalisation — or deviation from the

centroid position — is represented in the following sections by relative frequency

plots. There are three such plots for each atomic species: the lowest eigenvalue1 for

each atom, followed by the second lowest and finally the highest.

Section 6.3 looks at the behaviour of the RGY at temperatures surrounding the

TMD. The effect of compression and isotopic substitution is addressed in Sec-

tions 6.4 and 6.5 respectively, Section 6.6 considers radii of gyration from har-

monic oscillator theory and Section 6.7 brings the chapter to close.

1That is to say, the eigenvalue with the lowest magnitude.

122
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Figure 6.1: Path integral water. All points in imaginary time corresponding to a
single slice in real time are compacted into one image. Oxygen atoms are shown in
red, and hydrogen atoms in white.

6.2 General features

Figure 6.2(a) shows the magnitude of the delocalisation present in hydrogen atoms

at temperatures spanning the TMD. We first note that the quantum distribution for

hydrogen atoms takes on a distinctly non-spherical shape; if atoms were delocalised

in a spherical manner, the distributions for all three spatial directions would peak at

the same location. The different magnitudes are characterised by three eigenvalues

(λ1, λ2, λ3), with λ1 and λ3 representing the smallest and largest delocalisations

respectively.

The smallest delocalisation maintains a finite probability at zero deviation from the

centoid position. This may understood by noting that the hydrogen atoms are part

of geometrically constrained water molecules, restricting scope for delocalisation

in the intramolecular OH bond direction. Inspection of the equivalent curves for

oxygen atoms in Figure 6.2(b) reveal a peak in a comparable position to that for

the smallest hydrogen delocalisation; the molecule is effectively delocalised as one

particle — a point to which we shall return in Subsection 6.6.3.

We may analyse further the relationship between anisotropic delocalisation and the

behaviour of the molecule as a whole using the molecule-fixed axes illustrated in

Figure 6.3; the effect these delocalisations have on the wider molecule is sum-

marised in Table 6.1. Referring to Figure 6.4(a) we see the distribution of scalar

products between eigenvectors of the RGY tensor and molecule-fixed axes for each

hydrogen atom.

First note that the peak corresponding to the direction y is drawn by the eigenvector
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Figure 6.2: Distribution of the RMS delocalisation of atoms along the three prin-
cipal axes for a range of different temperatures, including a vertical separation of
0.01 for clarity. Top to bottom: λ1, λ2 and λ3 within each figure. The water was at
ρ = 1.0 g cm−3 density.
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���

Figure 6.3: Directions of basis axes used for studying quantum delocalisation. For
each atom, an orthogonal basis set was constructed using the molecular geometry.
Only the magnitude of the delocalisation in each direction is of interest; as such,
each axis here is bi-directional. It should be noted that arrows do not indicate in-
dicate motion around the oxygen atom, but rather the molecular centre of mass; as
such there are equivalent degrees of freedom for the oxygen atom.

corresponding to the lowest eigenvalue. This confirms the earlier observation that

the OH bond constraint is indeed restricting the magnitude of delocalisation in that

direction.

Delocalisation in the other two orthogonal directions is not so clearly tied to any one

eigenvalue. That is to say, there is some overlap as to which direction commands the

largest delocalisation at a given instant; this is evident in the upward inflection of

the curves corresponding to λ2 and λ3 in Figure 6.4(a). We may, however, deduce

that the largest delocalisation represented by λ3 is largely in the x direction. This

correponds to uncertainty of molecular orientation either about an axis parallel to

the HH separation and/or the line of reflective symmetry (flapping and/or twisting).

The medium eigenvalue λ2 may be seen to be largely tied to delocalisation in the

z direction, which serves to induce uncertainty in molecular orientation about the

axis normal to the plane defined by the nuclei.

6.3 Effect of temperature

While it is clear that inclusion of path integrals results in quantum delocalisation

with a spread up to a few tenths of an Angstrom for hydrogen, Figure 6.2(a) shows

no clear variation of the magnitude of delocalisation with temperature as the anoma-

lous region is entered. The eye might suppose that there is a minute shift to larger
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Figure 6.4: Distributions obtained when each of the three eigenvectors of the RGY
tensor for hydrogen are projected onto axes constructed using the molecular geom-
etry, as illustrated in Figure 6.3. The λi denote the eigenvalues corresponding to
the eigenvectors, with λ1 being the lowest in magnitude and λ3 the largest. Relative
frequencies corresponding to each axis have been separated by 0.05 for clarity. Top
to bottom: x, y and z axes. The water was at ρ = 1.0 g cm−3 density and was
thermostatted to T = 275 K.
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Molecule fixed Description of molecular
axis delocalisation
x Twisting — molecule rotates around

line of reflective symmetry.
Flapping — molecule rotates around
axis parallel to the HH separation.

y Translation — molecule translates along
directions shown.

z Rocking — rotation around axis
perpendicular to the plane of the molecule.

Table 6.1: Descriptions of molecular delocalisation illustrated in Figure 6.3.

values, but it is not at all well resolved.

Figure 6.5(a) shows distributions of scalar product magnitudes in water at room

temperature; they bear a striking resemblence to those calculated at T = 275 K. Not

only is the magnitude of delocalisation essentially unchanged by varying tempera-

ture, but the direction in which those delocalisations occur is similarly unchanged.

6.4 Effect of compression

Further to the lack of significant variation with temperature, there is no apparent

change in the radius of gyration when the density is increased by 20% as demon-

strated in Figure 6.6; note that the density of heavy water at its density maximum is

10% greater than that of light water. Possible differences in the RGY between light

and heavy water therefore may not be attributed to the differing densities of the two

systems.

Figure 6.7 shows the distribution of scalar product magnitudes of the delocalisa-

tion eigenvectors with the fixed molecular axes; the latter does not show any clear

differences when compared with the lower density case.

6.5 Isotopic substitution

It has been seen that the radius of gyration measuring the magnitude of the quantum

delocalisation in light water is essentially unchanged over a range of densities and

temperatures with values surrounding those of the density maxima of both light and

heavy water.
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Figure 6.5: Distributions obtained when each of the three eigenvectors of the RGY
tensor for hydrogen are projected onto axes constructed using the molecular geom-
etry, as illustrated in Figure 6.3. The λi denote the eigenvalues corresponding to
the eigenvectors, with λ1 being the lowest in magnitude and λ3 the largest. Relative
frequencies corresponding to each axis have been separated by 0.05 for clarity. Top
to bottom: x, y and z axes. The water was at ρ = 1.0 g cm−3 density and was
thermostatted to T = 293 K.



Chapter 6. Delocalisation 129

������� �	��
 ��
����
������� ����
 ��
����

�����������! #"%$& ('�)+*-,.

/ 01 2
34 50
6870 9
:0 ;
< =

�>
 ��?�>
 ��>
(�@?�>
(��>
 �A?�

�>
(��B

�>
(�@�

�>
(�

�>
 ��C

�>
 ��D

�>
 �EB

�>
 �A�

�

(a) Hydrogen.

FHGJI�K L	MON�PRQ�S
FHGJI�K T�MON�PRQ�S

U�V�W�X�Y�Z![#\%]&[(^�_+`-ab

c de f
gh id
j8kd l
md n
o p

T>q T�rT>q T!sT>q T�tT>q TAuT>q TEvT>q T�wT>q TALT>q T>IT

T>q(I�v

T>q(I@L

T>q(I

T>q T�r

T>q T�t

T>q TEv

T>q TAL

T

(b) Oxygen.

