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Abstract

A study of Hydrogen dynamics on a simple model Ruthenium surface has

been performed using Partially Adiabatic CentroidMolecular Dynamics (PACMD),

with a stochastic, Langevin based thermostat. Evidence has been found, and is

presentedwithin for quantum-mechanicallymediated, temperature-dependent

friction. The technique has been shown to accurately model the dynamics,

as measured experimentally by Helium-3 Spin-echo Interferometry, in a way

which has not been possible with classical techniques.
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List of Figures

2.1 An approximate visual guide to the spatial and temporal resolu-

tion of commonly applied surface sensitive measurement tech-

niques (taken from Jardine et al[1]). The letters in parenthe-

ses indicate the category of experiment to which the techniques

belong; where O stands for optical or laser based; M, micro-

scopic imaging and S, scattering methods. Quasi-elastic 3He

atom scattering (QHAS), which includes 3He spin-echo is the

only method currently available for studying sub-nanosecond

timescales at atomic lengthscales. Quasi-elastic neutron scatter-

ing (QENS) is included for the sake of comparison, and is not

strongly surface sensitive. . . . . . . . . . . . . . . . . . . . . . . 21

2.2 This figure, from Jardine et al[2] shows a schematic of the Cam-

bridge 3He spin-echo interferometer. A beam of 3He atoms is

generated at A, it is then collimated at B so that the nuclear

spin of the atoms is perpendicular to the beam, before pass-

ing through a magnetic field at C which splits the wave-packets

into a super-position of wave-packets with nuclear spin paral-

lel and antiparallel to the direction of the beam. The second of

these components reaches the surface at a time delay δ t with

respect to the first. After reflection the wavepackets are recom-

bined by an equal but opposite magnetic field at D; if the sur-

face has changed in δ t then the recombined wave-packet will

have a spin rotated in the x−y plane with respect to the original

orientation. This gives the analogue of measuring the time of

flight of the scattering process in more traditional scattering ex-

periments. Finally at E, single spin components are selected at

a time to be deflected into the mass-spectrometer type detector

at F, where the count rate gives the intensity of the transmitted

polarisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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2.3 Ruthenium is anHCPmetal and can be described in terms of the

basis vectors and lattice parameters outlined above. The Ruthe-

nium atoms are represented by blue circles, with the Ru atoms

of the central plane highlighted in dark-blue. The cross shows

the centroid of the central plane and of the cell. The light blue

hexagon shows part of the (0001) plane, which is the cleavage

on which the surface adsorbate diffusion is conducted.. . . . . . 24

2.4 TheHCP(0001) surface is represented schematicallywith in-plane

lattice vectors shown as a1 and a2. The high-symmetry direc-

tions, 〈11̄00〉 and 〈112̄0〉 are shown, which are also the nearest-

neighbour and next-nearest neighbour interstitial site directions.

Finally, the reciprocal space lattice vectors are shown as b1 and

b2 on the first Brillouin zone, depicted in light blue, with three

high-symmetry k-points highlighted. . . . . . . . . . . . . . . . . 25

2.5 An example of experimental ISF data along the 〈112̄0〉 azimuth

at a temperature of 250K and momentum transfer magnitude of

∆k = 1,76Å−1. Two fits are presented alongside the data; a single

exponential fitted to the long-time data and a two-exponential

model. The time axis is logarithmic and the data is courtesy of

Eliza McIntosh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The ergodic principle together with Liouville’s theorem allow

for the calculation of thermodynamic ensemble averages to be

calculated as time averages of the system evolved in the ap-

propriate ensemble in the limit of long time and for sufficiently

short time-step. This approach can also be used to find another

initialisation for a simulation, as in the limit of long time, the

system in its final and initial states will become uncorrelated; so

that the self part of the Van-Hove function, Gs goes to zero. . . . 34

3.2 The classical isomorphism of the discretised path integral is the

bead-spring system whereby a ring of fictitious particles con-

nected by springs is propagated in time. In so doing fully ac-

curate quantum mechanical results can be achieved in the limit

of large number of beads and long time. The centre of mass, or

“centroid” of the bead-spring system is shown with an x. . . . . 36

6



3.3 In past work [3], thermostatting has been applied to CMD by

running a thermostatted (NVT) standard PIMD simulation and

sampling it once some correlation function such as the self part

of the Van-Hove function indicates that the system is uncor-

related with the past sample, at which point a microcanonical

(NVE) simulation is spawned with the initial configuration of

the parent at the point it was spawned. Measurements are taken

of some observable on the child runs, and averaged over runs

to give a result in a canonical ensemble. This approach was re-

jected for this work, for the reason it is usually employed, as we

need to directly affect the dynamics of the system in order to see

the effect of friction. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 The effect of the Langevin thermostat is twofold, there is a fric-

tional damping term as if the particle were moving through a
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particles with random momentum. . . . . . . . . . . . . . . . . . 44

3.5 The forces when performing a PIMD calculation on a poten-

tial energy surface are obtained by separately finding the forces

on each bead due to the internal, harmonic interactions of the

bead-spring system and the forces on each bead due to the back-

ground potential energy surface (−∇V ), and summing them. . . 49

3.6 The trigonometric model for the potential energy surface has

the same geometry as the ab-initio PES, together with each of

the high symmetry points, including the top site (above a ruthe-

nium atom), the bridge site (energy barrier) and two types of

non-degenerate energy minima. . . . . . . . . . . . . . . . . . . 54

3.7 The potential energy surface, with spatial dimensions of the 2D

PES denoted on the plane and the difference in energy between

the various sites on the PES shown in the out of plane direction

as both colour and height. . . . . . . . . . . . . . . . . . . . . . . 54

3.8 A schematic representation of the important sites on the poten-

tial energy surface. The top sites are represented by large, red

ovals, the FCC sites by large, green, rounded triangles, the HCP

sites by small, blue triangles and the bridge sites by small, yel-

low ovals. This picture was generated directly from the PES at

a fixed, arbitrary energy contour, such that the sites are visibly

distinct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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4.1 Four trajectories are explored in order to show the differences