Figure 6.6: Comparison of the RMS delocalisation of oxygen atoms along the three
principal axes at the density maximum compared with water at higher density. The
water was thermostatted to T = 277 K in both cases.
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Figure 6.7: Distributions obtained when each of the three eigenvectors of the RGY
tensor for high density water are projected onto axes constructed using the molecu-
lar geometry, as illustrated in Figure 6.3. The λi denote the eigenvalues correspond-
ing to the eigenvectors, with λ1 being the lowest in magnitude and λ3 the largest.
Relative frequencies corresponding to each axis have been separated by 0.05 for
clarity. Top to bottom: x, y and z axes. The density was ρ = 1.2 g cm−3 and the
water was thermostatted to T = 277 K.
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Water type λ1 / Å λ2 / Å λ3 / Å
Hydrogen / deuterium delocalisation

Light ∗ 0.016 ± 0.008 0.05 ± 0.02 0.12 ± 0.04
Heavy † 0.014 ± 0.007 0.04 ± 0.02 0.09 ± 0.03

Oxygen delocalisation
Light ∗ 0.010 ± 0.005 0.022 ± 0.007 0.04 ± 0.01

Heavy † 0.009 ± 0.007 0.022 ± 0.007 0.04 ± 0.01

∗ ρ = 1.0 g.cm−3 ; T = 277 K
† ρ = 1.1 g.cm−3 ; T = 284 K

Table 6.2: Mean values of the eigenvalues of delocalisation λ1,λ2 and λ3 as mea-
sured by simulation, together with RMS fluctuations.

We now turn our attention to the effect of doubling the protonic masses, or the effect

of replacing hydrogen with deuterium atoms to form heavy water. Figure 6.8 shows

the distribution of RGY eigenvalues as seen previously for light water. Mean values

are given in Table 6.2. Immediately we see that there has been a 25% reduction in

the magnitude of the largest eigenvalue, and no clear change in the smallest. There

is also a small decrease in the spread in the λ3 distribution. It is noteworthy that the

spread decreases in proportion to the decrease in the mean; that is to say, the spread

decreases such that the relative fluctuations remain at 33%. We shall put the oxygen

delocalisation aside, since there is no well-resolved change there.

Distributions of scalar product magnitudes between the delocalisation eigenvectors

and the molecule fixed axes of Figure 6.3 are shown in Figure 6.9. The plots are

qualitatively the same as those for light water, indicating that delocalisation is oc-

curring in a similar fashion as in the light water case, with the largest eigenvalue λ3

corresponding to twisting/flapping.

6.6 Theoretical considerations

It shall be the aim of this section to persue a theoretical justification of the magnitude

and the spread in the radius of gyration from harmonic oscillator theory.

Recall from Chapter 5 that the theoretical radius of gyration for the harmonic oscil-

lator may be expressed as:

∆2 =
1

βmω2
0

[

1

2
β~ω0 coth

(

1

2
β~ω0

)

− 1

]

. (6.1)

or, expressing ∆2 in terms of the characteristic spring constant, C we may write
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Figure 6.8: Comparison of the RMS delocalisation of atoms along their three princi-
pal axes for light and heavy water at their respective density maxima: ρ = 1.0g cm−3,
T = 277 K for light water, and ρ = 1.1g cm−3, T = 284 K for heavy water.
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Figure 6.9: Distributions obtained when each of the three eigenvectors of the RGY
tensor for heavy water are projected onto axes constructed using the molecular ge-
ometry, as illustrated in Figure 6.3. The λi denote the eigenvalues corresponding to
the eigenvectors, with λ1 being the lowest in magnitude and λ3 the largest. Relative
frequencies corresponding to each axis have been separated by 0.05 for clarity. Top
to bottom: x, y and z axes. The density was ρ = 1.1 g cm−3 and the heavy water
was thermostatted to T = 284 K.
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Figure 6.10: Potential energy against bond bending angle in the TIP5P(PI) water
dimer, together with the correspondng harmonic approximation. ROO = 2.8 Å.

Equation 6.1 as

∆2 =
kBT

C
[α coth(α) − 1] (6.2)

with

α =
β~

2

(

C

m

)
1

2

(6.3)

Approximating the bond bending potential energy surface with a harmonic potential

yields a theoretical value for α, and thus an approximate value for the radius of

gyration in the dimer by theoretical means.

6.6.1 Evaluating the spring constant

The value of the spring constant used for the harmonic approximation is a function

of the oxygen-oxygen separation ROO and is plotted as such in Figure 6.11.

If we are to make comparisons between harmonic behaviour in the dimer and the

RGY as measured by simulation, we need to obtain a suitably averaged value of

the spring constant C. That is to say, we must take an average in which the most

probable ROO makes a larger contribution to the average, and vice versa. This may

be achieved by using the RDF as a weighting function, as shown in Equation 6.4.
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Figure 6.11: Harmonic spring constant as a function of the oxygen-oxygen separa-
tion ROO in the TIP5P(PI) dimer. Error bars for each ROO are shown, but are too
small to resolve.
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Figure 6.12: O-O radial distribution functions of light and heavy water at their
density maxima.

C =

∫ rmin

0
C(r′) g(r′) (r′)2 dr′

∫ rmin

0
g(r′) (r′)2 dr′

(6.4)

where C denotes the averaged spring constant. The radial distribution functions

from the simulation of light and heavy water are shown in Figure 6.12.

We may further estimate the uncertainty on the spring constant induced by varia-

tions in ROO through Equation 6.5; note that the uncertainty on the spring constant

arising from the least squares fitting is neglible on the scale of this:

ε2
C =

∫ rmin

0
C2(r′) g(r′) (r′)2 dr′

∫ rmin

0
g(r′) (r′)2 dr′

− C
2
. (6.5)
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Water type Spring constant / Nm−1

Light∗ 12 ± 7
Heavy† 6 ± 6

∗ ρ = 1.0 g.cm−3 ; T = 277 K
† ρ = 1.1 g.cm−3 ; T = 284 K

Table 6.3: RDF weighted spring constants for light and heavy water.
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Figure 6.13: Theoretical radius of gyration ∆ in one dimension as a function of the
spring harmonic spring constant C. Curves are plotted for temperatures of 273 K
(top curves) and 293 K (bottom curves) for both hydrogen and deuterium in their
respective waters.

rmin is the distance out to the first minimum in the RDF, which was taken to be

3.5 Å for both light and heavy water. Knowledge of the uncertainty in the spring

constant affords a handle on the uncertainty on the radius of gyration — that is, the

magnitude of the spread we might expect to see.

Evaluating the force constant at the values ofROO for which gOO(r) was known, and

performing the weighted averaging procedure as expressed in Equations 6.4 and 6.5

we may obtain the desired values for the force constants, which are given in Ta-

ble 6.3.

6.6.2 Theoretical RGY

Having evaluated the required spring constants, we may now move on to find the

RGY from harmonic oscillator theory.

Figure 6.13 shows the theoretical radius of gyration in the finite temperature har-
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Delocalisation Mass / amu RGY Temperature Spring constant
type magnitude / Å uncertainty / Å uncertainty / Å

Light water
Translation 18.0 0.0285∗ 0.0003∗ —

Rocking 1.01 0.115 0.005 0.007
Twisting 1.01 0.115 0.005 0.007
Flapping 1.01 0.115 0.005 0.007

Heavy water
Translation 20.0 0.0270∗ 0.0002∗ —

Rocking 2.01 0.084 0.005 0.006
Twisting 2.01 0.084 0.005 0.006
Flapping 2.01 0.084 0.005 0.006

∗ Calculated using free particle theory.