in adsorbate behaviour between the classical (1 bead) dynamics

on the left and the quantum mechanical (16 bead) behaviour on

the right. Also the two experimentally measured temperatures

are shown, 250K and 150K. It is clear that 250K diffuses further

than 150K, and the quantummechanically correct behaviour in-

creases the diffusion, not only for 150K, but is also an important

effect at 250K. All trajectories run for 12.5ns and the friction pa-

rameter was set at η = 0.01ps1. . . . . . . . . . . . . . . . . . . . 57

4.2 A convergence graph of the ISFs is presented. The ISFs are plot-

ted with a time-window of 1 to 600 ps for consistency with the

presentation of experimental data.The figure shows 150K on the

left and 250K on the right. It is clear that the 150K 1-bead (clas-

sical) case exhibits very little diffusion, while at 250K there is a

decay. As for the quantum convergence, the calculations with

4 (blue), 8 (red), 16 (green) and 32 (pink) beads are shown. It

is clear that they show more decay than the classical case and

that there is a convergence towards a particular profile. This

data was generated along the 〈112̄0〉 azimuth with a momen-

tum transfer magnitude of 1Å−1 at a friction of η = 0.01ps−1,

and averaged over a consistent number of trajectories. . . . . . 58

4.3 The α(∆k) was also checked for convergence with respect to

the number of beads in the calculation. Shown here is conver-

gence data for both principle azimuths at a friction coefficient

η = 0.01ps for 1 bead (black), 4 beads (red), 8 beads (green), 16

beads (blue), 32 beads (turquoise). . . . . . . . . . . . . . . . . . 59

4.4 Simulated α(∆k) plots have been calculated at 13 values of fric-

tion in Å−1 at 250K along both the 〈11̄00〉 azimuth on the left and

the 〈112̄0〉 azimuth on the right. All calculationswere completed

with 32 beads and plotted against experimental data (black crosses).

It is clear that there is not a good agreement between the mech-

anism of diffusion presented by the simulation and experiment

beyond about 1Å−1 of momentum transfer, however, in the low

momentum transfer limit, it is clear that before the effect of in-

teractions becomes apparent the agreement between simulation

and experiment is quite good. . . . . . . . . . . . . . . . . . . . . 60
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4.5 Again, simulated α(∆k) plots have been calculated at various

values of friction in Å−1, but this time at 150K along both the

〈11̄00〉 azimuth on the left and the 〈112̄0〉 azimuth on the right.

All calculationswere completedwith 32 beads and plotted against

experimental data (black crosses). In the 150K case, it is more

difficult to map between the simulated data and the experimen-

tal data, as there are fewer experimental data-points. For clarity,

then, four simulated plots which appear to bracket the experi-

mental data in the low momentum transfer regime. . . . . . . . 61
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Chapter 1

Introduction

As long as physics has been recognisable as the discipline it has become, sim-

plification has been the key to understanding. From the early shell models of

atomic electron configuration, to the free electron (Drude-Sommerfeld) model

of metallic valence electron behaviour, to the local density approximation for

the exchange-correlation energy in density functional theory, models may not

explain everything about a system, but as long as they serve to describe at least

part of the phenomenology a great deal may be elucidated.

Modelling and theory are only half of the picture, however, as experiment

serves to both provide the inspiration for and to prove or disprove the efficacy

of an upgraded model. Of course, a model can also be used to predict, and

so to inspire the design of subsequent experiments to gather new evidence in

support of a claim.

Surfaces, the interface between a solid and another phase, have been some of

the most studied systems in condensed matter physics. While a surface could

be thought of as a simplified analogue for the bulk, this would be entirely

wrong. Many effects seen on surfaces are not present at all in the bulk and

have served to show that not only can surfaces be very complicated systems,

but so much so that an entire field; surface science grew to address the unusual

behaviour encountered on them.

Surface effects are of huge importance technologically, for instance in catalysis,

the catalyst is often a solid, with gas or liquid phase reactants. An important

factor in the catalysed reaction rate is often the amount of surface area of the

catalyst presented to the reactants. In semiconductor microelectronic manu-

facture, a device is built up on a surface through various processes including

sputtering and photolithography which are carefully designed to alter the sur-

face though several steps in order to produce clearly prescribed results when

appropriately operated.
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Chapter 1 Introduction

This work has been completed as a collaboration between the experimental

Cambridge surface science group of Dr. Bill Allison and the group of Dr. Matt

Probert in the York university condensed matter theory group.

1.1 Experimental Background

The surface science group in Cambridge has developed the world’s first 3He

spin-echo interferometer. A device capable of resolving the dynamics of light

adsorbates on surfaces. This builds on both Neutron spin-echo interferometry

and 3He time-of-flight measurements. Neutron scattering is not appropriate

for surface experiments as neutrons tend to penetrate into the bulk; 3He is

reflected above the surface atoms, however and hence only samples surface

states. The spin-echo technique is important for temporal resolution; time of

flight measurements suffer because of the difficulty in precisely controlling the

velocity distribution of incident 3He atoms affects how accurately themeasure-

ment of energy transfer from scattered atom to surface can be. The spin-echo

technique addresses this by using an imposed spin-moment on the incident

atom to effectively time the scattering process internally. The polarisation of

the reflected atom encodes this information.

The importance of the experimental kit is, broadly speaking, that it has ex-

ceptional spatial and temporal resolution. A property which was necessary,

as the equipment has been used to measure the dynamics of hydrogen ad-

sorbed on a ruthenium surface; a fast diffusive process. The measurements

of dynamics then lead on to the calculation of diffusion constants which dif-

fer depending on the temperature. Classical molecular dynamics simulations

were performed by the group, but the results did not align with experimental

measurement.

1.2 PIMD Background

Path integral molecular dynamics (PIMD) is a computational technique based

upon the path integral formulation of quantum mechanics, first proposed by

Richard Feynman. Calculations performed using this method are fully quan-

tum mechanically accurate with no approximations (subject to convergence

with respect to well understood parameters and any further approximations

and simplification imposed in the simulation).

A variant of PIMD is centroid MD (CMD) which is based upon the centroid

16



Chapter 1 Introduction

density formulation of path integral quantummechanics. Of particular use for

calculating dynamical properties, this method was thought to be an ideal next-

step in the simulation of the Cambridge experimental hydrogen dynamics.

The PIMD code in CASTEP (a popular density functional theory code) is main-

tained by Dr. Probert of York university. A variant of this code is also kept

up to date outside of the CASTEP tree for use with model potential energy

surfaces (PESs) and this was used as the computational tool on which an im-

plementation of CMDwould be developed and the calculations of H on ruthe-

nium performed.

1.3 Friction - the objective and the benefit

The real objective and aim for this work was to model the ruthenium surface

and hydrogen adsorbate in such a way that friction parameters could be di-

vined by fitting the simulated data against that generated by experiment. In so

doing, atomic scale, temperature-dependent friction could be explained by a

simple model which could elucidate some of the features of the 3He spin echo

results.

Atomic scale friction has been studied before [4][5][6] many times, but in many

cases the equipment used to measure it was directly involved in the dynam-

ics of the adsorbate. For instance, an atomic force microscope could be used

to manipulate an individual adsorbate molecule or atom on the surface, effec-

tively dragging it along some path. This approach can possibly measure the

static friction of the adsorbate, but is limited by how fast the AFM probe can

be moved. There is also the issue that the friction could be affected by the po-

tential confining the adsorbate to the tip. The advantage of an approach like
3He spin-echo is that the dynamics are non-destructively (to a large degree)

measured with the spatial and temporal resolution to effectively “see” the dy-

namics of the adsorbate and infer a friction mechanism.

A simplified PES would be created of hydrogen on ruthenium, upon which

CMD wold be performed. These elements, in themselves have no parame-

ters in friction, however, as the molecular dynamics must be performed in

the canonical ensemble, where temperature is conserved rather than energy, a

Langevin equation was chosen to model the heat-bath. This consists of a fric-

tional damping term and a stochastic “buffeting” term to return energy to the

system.

Through the thermostat then, the value of friction in the simulation could be

carefully tuned to match experiment.
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Chapter 2

Experiment

Interfaces often exhibit very different physical and chemical behaviour than

the bulk [7]. This results from the abrupt interaction of solid phase with gas

phase or vacuum. In a bulk crystal, the electronic wavefunctionmay bewritten

in terms of Bloch waves,

Φn,k = eik·r un,k(r), (2.1)

where unk(r) is a wave-like function with the periodicity of the crystal lattice,

n is the index of an electronic energy band (band from hereonin) and k is a

wavenumber in the first Brillouin zone. unk(r) could for instance be written as

a plane wave expansion,

un,k(r) = ∑
G

cn,k+GeiG·r , (2.2)

so that the wavefunction may be written:

Φn,k = ∑
G

cn,k+Gei(k+G)·r . (2.3)

G are the reciprocal lattice vectors, defined with the real-space lattice vectors

R, as G ·R = 2πm, and the sum runs over all reciprocal lattice vectors.

In a metal, a simple model for the surface states is given when solving the

Schrödinger equation for a periodic potential abruptly terminated by a step

function,

V (z) =

{

Vp(z), z < 0

V0, z > 0
, (2.4)

in 1D, where Vp is the periodic function associated with the bulk and V0 is the

value which the potential decays to in the vacuum as z → ∞. The solutions to
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Chapter 2 Experiment

the 1D Schrödinger equation,

− h̄2

2m
d2

dz2Φ(z)+V (z)Φ(z) = EΦ(z), (2.5)

are given by

Φ(z) =

{

Au−ke−ikz +Bukeikz, z < 0

Ce−
√

2m(V0−E) z
h̄ , z > 0

, (2.6)

these are surface Shockley states, with A,B and C, scalar coefficients. It is clear

then, that in the bulk, surface states behave as Bloch waves, but outside of the

metal interface tail off exponentially. The tail off to constant potential in the

vacuum is associated with a dipole field about the domain boundary, resulting

from the gradient in charge density it. Because of these effects and others,

atoms in the surface region tend to relax into a non-bulk geometry, further

affecting the surface physics [8].

Over the last half-century, microscopy techniques have advance to such a de-

gree that the fields associated with individual atoms can be resolved (and

manipulated[9]). This has driven and in turn been driven by the develop-

ment of technologies such as silicon micro-electronics that power the mobile

phones, computers and devices so entrenched in modern-day life, the opto-

electronics that allow fast, high-bandwidth communication of vast quantities

of data worldwide and the medicines which have freed a generation of people

from the diseases which afflicted their ancestors since beyond record.

In order tomeasure effects on such short lengthscales and corresponding quick

timescales, a variety of techniques have been employed and are used regularly

to measure and characterise a multitude of phenomena. The origins of the field

of non-optical microscopy go back to x-ray crystallography, first pioneered in

the 1910s. The technique has been used to probe the nature of chemical bonds,

atomic size, but in particular, the structure of crystals and organic molecules.

Many techniques, including Atomic Force Microscopy (AFM) and x-ray crys-

tallography are used to measure static phenomena on atomic length scales,

however, these techniques can be roughly divided into two categories; those

which are better suited to studying the bulk, such as x-ray crystallography, and

those which are more naturally employed to examine surfaces, such as AFM.