Table 6.4: Theoretical radii of gyration in the harmonic approximation.

monic oscillator plotted as a function of the characteristic spring constant. The

RGY shows a difference of but a few percent over the 20 K range between the two

temperature curves for each isotope. There is a similarly small variation in the RGY

over the shown range of spring constants. This allows us to understand the invari-

ance of the RGY with temperature and density; in the higher density water, the

spring constant may be modified due to a different RDF in the weighting procedure,

yet the RGY shows little variation with the spring constant and as such is relatively

unchanged.

Table 6.4 gives the calculated radii of gyration for each of the types of molecular

delocalisation — translation, rocking, twisting and flapping — in both light and

heavy water. The values for rocking, twisting and flapping are identical owing to

a cylindrically symmetric potential with respect to bond bending in the harmonic

approximation. The values for translation were calculated using free particle the-

ory
(

C = 0
)

since this component of translation is only weakly connected to bond

bending — a point which we shall discuss further in Subsection 6.6.3.

It is interesting to note that the radius of gyration in the harmonic calculations for λ3

in light and heavy water is not at all significantly different to values found by free

particle theory. Using protonic masses, the radius of gyration in any single dimen-

sion is given in Table 6.4 as 0.115 Å, and yet the equivalent value using free particle

theory works out as 0.120 Å; again, the external potential modifies the radius of gy-

ration by just 4%. The radius of gyration, then, is insensitive to the harmonic spring

constant in the water system.

Though λ3 matches simulation, λ1 and λ2 do not. It should be noted that there is
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Delocalisation Effective RGY Temperature Spring constant
type mass / amu magnitude / Å uncertainty / Å uncertainty / Å

Light water
Translation 18.0 0.0285∗ 0.0003∗ —

Rocking 2.04 0.083 0.005 0.005
Twisting 2.02 0.083 0.005 0.005
Flapping 2.09 0.082 0.006 0.005

Heavy water
Translation 20.0 0.0270∗ 0.0002∗ —

Rocking 4.06 0.060 0.006 0.004
Twisting 4.03 0.060 0.006 0.004
Flapping 4.10 0.059 0.006 0.004

∗ Calculated using free particle theory.

Table 6.5: Theoretical radii of gyration in the harmonic approximation using modi-
fied effective masses in place of proton masses; the new masses are such that a single
proton generates the same moment of inertia as that on the complete molecule.

some overlap in the distibutions: the peaks are not distinctly resolved. Eigenvalues

were sorted into increasing magnitudes, and their contributions to the respective

distributions were made. It is possible that there has been some fluctuation in the

eigenvalue sorting process when the distributions were formed. Further, molecular

constraints may have affected radii of gyration — a point which we shall pick up on

now.

6.6.3 Constraint effects

The TIP5P molecule has rigid molecule constraints which may be expected to have

an impact upon the nuclear quantum properties, since the molecule is effectively

delocalised as a whole. Two possible effects are discussed here.

Effective masses

Constraints in the TIP5P molecule serve to increase the moment of inertia of the

molecule and hence the effective mass of the particle taking part in the hydrogen

bonding.

The radii of gyration given in Table 6.4 were recalculated using modified masses;

these mimic the effect of the other proton, and indeed the oxygen atom in the

molecule, by generating the same moment of interia as if the other two atoms were

present. The new RGY values are presented in Table 6.5.
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Note now that the values for twisting and flapping are too small when compared

with values from simulation. However, this may be understood if we think of un-

certainty of the molecule about an axis perpendicular to the arm of the molecule

which is forming the H-bond; now the other hydrogen atom lies very close to the

axis of rotation, and does not contribute quite so much to the molecule moment of

inertia about that axis. The effective masses for twisting and flapping as presented

in Table 6.5 may then be thought of as a worst case scenario as regards the molecule

constraint influence on the effective mass. The values for rocking and translation,

however, remain too high in varying degrees.

6.6.4 The condensed phase

It should be remembered that a molecule in liquid water is part of a condensed

phase system, and as such may be expected to show different characteristics of

delocalisation.

The lesser value for translation delocalisation from simulation is likely to result

from Lennard-Jones interactions; note that the RDF peak at 2.8 Å is less than the

zero of Lennard-Jones force at 3.12 Å, and hence lies within the strongly repulsive

region of the potential. This delocalisation, however, is small and hence unimpor-

tant, so we shall not persue it further.

A molecule may be H-bonded with up to four other molecules. We have already

noted, however, the insensitivity of the radius of gyration to the harmonic spring

constant. As such, at least in theory, the number of hydrogen bonds formed makes

little difference the twisting, rocking and flapping delocalisations.

Twisting, rocking and flapping result in an uncertainty in the bond bending angle;

a detailed study of path integral effects on hydrogen bonds in the liquid will be the

subject of the next chapter.

6.7 Summary

Upon diagonalisation of the RGY tensor, hydrogenic quantum delocalisation was

seen to occur with three characteristic magnitudes corresponding to three different

directions when projected onto axes defined by the molecular geometry. The small-

est degree of delocalisation corresponded to translation of the molecule as a whole,

and the largest was connected with both twisting and flapping of the molecule.
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While virtually unaffected by temperature and density over the range of values stud-

ied, the degree of delocalisation showed a 25% reduction in the magnitude of the

largest eigenvalue upon isotopic substitution. It was possible to predict the scale of

this reduction by applying harmonic oscillator theory to bond bending. This serves

to suggest that the harmonic approximation remains valid in the condensed phase.

While the magnitude of the largest eigenvalue agrees with theory, the spread in that

value is, by theory, underestimated.

The invariance of the degree of delocalisation with temperature and density indi-

cates that it cannot itself be responsible for the density maximum. However, the

RGY of ' 0.1 Å is non-negligible; nuclear quantum effects provide a form of back-

ground delocalisation of the structure and must therefore be accounted for in the

simulation of liquid water.



Chapter 7

Neighbours

7.1 Introduction

Chapter 6 revealed that when employing the path integral treatment, water molecules

show a significant uncertainty in orientation. Since the hydrogen bond is direction-

ally dependent, it is a logical step to suppose that quantum delocalisation has real

implications for the degree of hydrogen bonding in the water system.

Recall from Chapter 2 that the density maximum is thought to be the result of an in-

ward collapse of the second neighbour shell, leaving the first nearest neighbour shell

comparatively unchanged. The present chapter will focus on characteristics of local

structure as described in Section 3.11. Comparisons are drawn between quantum

and classical simulation, but also structural changes under isotopic substitution.

Section 7.2 describes first nearest neighbour behaviour in classical and quantum

water; the equivalent analysis of second neighbour characteristics is given in Sec-

tion 7.3. Changes in neighbour distance upon isotopic substition are the subject

Section 7.4, and Section 7.5 analyses first neighbour orientational characteristics.

Section 7.6 draws the chapter to a close.

7.2 First NN distance

We start, then, with first nearest neighbour molecules, as determined via the method

described in Section 3.11. Figures 7.1 and 7.2 show the relative frequency distri-

bution of the bond bending angle θbend plotted against the first NN separation from

classical and quantum simulation respectively.
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Figure 7.1: Relative frequency of bond bending angle θbend plotted against the first
NN distances. The data represents water at ρ = 1.0 cm−3 from classical simulation.
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Figure 7.2: Relative frequency of bond bending angle θbend plotted against the first
NN distances. The data represents water at ρ = 1.0 cm−3 from path integral simula-
tion.
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On comparison of the two figures, it is apparent that the path integral treatment

has two effects here. Firstly, the mode of the first NN (ROO) distribution is shifted

from ' 2.7 Å to ' 2.8 Å, which has been seen previously from RDF observations

(Mahoney and Jorgensen, 2001). However, here we see that the relaxation in H-

bond length is accompanied by a shift in the bending angle distribution from ' 10◦

to ' 12◦. That is to say, each are shifted closer towards the experimental values

presented in Table 2.9.