When studying dynamics, such as diffusion processes of introduced impuri-

ties, this division is also apparent. In the 1970s, a technique known as Neutron

spin-echo interferometry was developed which is capable of measuring dy-

namical processes in materials. As neutrons can penetrate deep into a surface,

however, this technique was not a good approach for measuring surface dy-

namics, such as adsorbate diffusion.
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Chapter 2 Experiment

2.1 He-3 Spin-Echo Spectroscopy

Surface states can be probed continuously and non-invasively with helium-3

scattering experiments; 3He atoms are inert and when incident on a surface are

reflected roughly 3.6Å above the surface due to electronic interactions.[10]

When a 3He atom scatters from the surface, it can exchangemomentum, and/or

energy with it. Figure

Quasi-elastic helium atom scattering can be used to measure dynamics of ad-

sorbates on surfaces through the energy transfer between the beam and the

surface states. Incident 3He atoms will scatter elastically from static surfaces,

but when the adsorbate is moving on the surface, the elastic peak in energy

of the reflected beam will be broadened with respect to the incident energy

distribution, due to a quantum mechanical analogue of the Doppler effect.

Initial experiments were performed for 3He scattering from surfaces in the

1970s, where time of flight measurements were made. In this approach, col-

limated beams of 3He atoms have their velocity distribution measured prior

to and subsequent to scattering with the surface, giving a measurement for

the energy transferred to the surface from the beam. In such experiments, the

precision of measurement of the time of flight from the beam generator to the

detector is of crucial importance to the accuracy of the technique and is the

major difficulty in implementing such a system. It has been found [11] that the

energy resolution of time of flight measurements is limited to 0.3meV by the

velocity spread of the beam and uncertainty in the timing of the particle flight.

In contrast to a direct time of flightmeasurement, the Cambridge surface physics

group has constructed a 3He spin-echo interferometer. This equipment effec-

tively uses a magnetic field to temporally split a polarised wave-packet of 3He,

before it scatters from the surface, at which point an equal and opposite mag-

netic field is used to recombine the reflected wave-packets. This allows for the

imposed spin components of the 3He wave-packets to be used as timers for

their own trajectory.

The 3He spin-echo measurement gives a change in polarisation of the beam

as a function of time, which is equivalent to directly measuring the interme-

diate structure factor (ISF). It is worth noting at this point that the ISF, writ-

ten F(∆k, t) is related to the Van-Hove generalised pair correlation function,

G(r , t) and the dynamic structure factor, S(∆k,ω) through spatial and temporal

Fourier transforms as follows[7],

G(r , t) ⇐⇒
SpatialFT

F(∆k, t) ⇐⇒
TemporalFT

S(∆k,ω) (2.7)
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Chapter 2 Experiment

Figure 2.1: An approximate visual guide to the spatial and temporal resolu-
tion of commonly applied surface sensitive measurement techniques (taken
from Jardine et al[1]). The letters in parentheses indicate the category of ex-
periment to which the techniques belong; where O stands for optical or laser
based; M, microscopic imaging and S, scattering methods. Quasi-elastic 3He
atom scattering (QHAS), which includes 3He spin-echo is the only method
currently available for studying sub-nanosecond timescales at atomic length-
scales. Quasi-elastic neutron scattering (QENS) is included for the sake of com-
parison, and is not strongly surface sensitive.

The most intuitively simple of these representations is the Van-Hove function.

This is defined in real space and time as:

G(r , t) = 〈 1
N

∫ N

∑
i=1

N

∑
j=1

δ (r ′+ r − r j)δ (r ′− r i(0))dr ′〉, (2.8)

this can be best explained after splitting the expression into a self-part and a

distinct-part. So that,

G(r , t) = Gs(r , t)+Gd(r , t), (2.9)
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Figure 2.2: This figure, from Jardine et al[2] shows a schematic of the Cam-
bridge 3He spin-echo interferometer. A beam of 3He atoms is generated at A,
it is then collimated at B so that the nuclear spin of the atoms is perpendicu-
lar to the beam, before passing through a magnetic field at C which splits the
wave-packets into a super-position of wave-packets with nuclear spin parallel
and antiparallel to the direction of the beam. The second of these components
reaches the surface at a time delay δ t with respect to the first. After reflection
the wavepackets are recombined by an equal but opposite magnetic field at D;
if the surface has changed in δ t then the recombined wave-packet will have
a spin rotated in the x− y plane with respect to the original orientation. This
gives the analogue of measuring the time of flight of the scattering process in
more traditional scattering experiments. Finally at E, single spin components
are selected at a time to be deflected into the mass-spectrometer type detector
at F, where the count rate gives the intensity of the transmitted polarisation.

where the self-part, Gs gives the probability of a particle having moved a dis-

tance r in time t and the distinct part, Gd gives the probability that there is a

particle at a distance r from a coordinate at which, at t = 0, there was a different

particle.

In order to calculate ISFs from simulation, there is clear route from a trajec-

tory, through a discretised Van-Hove function on a grid and a spatial Fourier

transform to an ISF.

In practice, however, there is a formidable barrier to performing the calcula-

tion this way, as G must be defined on a fine grid (in 3D), which may have
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enough points that it is computationally infeasible to take its Fourier trans-

form. Furthermore, since the experimental data is measured only along par-

ticular azimuths, for certain discrete values of momentum transfer, a majority

of the data calculated in this way will be useless for comparison with experi-

ment. An alternative is to calculate ISFs directly by recognising that (2.8) can

be written in terms of microscopic densities as

G(r , t) = 〈 1
N

∫

ρ(r ′+ r , t)ρ(r ′,0)dr ′〉. (2.10)

This allows for the recognition that the ISF,

F(k, t)≡
∫

G(r , t)e−ik·r dr , (2.11)

is independent of integration order, so can equivalently be written as

F(k, t) = 〈 1
N

ρ(k, t)ρ(−k,0)〉, (2.12)

where ρ are microscopic densities, or the Fourier components of density. Writ-

ing the ISF in this way allows for direct calculation of the ISF for particular

momentum transfer as the autocorrelation of ei∆k·r if the system has time re-

versal symmetry[12].

2.2 Hydrogen on ruthenium - sites, energy differ-

ences, diffusion rates

The Cambridge surface physics group has compiled a set of data for hydro-

gen adsorbates on ruthenium surfaces, in particular the (0001) cleavage, which

has hexagonal geometry. Ruthenium is an HCP transition metal, with average

atomic weight of 101.07 amu; its structure is given in figure 2.3.

On the HCP(0001) surface are two types of hollow sites, termed HCP and FCC

hollow sites. These sites do not differ in the surface layer of atoms, they are

both equidistant from 3 surface atoms, but instead in the layer directly be-

neath. Directly under the HCP site is an atom in this layer, whereas in the FCC

site there is none. They are named in such a way because if the surface was

continued in the c direction (see figure 2.3), so that another surface layer was

laid on top, the HCP sites would be those above which the new atoms would

reside if the layering was continued in an HCP fashion, whereas the concept

for the FCC sites is the same, but where the stacking arrangement is changed

to FCC[13].
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Figure 2.3: Ruthenium is an HCP metal and can be described in terms of the
basis vectors and lattice parameters outlined above. The Ruthenium atoms are
represented by blue circles, with the Ru atoms of the central plane highlighted
in dark-blue. The cross shows the centroid of the central plane and of the cell.
The light blue hexagon shows part of the (0001) plane, which is the cleavage
on which the surface adsorbate diffusion is conducted..

2.3 Experimental Parameters

2.4 Measured quantities

ISFs are measured directly from the 3He spin-echo experiment. Both the real

and imaginary components are measured, though it is expected that the Van-

Hove function will be symmetric in both space and time for aperiodic diffu-

sion, hence the dynamic structure factor will be symmetric about zero energy

transfer (no net energy transfer). It is then reasonable to assume from this that

when Fourier transforming back to the time domain, to an ISF, that the imagi-

nary part will be zero. [12]

2.4.1 Intermediate Structure Factor Analysis

The ISF itself represents the time dependence of the correlation of the atomic

configuration for those atoms under consideration for the length-scale and di-

rection defined by ∆k [1]. While the Van-Hove function is more intuitively

understood, mapping models from that representation to yield analytic forms

for the ISF is difficult as the N-dimensional Fourier transform gets in the way.
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Figure 2.4: The HCP(0001) surface is represented schematically with in-plane
lattice vectors shown as a1 and a2. The high-symmetry directions, 〈11̄00〉
and 〈112̄0〉 are shown, which are also the nearest-neighbour and next-nearest
neighbour interstitial site directions. Finally, the reciprocal space lattice vec-
tors are shown as b1 and b2 on the first Brillouin zone, depicted in light blue,
with three high-symmetry k-points highlighted.

Models are necessary, however, in order to characterise the behaviour of the

adsorbate motion.

If the scattering atoms undergo simple diffusion (that is, their mean-square

displacement is proportional to time,

〈∆r(t) ·∆r(t)〉= 2NDt, (2.13)

where N is the dimensionality of the problem, then the ISF assumes an expo-
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nential form [14] such as:

F(∆k, t) = I0e−αt , (2.14)

where α is the dephasing rate. The variation of the dephasing rate with mo-

mentum transfer characterises the mechanism of diffusion. Several simple

models can be constructed to helpwith the characterisation, for instance; Brow-

nian motion yields a quadratic variation[1], whereas hopping between energy

minima on a Bravais lattice is given by the Chudley-Elliot model[15], finally

ballistic motion is known to have a Gaussian Van-Hove function, which of

course remains Gaussian through the Fourier transform to an ISF. The forms

for these three models is given in table 2.1

Mechanism Form of α(∆k)
Brownian D∆k2

Chudley-Elliot Hopping 2∑ j ν jsin2
(

∆k·l j
2

)

Ballistic
√

2ln(2)kBT
m ∆k

Table 2.1: Table giving the analytical dependence on momentum transfer of
dephasing rate (α) for three simple mechanisms of diffusion. In the Chudley-
Elliot mechanism ν j are the jump frequencies and l j are the jump vectors pos-
sible in the Bravais lattice, indexed by j.

2.4.2 α(∆k) plots

While ISFs are measured directly by the experimental technique, the results

from a set of ISFs at various momentum transfers can be compactly repre-

sented by an α −∆k plot. Since diffusion processes are represented by expo-

nentials in the ISF, models involving a sum of exponentials,

Fk(t) = ae−αt +be−β t + c, (2.15)

where α and β are the dephasing rates of two surface decays, match the profile

of the data. In the experimental set of measured ISFs, much of the data cannot

be fitted successfully with one exponential contribution, whereas two are all

that is necessary for a good fit (see figure 2.5). This suggests that depending on

the temperature, azimuth and magnitude of momentum transfer, either 1 or 2

decay processes are observed.
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Figure 2.5: An example of experimental ISF data along the 〈112̄0〉 azimuth at
a temperature of 250K and momentum transfer magnitude of ∆k = 1,76Å−1.
Two fits are presented alongside the data; a single exponential fitted to the
long-time data and a two-exponential model. The time axis is logarithmic and
the data is courtesy of Eliza McIntosh.