Note that these surfaces reflect something of the potential energy surface presented

in Figure 4.8. The relative frequency gradient is much steeper close to the oxygen-

oxygen repulsive core. Hydrogen bonds, then, show a preference to be bent rather

than stretched, and further a preference to be longer rather than shorter.

We may also analyse the quantum minus classical difference surfaces, as presented

in Figure 7.3; taking the difference surfaces in this way highlights the qualitative

differences between the classical and the path integral treatment. A relaxation in

the bond bending angle appears to be accompanied by a lengthening of the first NN

distance. It is a matter of debate whether molecules forming the maxima remain

hydrogen bonded. The cut-off employed by Martí et al. (1996) was θbend = 30◦,

and here we see the maxima span this angle. In any case, it is clear that there exists

a reduction of the number of the more linear hydrogen bonds with θbend . 10◦.

An additional point is that the maximum in the distribution at T = 277 K is more

broad than those seen at the other three temperatures, signalling a degree of bond

weakening which is not present in the classical fluid. We shall return to this point

in Section 7.3. It is interesting for now to take difference surfaces between two

different temperatures. Such surfaces for both classical and quantum simulation are

shown in Figure 7.4; note that the introduction of quantum effects generates similar

structural changes to those observed upon an increase of temperature, a point made

by Kuharski and Rossky (1985).

The surfaces of 7.1 and 7.2 allow us a handle on the degree of hydrogen bonding

in the system. Integrating over the region for which ROO is less than 3.6 Å and

θbend is less that a 30◦ cut-off angle yields an estimate for the instantaneous propor-

tion of intact hydrogen bonds averaged over many configurations, as described in

Chapter 3; such values are shown in Figure 7.5. Simulation shows that ' 3–7% of

hydrogen bonds are counted as broken, which is in good agreement with the the 5%

degree of broken bonds quoted by Cho et al. (1997), though higher than the figure

of 0.3% implied by Sciortino et al. (1990). Path integrals increase the proportion of

broken bonds from ' 3% to ' 7%. The instantaneous number of intact hydrogen

bonds, then, remains very high. A point to note here is that the high proportion
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(d) T = 283 K

Figure 7.3: Surfaces formed by subtracting the classical from the quantum bond
bending data presented in Figures 7.1 and 7.2. The data represents water at ρ =
1.0 cm−3.
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Figure 7.4: Difference surfaces for first NN molecules between simulation at T =
293 K and T = 275 K from both classical and quantum simulation.

affords a degree of justification for the techniques of local structure analysis em-

ployed here, since they were constructed on the assumption of an approximately

tetrahedral system.

7.3 Second NN distance

Having analysed the first NN configuration, we now move on to look at the second

nearest neighbours — first nearest neighbours of the first nearest neighbours. Be-

fore analysing local structure in more detail, we first take a glance at the RDFs for

the classical and the quantum fluid shown in Figure 7.6. We note the broadening of

the second neighbour peak, as seen in water simulations such as those of Mahoney

and Jorgensen (2001), indicating a decay of the number of molecules at the tetra-

hedral second NN distance in the the quantum liquid as compared with classical

simulation.

Figures 7.7 and 7.8 show relative frequency surfaces of bending angle against sec-

ond NN distance in classical and path integral water respectively. Perhaps the most

visible change under activation of path integrals is the already familiar shift in the

mode with respect to the first NN bond bending angle θbend. The eye might further

perceive a shift in the mode towards larger second NN separations.

The qualitative changes are highlighted when we take the quantum minus classi-
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Figure 7.5: Instantaneous proportion of intact hydrogen bonds averaged over many
configurations. The density was ρ = 1.0 g cm−1.
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cal difference surfaces, as presented in Figure 7.9. There we see something of the

broadening of the second neighbour shell under application of path integrals; we

find a larger number of molecules at both ' 3.4 Å and ' 5.5 Å. In general, an in-

creased or decreased second NN distance is attached to a less linear H-bond. We

might therefore conclude that the displacement of second neighbours from the po-

sitions consistent with a tetrahedral lattice come about as a result of increased hy-

drogen bond bending, resulting in bond weakening and a corresponding breakdown

in local structure.

It is interesting to analyse the RDFs in the region of 3.4 Å. The RDFs from classical

and quantum simulation are shown in Figures 7.10 and 7.11. A careful inspection

affords a hint at the value of the TMD for classical and quantum simulation. The

RDF is inflated in the region of interest at T = 277 K in quantum simulation, with

those for the two adjacent temperatures tracing curves which are systematically

lower; thus hinting that the density maximum was correctly located at T = 277 K.

The same in not quite mirrored in the classical data. There we see two very similar

curves at T = 279 K and T = 289 K, suggesting that perhaps the TMD lies between

these temperatures. However, note that the first minimum in the RDF for each

occurs in different locations; looking at the expansions of the region of interest,

the minimum occurs at approximately 3.3 Å and 3.5 Å in classical and quantum

simulation respectively, for all temperatures studied. This serves to echo the point

that the structural changes introduced by applying path integrals are far greater than

those incurred by temperature changes in the range with which we are concerned

here.

The above analysis gives us a hint at the microscopic reasoning behind the inflated

TMD in heavy water. Recall from Section 7.2 that the influence of quantum ef-

fects were more marked at lower temperatures; the same is true in the second NN

difference surfaces. We must not over-analyse here, since Figure 7.10 suggested

that the density maximum was slightly shifted in the classical data. However, Fig-

ures 7.10 and 7.11 further show an inflated height at approximately 3.4 Å which

is not present to as high an extent in either of the surrounding temperatures, serv-

ing to suggest that the broadened maximum in the difference surface at T = 277 K

is generated by a quirk of the path integral rather than the classical data; indeed,

the classical curve is undergoing significant modification in a single direction for

temperatures spanning 277 K. The RDFs also show the first minimum for classical

water beginning to assume a form more similar to that of the quantum counterpart

in Figure 7.11(b) as temperature is increased. Nuclear quantum effects, then, may

be inferred to aid the process of tetrahedral lattice breakdown; the lesser degree of
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Figure 7.7: Relative frequency of the bond bending angle θbend plotted against sec-
ond NN neighbour distances. The data represents water at ρ = 1.0 cm−3 from clas-
sical simulation.
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Figure 7.8: Relative frequency of the bond bending angle θbend plotted against sec-
ond NN neighbour distances. The data represents water at ρ = 1.0 cm−3 from path
integral simulation.
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(d) T = 283 K

Figure 7.9: Surfaces formed by subtracting the classical from the quantum bond
bending data presented in Figures 7.7 and 7.8. The data represents water at ρ =
1.0 cm−3.
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Figure 7.10: Radial distribution functions at ρ = 1.0 g cm−3 density. The region of
interest refers to the region ' 3.4 Å. Calculated from classical simulation.
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Figure 7.11: Radial distribution functions at ρ = 1.0 g cm−3 density. The region of
interest refers to the region ' 3.4 Å. Calculated from path integral simulation.
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(b) Quantum

Figure 7.12: Difference surfaces for second NN molecules between simulation at T
= 293 K and T = 275 K from both classical and quantum simulation.

quantum delocalisation in classical water means that a higher degree of thermal ex-

citation is required to agitate molecules out of the lattice. A glance at Figure 7.12

indicates again that quantum fluctuations indeed generate similar structural changes

as those due to thermal fluctuations. Note that as the liquid is heated, the differences

between classical and quantum simulation become less well resolved. It is as if ther-

mal fluctuations present in the classical simulation are giving chase to fluctuations

present in the quantum liquid.