2.5 Adsorbate density and Fermionic Hydrogen

It is important to note that the surface coverage of hydrogen on the surface is

approximately 0.2 mololayers (ML). This has implications for the calculation

of the behaviour of the adsorbate, as the proton of the hydrogen nucleus is a

Fermion, whereas the proton-electron system which makes up the atom is a

composite Boson at high enough temperature. The expectation of the experi-

mental group was that a Bosonic treatment of the Hydrogen would be applica-

ble, as the packing density is so low and electronic structure calculations [16]

suggest that the electronic density of the hydrogen is localised to the nucleus

and correlated with its motion. For this reason, together with further discus-

sion in chapter 3, the adsorbate was treated Bosonically in this work, though
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Fermi-Dirac statistics have been investigated.
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Theory

3.1 Molecular Dynamics

Molecular dynamics is the computational simulation of the movement of clas-

sical physical particles, by solving Newton’s equations (3.1) numerically in a

potential field. It has historically been usedmost often to calculatemacroscopic

properties through ensemble averages. While the idea is simple, there are vari-

ous subtleties which have been studied in depth over the latter half of the 20th

century. For a system of N particles in a potential, the classical equations of

motion can be written,

Fi = miai,

mi
d2r i

dt2 = −dV
dr i

, (3.1)

where V is the external potential in the system. Energy conservation is im-

plied as there is no dissipative term and any numerical integration (finite dif-

ference) method may be employed to evolve the positions of the particles in

time. As time is necessarily quantised for representation computationally and

due to the finite order of integration algorithms, the trajectories obtained by

numerically integrating these equations of motion will always diverge from

the true trajectory in the long term limit. For dynamical observables, either an

integrator must be chosen with a high enough order, or a short enough time

quantisation chosen that trajectories are exact to some arbitrary tolerance for

run-times comparable to the correlation time of the observable. Often, how-

ever, exact trajectories are not necessary, as we actually want use the approach

to sample states from the Microcanonical ensemble; in this case the criteria can

be relaxed to energy conservation only. Integration algorithms are sensitive to

fast movement, and may diverge with an inappropriately long time-step for
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the speed of the motion. For this reason it is important that a suitably short

time-step is chosen, particularly when the system is given a large energy or

with low-mass particles. Calculating potentials are also, often expensive, so

typically an integrator with few potential evaluations is chosen. This usually

rules out the oft- employed finite-difference methods for ordinary differential

equations, such as Runge- Kutta methods. Needing a high enough order for

accurate trajectories, then leads to a compromise; the Velocity Verlet method

has O(∆t2) error in both position and velocity and has become the standard in

molecular dynamics, partly because it requires only one potential evaluation

per cycle to achieve this accuracy.[17] The algorithm can be written as:

Algorithm 1 Velocity Verlet Algorithm

Function f : Rn → R

n, v(t) 7→ v(t +∆t)

v → v+
1
2

a∆t

x → x+v∆t

a= − 1
m

dV
dr i

v →v+
1
2

a∆t.

End Function

3.2 Path Integrals

In Lagrangian classical mechanics, the principle of least action states that the

change in the action,

S =
∫ t1

t0
L (q̇(t),q(t), t)dt, (3.2)

where L is the Lagrangian of the system, is zero along the path in configura-

tion space which would be taken physically by the system evolving from its

configuration at t0 to that at t1 [18].
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It was shown by Feynman that an analogous concept exists in quantum me-

chanics [19]. Starting from the concept of the time-evolution operator Û in the

Heisenberg picture of quantum mechanics, the Green’s function of the time-

dependent Schrödinger equation, or the propagator can be written

K(x, t,x0, t0) = 〈x|Û(t, t0)|x0〉, (3.3)

which can be used to evolve a state through an interval in time,

ψ(x, t) =
∫

K(x, t,x0, t0)ψ(x0, t0)dx0. (3.4)

K(x, t,x0, t0) = ae−iS /h̄ (3.5)

For short timesteps, the action may be approximated as

S =
∫ t1

t0
L dt = 〈L 〉∆t, (3.6)

to first order, where ∆t is the timestep, t1−t0 and 〈L 〉 is the average Lagrangian
over this period. With these results, it is possible to claim that a finite propa-

gation in time may be represented by the serial application of the approximate

propagator;[20]

K(x f inal, t f inal,xinitial, tinitial) =
∫ N−1

∏
i=1

dxie
i∑N−1

i=1 L (ti)∆t/h̄ (3.7)

Classically, a system evolves from one state to another along the path in con-

figuration space, δS = 0; the quantum mechanical propagator (3.7) can be

interpreted as an integral over all paths in phase space. This idea ties in neatly

with the double-slit experiment, as rather than the incident particle “weirdly”

passing through both slits, it can be seen from the path-integral propagator

that an unimpeded, quantum mechanical particle would explore every possible

path. In the double-slit experiment, most paths have been blocked, leaving

only two possible routes to the screen, but both of them are dutifully explored!

3.2.0.1 Derivation

More formally, the path integral representation of quantum mechanics can be

derived by firstly taking the density as written using the canonical Boltzmann

operator,

ρ(β ) = e−βH , (3.8)

31



Chapter 3 Theory

where thermodynamic β = 1/T and the Hamiltonian, H is of the usual form,

H = T +U , (3.9)

and the kinetic T and potential U energy operators do not commute,

[T ,U ] 6= 0. (3.10)

The partition function can be written,

Z(β ) = Tr(e−βH ), (3.11)

where Tr represents the trace, or alternatively in path-integral form can be

written as

Z(β ) =
∫

dq〈q|e−β (T +U )|q〉 (3.12)

= lim
P→∞

∫

dq〈q|AP|q〉, (3.13)

where A is expressed as:

A = e−
β
2P U e−

β
P T e−

β
2P U , (3.14)

by Trotter’s theorem. It should be noted that this step is necessary because T

and U do not commute (3.10). Taking the identity relations,

I =
∫

dq|q〉〈q| (3.15)

I =
∫

d p|p〉〈p|, (3.16)

a full set of position and momentum states is introduced. Firstly it is noted

that the integrand in (3.12) can be written,

〈q1|AP|q1〉= 〈q1|A|q2〉〈q2|A|q3〉〈q3| · · · |qP〉〈qP|A|q1〉, (3.17)

using the set of position states. Where q has become q1 to simplify the indexing.

So that

Z(β ) = lim
P→∞

∫

qP+1=q1

P

∏
i=1

dqi〈qi|A|qi+1〉. (3.18)
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Substituting for A, it can be seen that

〈qi|A|qi+1〉 = 〈qi|e−
β
2P U e−

β
P T e−

β
2P U |qi+1〉 (3.19)

= e−
β
2P (U (qi)+U (qi+1))〈qi|e−

β
P T |qi+1〉, (3.20)

in the limit of large P, as:

eA+B = eAeB(1− 1
2
[A,B]+O(N3)), (3.21)

and so β/P must be small as this is only correct up to the linear term, as it has

been stated (3.9) that U and T do not commute. Focussing on the remaining

terms, and using a set of momentum states from (3.15),

〈qi|e−
β
P T |qi+1〉 =

∫

d p〈qi|p〉〈p|e−
β
P T |qi+1〉 (3.22)

=
∫

d pe−
βP2

2Pm 〈qi|p〉〈p|qi+1〉. (3.23)

Using the result,

〈q|p〉= 1√
2π h̄

eipq/h̄, (3.24)

the expectation value can be written,

〈qi|e−
β
P T |qi+1〉 =

∫

d pe−
β

2mP p2
eip(qi−qi+1)/h̄ (3.25)

=

√

mP

2πβ h̄2e
− mP

2β h̄2 (qi−qi+1)
2

(3.26)

So that, assembling these results,

〈qi|A|qi+1〉=
√

mP

2πβ h̄2e
− mP

2β h̄2 (qi+1−qi)
2− β

2P (U (qi)+U (qi+1))
. (3.27)

Then, the partition function can be written in path integral form as

Z(β ) = lim
P→∞

mP

2πβ h̄2

P/2∫

q1=qP+1

P

∏
i=1

dqie
−βV , (3.28)

where

V =
P

∑
i=1

mP

2β h̄2(qi+1−qi)
2+

1
P

U (qi). (3.29)

Here, any operators have disappeared and the equation is entirely in terms of

a set of augmented positions and momenta. Written with reference to Mosel

[21].
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3.2.1 Ergodic Principle

In statistical mechanics, ensemble average quantities can be calculated by sum-

ming over the microstates of the system with the appropriate partition func-

tion. This is somewhat removed from how (path-integral) molecular dynam-

ics operates and a more obvious fit for calculating such properties would be a

Monte-Carlo simulation. Ensemble averages can be calculated with molecular

dynamical techniques, by making use of the ergodic principle and Liouville’s

theorem[22]. One way of stating the ergodic principle is that a fair estimator

will sample all of configuration (or phase) space, and hence microstates in the

limit of large time. This is important because it implies that a time averaged

quantity in molecular dynamics is equivalent to a thermodynamic ensemble

average. Liouville’s theorem allows that sampling along a trajectory in a sys-

tem, in time, can be equivalent to sampling from the thermodynamic ensem-

ble, so long as that trajectory was propagated under the same ensemble. This

is because, according to the theorem, locally, the density of microstates in a

system is constant in such a case. This is important because the system must

be locally at equilibrium in order that the equilibrium properties of the system

be fairly sampled.

Figure 3.1: The ergodic principle together with Liouville’s theorem allow for
the calculation of thermodynamic ensemble averages to be calculated as time
averages of the system evolved in the appropriate ensemble in the limit of long
time and for sufficiently short time-step. This approach can also be used to find
another initialisation for a simulation, as in the limit of long time, the system
in its final and initial states will become uncorrelated; so that the self part of
the Van-Hove function, Gs goes to zero.
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3.3 Path Integral Molecular Dynamics

Path integral Molecular dynamics was first proposed in 1981[23], it was ini-

tially meant to be used as a more efficient way to perform the integral in (3.28)

(than Monte-Carlo methods). The idea is simply to take note that the effec-

tive potential (3.29) has a classical isomorphism which is a set of particles con-

nected by springs, as evidenced by the harmonic terms in the expression. This

classical system can be propagated in time with standard molecular dynamics

techniques and by the ergodic principle, time averages will be equivalent to

ensemble averages in the limit of large time[24].

Starting from the partition function;

Z = ∑
j

eβE j =
∫

dx〈x|e−βH |x〉, (3.30)

where thermodynamic β = 1/kBT , and knowing that matrix elements can be

calculated in the path integral formalism.

Z =
∫

Dx(τ)e−
1
h̄

∮

H dτ , (3.31)

where τ = it, or imaginary time, as in the comparison of eβH with the time

evolution operator (3.5), it can be seen that t = −ih̄β . eix is of course cyclic, so

hence the imaginary time evolution operator is also.

Path integral Molecular dynamics (PIMD) is derived by noticing that a trotter

factorisation,

eA+B = lim
N→∞

(eA/NeB/N)N , (3.32)

may be applied to thematrix, eβH , ifH is written as K+V , so that the partition

function becomes:

ZN =

(

mN

2πβ h̄2

)N/2∫

· · ·
∫

dx1 · · ·dxNe
−β mN

2β2h̄2 ∑N
t=1(xt−xt+1)

2+ 1
N ∑N

t=1V (xt)
, (3.33)

so that in the limit of N →∞, the partition function converges to the exact result.

Furthermore, if the integrand is viewed as a propagator in time, then the N

variables could be propagated with a molecular dynamics approach, with the

potential,

ΦN(x1 · · ·xN ;β ) =
mN

2β 2h̄2

N

∑
t=1

(xt − xt+1)
2+

1
N

N

∑
t=1

V (xt). (3.34)

Of course, this could never be achieved with an infinite number of variables,
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but rather quantities would be converged to arbitrary precision by increas-

ing N. In this approach, it is also clear that the potential leads to a nice iso-

morphism, as the first term is a series of harmonic interactions between vari-

ables; amolecular dynamics simulation of a ring of beads, connected by springs

is enough to simulate the quantummechanical propagation of a particle through

a potential, V. This is known as PIMD.

Figure 3.2: The classical isomorphism of the discretised path integral is the
bead-spring system whereby a ring of fictitious particles connected by springs
is propagated in time. In so doing fully accurate quantum mechanical results
can be achieved in the limit of large number of beads and long time. The centre
of mass, or “centroid” of the bead-spring system is shown with an x.