7.4 Heavy water

Recall from Chapter 2 that the density of heavy water is higher than that of light

water, by approximately 10%. The radial distribution functions presented in Fig-

ure 7.13 indicate the effect of compression on the liquid structure is much more

significant than that due to temperature. Density changes, together with nuclear

quantum delocalisation, have major influences on the liquid structure. Since heavy

water was simulated close to its experimental density maximum, we must keep in

mind structural reorderings due to changes in density when comparing heavy with

light water simulation at their respective density maxima.

Figure 7.13 shows the RDFs of light and heavy water at their density maxima, to-

gether with that for light water at T = 277 K, but with a 20% increase in density over

the ordinary. Also shown in the curve from classical simulation of light water. First



Chapter 7. Neighbours 155

Light, classical (TMD)
High density
Light (TMD)

Heavy (TMD)

O-O separation / Å
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Figure 7.13: O-O RDFs for light and heavy water at their density maxima, and also
for water at high density (ρ = 1.2 g cm−3, T = 277 K).

note that the curve for heavy water does not lie between the quantum and classical

data for light water, as seen in ST2 water by Kuharski and Rossky (1985); it should

be emphasised, however, that there is a differential in density between the light and

heavy water simulation here which was not present in the simulations of Kuharski

and Rossky. It is interesting to note that the curve for high density water demon-

strates an outward shift in the first minimum of the RDF. Further, the peak heights

and trough depths retain the same approximate magnitude in high density water

when compared with those at ordinary density. On the basis of density increase, it

is therefore surprising that the lesser increase of 10% in density when moving to

the study of heavy water should apparently subdue much of the liquid structure; the

curve for heavy water is much more flat beyond the first NN peak than is the case

for light water at ordinary or high density. Further, we have already noted that the

effect of an increase in temperature on the RDF was not at all dramatic. The flatter

curve, therefore, must result from a change in nuclear quantum delocalisation.

We may analyse the local structure of high density and heavy water by means of

the first and second NN surfaces. Figure 7.14 shows the first NN surfaces for each,

and the surfaces obtained when each has the quantum data corresponding to light

water at the TMD subtracted away appear in Figure 7.16. While the compression

of light water acts to promote hydrogen bond bending (and breaking), the heavy

water difference surface shows a reversal of this behaviour. The reduced quantum

effects of deuterium result in a stronger deuterium bond network than the equivalent

in light water. Note that the mode of the first NN distribution remains at approxi-

mately 2.7 Å. As calculated in Chapter 2, the preferred tetrahedral second neighbour

distance would therefore be 4.4 Å.
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(a) High density water.
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(b) Heavy water.

Figure 7.14: Difference surfaces of both high density and heavy water with those
for light water at the density maximum.
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(b) Heavy water.

Figure 7.15: Difference surfaces of both high density and heavy water with those
for light water at the density maximum.
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(b) Heavy water.

Figure 7.16: Difference surfaces of both high density and heavy water with those
for light water at the density maximum.
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(b) Heavy water.

Figure 7.17: Difference surfaces of both high density an heavy water with those for
light water at the density maximum.
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Moving on to look at characteristic second neighbours distances, as presented in

Figure 7.15, we note that the high density light water demonstrates an upward shift

in the mode. That is to say, second neighbour molecules tend to be further away

from the central molecule in high density water. This surface, however, is very

anisotropic. A comparatively gentle slope exists to the left of the mode; this is not

easily seen in the equivalent surface for heavy water. The surfaces of Figure 7.15

differenced with those for light water at the density maximum are given in Fig-

ure 7.17. Now we see that plain compression acts to force molecules out of the

tetrahedral configuration and into interstitial positions. While there is no evidence

for any correlation between the second NN distance and first NN bond bending an-

gles in moving from ordinary to high density water, the shift to heavy from light

water divides Figure 7.17(b) in two along a diagonal axis. Second NN molecules

at interstitial radial distances tend to surround first NN molecules which themselves

form approximately linear H-bonds with the central molecule. That is, it would

appear that the formation of molecular interstitials is aided by the presence of a sur-

rounding tetrahedral order, perhaps by promoting the existence of cavities open to

prospective interstitials.

This analysis may explain why the density of heavy water at its TMD is greater than

that seen in light water. Recall from Chapter 2 that the density maximum is thought

to mark the watershed between the formation of interstitial molecules in a surround-

ing tetrahedral configuration and familiar thermal expansion. We may perhaps think

of the tetrahedral structure with interstitials present as a more closely packed and

space efficient structure than that to which thermal expansion is attempting to drive

the system. In heavy water, strong, approximately linear deuterium bonds persist to

higher temperatures. They encourage the persistence of tetrahedral structure upon

heating, and in doing so they maintain a higher number of cavities into which in-

terstitials may fall. We may, therefore, picture the heavy water structure as being

similar to light water, though more fully saturated with interstitial molecules.

Indeed, the results presented here would seem to blow uniformist and mixture mod-

els out of the water. The inward movement of second nearest neighbours is linked

to straighter first NN hydrogen bonds, casting a shadow over uniformist models.

Further, second NN molecules are correlated to regions of higher local tetrahedral

order, thus discrediting mixture models. The phenomena seen here are very much

consistent with an interstitial model.
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(b) T = 283 K

Figure 7.18: Relative frequency distributions of acceptor angle against second NN
separation from classical simulation. The density was ρ = 1.0 g cm−3. Two surfaces
are shown as a representative sample.

7.5 First NN orientation

As we saw in Chapter 4, Mahoney and Jorgensen (2000) made a point of demon-

strating the double potential well in the water dimer with respect to the acceptor

angle — the double well is shown in Figure 4.5. Such a double well acts to promote

tetrahedral order.

Indeed, the orientational properties of the first nearest neighbours have the potential

to influence the second neighbour shell, given the directionality of the hydrogen

bond. In addition, Chapter 6 revealed that molecular delocalisation termed there

as flapping commanded the greatest magnitude. We might therefore expect path

integrals to have a significant impact on the first NN orientation and potentially the

structural characteristics of the second neighbour shell. Such surfaces are shown

in Figures 7.18 and 7.19. The quantum minus classical difference surfaces are

presented in Figure 7.20.

We first see that the mode of the distributions occurs at ' 55◦, which is just half

the angle between the lone pair sites of the TIP5P molecule. A preference is shown,

then, for the lone pairs of the first NN acceptor molecule to point towards the central

molecule even in the condensed phase.

There is an interesting feature which we shall mention in passing: an indentation

at small acceptor angles is seen in the frequency distributions of Figures 7.18 and



Chapter 7. Neighbours 160

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

       

Second NN separation / Angstrom

A
cc

ep
to

r 
an

gl
e 

/ d
eg

re
es

0

8.99e−05

0.00018

0.00027

0.00036

0.00045

0.00054

0.000629

0.000719

0.000809

0.000899

0.000989

0.00108

0.00117

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

(a) T = 277 K

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

       

Second NN separation / Angstrom

A
cc

ep
to

r 
an

gl
e 

/ d
eg

re
es

0

9.2e−05

0.000184

0.000276

0.000368

0.00046

0.000552

0.000644

0.000736

0.000828

0.00092

0.00101

0.0011

0.0012

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

(b) T = 283 K

Figure 7.19: Relative frequency distributions of acceptor angle against second NN
separation from path integral simulation. The density was ρ = 1.0 g cm−3. Two
surfaces are shown as a representative sample.
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(b) T = 283 K

Figure 7.20: Quantum minus classical difference surfaces formed from the data in
Figures 7.18 and 7.19. Two surfaces are shown as a representative sample.
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(a) High density water.
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(b) Heavy water.

Figure 7.21: Relative frequency distributions of acceptor angle against second NN
distance for water at high density (ρ = 1.2 g cm−3, T = 277 K) and also for heavy
water at its experimental density maximum.
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(a) High density water.
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(b) Heavy water.

Figure 7.22: Difference surfaces of both high density and heavy water with those
for light water at the density maximum.
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7.19; in other words, for low acceptor angles there emerge two preferred second NN

distances. One such preferred distance occurs at ' 3.4 Å, and the other at ' 5.3 Å—

precisely those values whose relative frequency increases upon activation of path

integrals.

While it is difficult to resolve any systematic changes in the distribution upon ac-

tivation of path integrals when compared with classical simulation, we may again

compare the surfaces from high density and heavy water quantum simulation with

those for path integral light water at the density maximum. Relative frequency

distributions are shown in Figure 7.21, and difference surfaces are presented in Fig-

ure 7.22. Now we see further evidence of the increased tetrahedral structure in the

heavy water system. Whereas compression acts to generate a peak with a less lo-

calised acceptor angle, the reverse is true when we make the transition to heavy

water. Figure 7.22 suggests that interstitial second neighbour molecules tend to

surround first nearest neighbour molecules which themselves have a particular ac-

ceptor angle of ' 55◦, which is consistent with a tetrahedral configuration. Again

we see that in heavy water second NN interstitials are correlated to local tetrahedral

structure.

7.6 Summary

In both classical and path integral simulation, the proportion of unbroken hydrogen

bonds present was in the region of 95%, fuelling support for the notion of a high

degree of tetrahedral order in the liquid.

Upon activation of the path integral treatment, the first NN peak was shifted out

from ' 2.7 Å to ' 2.8 Å when compared with classical simulation; further, this

occured with a corresponding shift in the mode of the bond bending distribution

from ' 10◦ to ' 12◦. That is to say, each moved closer to the experimental values

of Modig et al. (2003). The path integral description of TIP5P water, then, would

seem to more accurately represent the microscopics of the real liquid over classical

simulation.

Analysis of second NN behaviour revealed that the broadening in the second neigh-

bour RDF peak due to nuclear quantum effects is accompanied by an increase in

first NN bond bending angles. Nuclear quantum delocalisation may be seen to in-

duce a greater number of molecules to appear at interstitial-like radial distances as

a consequence of a breakdown in tetrahedral structure, with thermal effects in clas-

sical simulation perhaps beginning to match the structural changes added by the
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path integral treatment with increasing temperature. The inflated TMD in heavy

water may then be understood in terms of the lesser degree of quantum delocalisa-

tion present in the liquid; a greater degree of thermal excitation is required to break

down the tetrahedral character of the liquid structure.

The consequences of switching to heavy water were analysed alongside those of

light water compression. While the effect of a straight density increase was to break

down the hydrogen bond network, the reverse effect was seen in heavy water: the

reduced quantum effects of deuterium resulted in stronger hydrogen bond network,

counteracting any effect which the density increase demanded. Moreover, a correla-

tion was seen between the second NN distance and first NN bending angle when the

heavy water surface was differenced with that from light water simulation; this point

fits the interpretation in which persistent hydrogen bonds in the liquid maintain the

presence of cavities which may be filled by molecular interstitials. Evidence of a

stronger local structure did not just come about through the study of bond bending,

but also from the analysis of acceptor angles, which showed a comparatively narrow

peak in the relative frequency distribution at interstitial second NN separations and

a tetrahedrally consistent angle when the surface for heavy water was differenced

with that of light water. A space efficient nature of the tetrahedral lattice with in-

terstitials would also serve to explain the greater density seen in heavy water at its

density maximum over light water: a greater saturation of the tetrahedral-like lattice

may be achieved before thermal expansion begins to take hold.

So, then, while light water exhibits a density maximum at a lower temperature, the

maximum of density which it reaches is not as great as in the case of heavy water,

for there the increased thermal fluctuations are perhaps able to form interstitials

within a tetrahedral which has not decayed so rapidly under the effect of nuclear

quantum delocalisation.



Chapter 8

Conclusion

The quantum delocalisation of atoms in constrained water molecules has been anal-

ysed in liquid water close to the density maximum, and indicated an ellipsoidal form

with three characteristic magnitudes of delocalisation along three principal axes.

The direction relative to the water molecule which commanded the largest degree of

delocalisation was that normal to the plane of the molecule, and hence perpendicular

to all constrained intramolecular distances. Here the radius of gyration was seen to

be described very well by harmonic oscillator theory in both light and heavy water,

and further was very close to the free particle value — a point which perhaps serves

to indicate that the degree of hydrogen bond bending is always sufficiently small to

maintain the validity of the harmonic approximation.

A more rigorous analysis of hydrogen bond bending revealed that ' 95% of hydro-

gen bonds in the system were unbroken at any instant. Further, the familiar outward

shifting of the first peak in the oxygen-oxygen RDF under the path integral treat-

ment of nuclei was seen to be accompanied by a relaxation in the hydrogen bond

bending angle; both the first RDF peak and the average bond bending angle were

shifted closer to their experimental values.

The influence of nuclear quantum effects on the second nearest neighbour charac-

teristics was to displace molecules from the tetrahedral position of 4.5 Å, with an

accompanying weakening of hydrogen bonding manifested through an increase in

bending angles. The effect of temperture changes on the water structure was minis-

cule: much smaller than changes caused by the activation of path integrals.

Heavy water structure under quantum simulation was compared with that of light

water. The key findings are summarised by Figure 8.1. Isotopic substitution does

not only encourage a stronger intermolecular bonding network; increased numbers

164
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Figure 8.1: Heavy minus light water difference surfaces as presented in Chapter 7.
The systems were simulated at their respective density maxima.
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of second neighbour molecules at interstitial-like radial distances may be seen to be

correlated with regions of stronger local tetrahedral order.

The simulations presented here, then, support the notion that the anomalous density

behaviour is caused by a collapse of the second neighbour shell on heating to form

molecular interstitials, with nuclear quantum effects assisting the process. However,

the present work further suggests that an increased degree of local tetrahedral order

in heavy water leaves scope for an increased level of saturation with interstitial

molecules before thermal expansion takes control, thus explaining the increased

maximum of density in heavy water.

Future work

While differences have been found between water with and without a quantum treat-

ment of atomic nuclei, the data presented are ensemble averages. The path integral

methodology employed in the present simulations does not strictly represent real

time quantum dynamics. However, the presence of quantum tunnelling may be de-

tected be searching for instances of unusually large stretching of the path integral

loop corresponding to a quantum particle. It would, then, be of huge interest to

compare the frequency of quantum tunnelling events in the heavy and light water

systems.

It should be emphasised that all explicit treatment of quantum mechanical behaviour

presented here related only to atomic nuclei; electronic behaviour was described by

a crude system of interaction sites. There is a case, then, for an ab initio verifi-

cation of the results presented in this thesis, particularly in light of the directional

dependence and partial covalency of the hydrogen bond.
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Appendix A

Path Integral Formalism

A.1 Derivation

Here we shall follow the derivation of the path integral starting from Schrödinger’s

equation as given by Simons (2000).

The time evolution of a state vector is given by Schrödinger’s equation:

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (A.1)

We can integrate this to get the time evolution operator (for time independent Hamil-

tonians) such that

|Ψ(t′)〉 = Û(t′, t) |Ψ(t)〉 (A.2)

Û(t′, t) = exp

[

− i

~
Ĥ(t′ − t)

]

(A.3)

Resolving the state vector on to a continuous set of eigenstates of position

Ψ(x′, t′) = 〈x′ |Ψ(t′)〉

=
〈

x′
∣

∣

∣Û(t′, t)
∣

∣

∣Ψ(t)
〉

= 〈x′| Û(t′, t)

∫

dx |x〉 〈x | Ψ(t)〉

=

∫

dx
〈

x′
∣

∣

∣
Û(t′, t)

∣

∣

∣
x
〉

〈x | Ψ(t)〉

(A.4)
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so that

Ψ(x′, t′) =

∫

dx û(x′, t′; x, t)Ψ(x, t) (A.5)

with

û(x′, t′; x, t) =
〈

x′
∣

∣

∣
Û(t′, t)

∣

∣

∣
x
〉

(A.6)

Now divide the time evolution into a number of smaller evolutions in time

Û(t′, t) = Û(t′, tN−1)Û(tN−1, tN−2) · · · Û(t2, t1)Û(t1, t) (A.7)

û(x′, t′; x, t) =

∫

dxN−1

∫

dxN−2.....

∫

dx1

〈

x′
∣

∣

∣
Û(t′, tN−1)

∣

∣

∣
xN−1

〉

〈

xN−1

∣

∣

∣
Û(tN−1, tN−2)

∣

∣

∣
xN−2

〉

· · ·
〈

x1

∣

∣

∣
Û(t1, t)

∣

∣

∣
x
〉

(A.8)

Note that the end points x0 and xN are not integrated over, because they correspond

to two fixed end points.

For a single term we have1

〈

xk+1

∣

∣

∣
Û(tk+1, tk)

∣

∣

∣
xk

〉

≡
〈

xk+1

∣

∣

∣

∣

exp

[

− i

~
∆tĤ

]∣

∣

∣

∣

xk

〉

=

∫

dpk 〈xk+1 | pk〉
〈

pk

∣

∣

∣

∣

exp

[

− i

~
∆tĤ

]∣

∣

∣

∣

xk

〉

=

∫

dpk 〈xk+1 | pk〉 exp

[

− i

~
∆tH(pk,xk)

]

〈pk | xk〉

=

∫

dpk

2π~
exp

[

i

~
pkxk+1

]

exp

[

− i

~
∆tH(pk, xk)

]

exp

[

− i

~
pkxk

]

(A.9)

We then make the primitive approximation

1Two factors of 1√
2π~

arise from normalisation: we demand 〈p′ | p〉 = δ(p′ − p) =
1

2π

∫ +∞
−∞ d

(

p

~

)

exp
[

i p

~
(p′ − p)

]
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xk+1 ' xk + ẋk∆t (A.10)

The propagator over a small time step now becomes

〈

xk+1

∣

∣

∣
Û(tk+1, tk)

∣

∣

∣
xk

〉

=

∫

dpk

2π~
exp

[

i

~
∆t pkẋk

]

exp

[

− i

~
∆tH(pk, xk)

]

=

∫

dpk

2π~
exp

[

i

~
∆t (pkẋk −H(pk, xk))

]

(A.11)

Now, the kinetic part of the Hamiltonian is − p2

2m

pẋ− p2

2m
= − 1

2m
(p−mẋ)2 +

m

2
ẋ2 (A.12)

Using this in Equation we find2

∫

dpk

2π~
exp

[

i

~
∆t

(

pkẋk −
p2

k

2m

)]

=

∫

dpk

2π~
exp

[

i

~
∆t

(

− 1

2m
(pk −mẋk)

2 +
m

2
ẋ2

k

)]

=

∫

dpk

2π~
exp

[

− i

~
∆t

1

2m
(pk −mẋk)

2

]

exp

[

i

~
∆t

m

2
ẋ2

k

]

=
1

2π~

(

2πm~

i∆t

)
1

2

exp

[

i

~
∆t
(m

2
ẋ2

k

)

]

(A.13)

Û(x′, t′; x, t) =

∫

dpN−1

2π~

∫

dpN−2

2π~
· · ·
∫

dp0

2π~

∫

dxN−1.....

∫

dx1

exp

[

i

~
∆t

N−1
∑

k=0

(pkẋk −H(pk, xk))

]

=
( m

2πi~∆t

)
N

2

∫

Dxk 6=0,k 6=N exp

[

i

~
∆t

N−1
∑

k=0

(m

2
ẋ2 − V (x)

)

]

(A.14)

2We use the fact that the area under a Gaussian curve is the same, to wherever its maximum is
translated.

∫ +∞
−∞ e−ax

2

dx =
√

π

a
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where we have used the notation

Dx ≡ dxN−1dxN−2 . . .dx1. (A.15)

Now let the number of timesteps tend to infinity to obtain3

û(x′, t′; x, t) = lim
N→∞∆t→0

( m

2πi~∆t

)
N

2

∫ x(t′)=x′

x(t)=x

Dx(t′′)

exp

[

i

~

∫ t′

t

dt′′
(m

2
ẋ2 − V (x)

)

]

(A.16)

Examine the integral in Equation A.16. It is just the integral of the Lagrangian over

time - the action S[x].

û(x′, t′; x, t) =

∫

Dx(t′′) exp

[

i

~
S(x)

]

(A.17)

Dx ≡ lim
N→∞,∆t→0

( m

2πi~∆t

)
N

2

dxN−1dxN−2 . . . dx1 (A.18)

Now that we have the propagtor, we have the probability amplitude at the new point

in time and space through Equation 5.1, namely

Ψ(x′, t′) =

∫

dx û(x′, t′; x, t)Ψ(x, t) (A.19)

A.2 Harmonic oscillator

By considering the path integral in imaginary time, we now derive the functional

form of the radius of gyration for a particle in a harmonic potential.

The following identities are required:

3The limits on the integral are intended to show that x at the beginning and the end points (x and
x′) are fixed, and are therefore not integrated over in the functional.
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∫ 2π

0

cosmx cosnx dx

=
1

2

∫ 2π

0

cos(m+ n)x dx+
1

2

∫ 2π

0

cos(m− n)x dx = πδmn

(A.20)

∫ 2π

0

sinmx sin nx dx

=
1

2

∫ 2π

0

cos(m− n)x dx− 1

2

∫ 2π

0

cos(m+ n)x dx = πδmn.

(A.21)

The radius of gyration squared is given by

∆2 =
〈

(r(τ) − r)2
〉

=

∫

Dr

∫ β~

0

[

r(τ) − 1

β~

∫ β~

0

dτ ′r(τ ′)

]2

exp

[

−1

~

∫ β~

0

dτ ′′
(m

2
ṙ2 +

m

2
ω2

0r
2
)

]

. (A.22)

We now expand r(τ) as a Fourier sine series with periodic boundary conditions in

τ :

r(τ) = r0 +
∞
∑

n=1

an sin

(

2nπτ

β~

)

(A.23)

Noting that

1

β~

∫ β~

0

dτ ′r(τ ′) = r0 (A.24)

and also that
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∫ β~

0

dτ

[

r(τ) − 1

β~

∫ β~

0

dτ ′r(τ ′)

]2

=

∫ β~

0

dτ

[

∞
∑

n=1

an sin

(

2nπτ

β~

)

]2

=
∞
∑

n′=1

∞
∑

n=1

an′an

∫ β~

0

dτ sin

(

2n′πτ

β~

)

sin

(

2nπτ

β~

)

=
β~

2π

∞
∑

n′=1

∞
∑

n=1

an′an

∫ 2π

0

dx sin (n′x) sin (nx)

(A.25)

where we have used x = 2πτ
β~

. We now use the fact that

∫ 2π

0

dx sin n′x sin nx = πδnn′ (A.26)

to see that

∫ β~

0

dτ

[

r(τ) − 1

β~

∫ β~

0

dτ ′r(τ ′)

]2

=
β~

2π

∞
∑

n′=1

∞
∑

n=1

an′an

∫ 2π

0

dx sin (n′x) sin (nx)

=
β~

2π

∞
∑

n′=1

∞
∑

n=1

an′anπδn′n

=
β~

2

∞
∑

n=1

a2
n

(A.27)

Now we turn our attention to the integral in the argument of the exponential term as

seen in Equation A.22. Noting that

r(τ) = r0 +

∞
∑

n=1

an sin

(

2nπτ

β~

)

(A.28a)

ṙ(τ) =
∞
∑

n=1

an

2nπ

β~
cos

(

2nπτ

β~

)

(A.28b)

we may write
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∫ β~

0

dτ ′′
(m

2
ṙ2 +

m

2
ω2

0r
2
)

=

∫ β~

0

dτ ′′
m

2

[

∞
∑

n=1

an

(

2nπ

β~

)2

cos

(

2nπτ

β~

)

]2

+

∫ β~

0

dτ ′′
mω2

0

2

[

r0 +

∞
∑

n=1

an sin

(

2nπτ

β~

)

]2

(A.29)

the cross terms between r0 and the sine expansion in Equation A.29 vanish, since

∫ β~

0

dτ sin

(

2nπτ

β~

)

= 0 (A.30)

so that

∫ β~

0

dτ ′′
(m

2
ṙ2 +

m

2
ω2

0r
2
)

=
β~

2π

m

2

(

2π

β~

)2 ∞
∑

n′=1

∞
∑

n=1

an′ann
′n

∫ 2π

0

dx cos n′x cosnx

+
β~

2π

mω2
0

2

∞
∑

n′=1

∞
∑

n=1

an′an

∫ 2π

0

dx sinn′x sinnx

+
β~

2
mω2

0r
2
0

(A.31)

and finally

∫ β~

0

dτ ′′
(m

2
ṙ2 +

m

2
ω2

0r
2
)

=
β~

2

∞
∑

n=1

[

m

2

(

2nπ

β~

)2

+
mω2

0

2

]

a2
n +

β~

2
mω2

0r0

(A.32)

The radius of gyration squared ∆2 may now be written as
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∆2 ∼
∫

dr0

∫

Dan′′

[

β~

2

∞
∑

n=1

a2
n′

]

exp

{

−β
2

∞
∑

n=1

[

m

2

(

2nπ

β~

)2

+
mω2

0

2

]

a2
n

}

exp

[

−β
2
mω2

0r
2
0

]

.

(A.33)

The integral over r0 yields a constant factor of
√

2π
βmω2

0

.

Defining

α =
β

2

[

m

2

(

2n′π

β~

)2

+
mω2

0

2

]

(A.34)

and concentrating next on the functional integral4

∫

Dan′′

(

1

2

∑

n′

a2
n′

)

exp

{

−β
2

∞
∑

n=1

[

m

2

(

2nπ

β~

)2

+
mω2

0

2

]

a2
n

}

=
∑

n′

∫

dan′ a2
n′ exp

{

−β
2

[

m

2

(

2n′π

β~

)2

+
mω2

0

2

]

a2
n′

}

· 1

2

∫

Dan′′ 6=n′ exp

{

−β
2

∑

n6=n′

[

m

2

(

2nπ

β~

)2

+
mω2

0

2

]

a2
n

}

=
∑

n′

π
1

2

4

{

β

2

[

m
2

(

n′π
β~

)2

+
mω2

0

2

]}
3

2

·
∫

Dan′′ 6=n′ exp

{

−β
2

∑

n6=n′

[

m

2

(

2nπ

β~

)2

+
mω2

0

2

]

a2
n

}

=
∑

n′

π
1

2

4

{

β

2

[

m
2

(

2n′π
β~

)2

+
mω2

0

2

]}
3

2

∏

n′′ 6=n′















π

β

2

[

m
2

(

2n′′π
β~

)2

+
mω2

0

2

]















1

2

=
∑

n′

1

4

{

β

2

[

m
2

(

2n′π
β~

)2

+
mω2

0

2

]}

∏

n′′















π

β

2

[

m
2

(

2n′′π
β~

)2

+
mω2

0

2

]















1

2

(A.35)

4We use the fact that
∫ +∞
−∞ x2e−αx

2

= 1

2α

√

π

α
.
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Concentrating on the summation, we note that

∑

n′

1

4

{

β

2

[

m
2

(

2n′π
β~

)2

+
mω2

0

2

]} =
β~

2

4mπ2

∑

n′

1

(n′)2 +
(

β~ω0

2π

)2 (A.36)

We now require the identity

coth(πx) =
1

πx
+

2x

π

∞
∑

k=1

1

k2 + x2
(A.37)

which rearranges to

(

1

2x2

)

{πx coth(πx) − 1} =

∞
∑

k=1

1

k2 + x2
. (A.38)

We may now write Equation A.36 as

∑

n′

1

4

{

β

2

[

m
2

(

2n′π
β~

)2

+
mω2

0

2

]}

=
1

2βmω2
0

{(

1

2
β~ω0

)

coth

(

1

2
β~ω0

)

− 1

}

(A.39)

and hence the radius of gyration squared ∆2 has the form

∆2 ∼
{

β~ω0

2
coth

(

β~ω0

2

)

− 1

}

. (A.40)



Glossary

Abbreviations

CCN Cumulative Coordination Number.

CM Centre of Mass.

DFT Density Functional Theory.

FCC Face Centered Cubic.

GGA Generalised Gradient Approximation.

H Hydrogen.

HB Hydrogen Bond.

HDA High Density Amorphous.

HDL High Density Liquid.

LDA Low Density Amorphous.

LDL Low Density Liquid.

LJ Lennard-Jones.

MD Molecular Dynamics.

MPI Message Passing Interface.

MUDPIES MolecUlar Dynamics using Path Integrals for Empirical Systems.

NN Nearest Neighbour.

O Oxygen.

PBC Periodic Boundary Conditions.
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PI Path Integral.

PPC Polarisable Point Charge.

RGY Radius of Gyration.

RMS Root Mean Square.

SLC Stability Limit Conjecture.

SPC Simple Point Charge.

SPC/E Extended Simple Point Charge.

TIPnP Transferable Intermolecular Potential with n Points.

TIP5P(PI) TIP5P — Path Integral parameterisation.

TMD Temperature of Maximum Density.

VACF Velocity Auto-Correlation Function.

Definitions

Canonical Constant particle number, volume and temperature.

Centroid Mean or "classical" position of a quantum particle.

Coexistence curve Separates stable and metastable states.

Ergodic Fair and representative sampling of phasespace.

Isochoric Constant volume.

Microcanonical Constant particle number, volume and energy.

Reentrant Re-enters positive pressures as temperature is decreased.

Spinodal Separates metastable and unstable states.
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Symbols

v Particle velocity.

G Reciprocal space lattice vector.

R Radius of gyration tensor.

∆ Radius of gyration tensor.

σ Stress tensor.

τ Torque.

ε Strain tensor.

l Real space lattice vector.

κT Coefficient of isothermal expansion.

L Classical Lagrangian function.

Jαβ Components of the pressure tensor.

P Scalar pressure.

Ω Simulation cell volume.

Ψ(r1, r2, . . . , rN ) Many body wavefunction.

ψi Kohn-Sham orbital.

σ(A) Root mean square fluctuation on the quantity A.

τ Imaginary time.

Cp Isobaric heat capacity.

E Total energy.

Eion Ion-ion interaction energy.

Exc Exchange-correlation interaction energy.

m Particle mass.

N Particle number.

n(r) Electron density.
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P Number of path integral beads.

S[x] Classical action as a functional of x.

t Real time.

VH Hartree potential.

Vion Ion-ion interaction potential.

Vxc Exchange-correlation potential.

β 1
kBT

.

ρ Number density.
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