3.4 Thermostatting

As discussed earlier, molecular dynamics samples the microcanonical ensem-

ble; this is true for both the classical and path integral cases. In reality, however,

it is more common to have a system coupled to a heat-bath which conserves

temperature, rather than energy. In order sample from a canonical ensemble

in a molecular dynamics simulation, this heat-bath must be replicated some-

how. Doing so in order to constrain the temperature to a set value is known as

thermostatting.

3.4.1 Langevin Thermostat

The idea behind this thermostat is to model the heat-bath with the Langevin

equation,

Fi = γpi +

√

2γMi

β
xi, (3.35)

the two terms in the Langevin equation correspond to drift and diffusion, re-

spectively. Where the particles are indexed by i and γ represents the friction
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coefficient. The Langevin equation models a particle moving in a sea of others.

The drift term scales its velocity in accordance with some friction parameter,

whereas the diffusion term adds an appropriate stochastic contribution to the

velocity which keeps the temperature of the system at a pre-defined value,

to represent a Brownian contribution to the motion. Usually, the Langevin

thermostat is used only in the calculation of time-averaged properties, as the

diffusion term alters short-term dynamical information of the particle in the

potential field. In this case, as the Langevin thermostat will fix the tempera-

ture regardless of the value of the friction parameter, it is used solely to tune

the efficiency of the sampling of phase- space.

3.5 The Centroid in Path Integrals

Like the path integral formulation, the path centroid is also an idea profilated

by Richard Feynman. Interestingly this quantity has been shown to play a cen-

tral role in the correspondence of quantum and classical quantities[25]. The

centroid represents the imaginary time average of a closed Feynman path,

which corresponds to the zero-frequency Fourier mode of that path.[3]

q0 =
1

h̄β

∫ h̄β

0
dτq(τ) (3.36)

Feynman notes that the path integral formalism can be cast in terms of this

centroid variable, by defining another quantity, the centroid density, given by

ρc(qc) =
∫

· · ·
∫

Dq(τ)δ (qc −q0)e
−S [q(τ)/h̄] (3.37)

where q again represents a position in space, and q0 the centroid of one of the

particular paths in the integrand, except that δ (qc −q0) will be zero if qc 6= q0.

Hence, the integral is constrained to be over those paths for which the centroid

is at qc. In order to recover the partition function, the centroid density must be

integrated over all possible centroid positions:

Z(β ) =
∫

dqcρc(qc) (3.38)

While Feynman and Kleinart showed that casting the path-integral formula-

tion of quantum mechanics in terms of the centroid density is a useful way

to extract classical observables from quantum mechanical systems[26], it was

Cao and Voth that rigorously showed that Boltzmann statistical mechanics can

be written in terms of the centroid density[27]. In this formulation, the cen-
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troid density plays the same role as probability density in classical statistical

mechanics.

While as applicable to the calculation of equilibrium properties as the stan-

dard path- integral formulation, the centroid density approach is of particular

merit when applied to dynamical properties, as shown in the companion pa-

per to that referenced above, Cao and Voth go on to explain how the centroid-

density formulation can be used to calculate time-correlation functions on real-

istic time-scales and ultimately describe what they call Centroid Molecular Dy-

namics (CMD)[27].

3.6 Centroid Molecular Dynamics

Time correlation functions are fundemental quantities in classical mechanics,

and it is perhaps not initially obvious how to generalise such a concept to

quantummechanics; especially those requiring definite positions andmomenta

at particular times. That is not to say that a time correlation function could not

be defined on the expectation value of position and momentum for a quan-

tum system. In such a case, while the expectation values are quasi-classical

quantities, it is entirely reasonable to suggest that as the dynamical equations

of motion of the system are quantum mechanical, the trajectory of 〈x〉 and 〈p〉
will reflect this and present qualitatively different correlation profiles, evidenc-

ing a “quantum correction” to the classical dynamics.

The obvious simplification and approximation here is that the fully quantum

mechanically accurate system is not bound to follow a trajectory of the expec-

tation value of position and momentum.

The problemwith PIMD in its usual formulation, when considering dynamics,

is that the beads and bead trajectories present fictitious information about the

time evolution of the system, despite often giving believable results. PIMD

has a well established history in the calculation of ensemble averages, but the

beads and bead trajectories were viewed more as a phase space sampling de-

vice and the non-physical path through this space with no meaning outside of

ensemble averages. In essence, the sum over the beads represents the discre-

tised, imaginary-time integral over a single Feynman path, whereas the evolu-

tion in time of the bead-spring system represents the integration over Feynman

paths. Together, these two procedures can be employed to sample phase space

efficiently and present accurate, ensemble-averaged quantities, when run for

sufficient time and with enough beads, by the ergodic principle.

In effect, if we are looking for the dynamics, the problem is that the inte-
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grals in time and phase space are not necessarily in the correct order. En-

semble average quantities are invariant under a change of sampling order,

hence why path-integral Monte-Carlo methods can work. So, another way

of looking at this is that while the bead-spring system is in a particular state,

the Feynman-paths which are in some sense at this location in phase space,

should be summed over first, followed by subsequent points in phase space,

to form a trajectory.

As we are looking for expectation values, this can be shown to be the centroid,

or centre of mass of the bead-spring system in the ring-polymer isomorphism.

Importantly Feynman suggests a modification to the path integral formulation

of quantum mechanics, in terms of the centroid.

Centroid MD was first proposed by Cao and Voth in the first and second of a

series of manuscripts published in 1994[27]. It is often thought of as a way to

simulate the dynamics of quantummechanical systems on realistic timescales.

More formally it is a procedure by means of which Kubo-transformed time-

correlation functions can be generated for the system under study.

Starting again from the partition function, but the centroid-density split ver-

sion in eq.(3.38), if we were now to discretise the action integral of this par-

tition function in the same way as for the equilibrium (non-centroid density)

case, then ρc becomes

ρc(qc) =
mP

2π h̄2β

∫

Dqδ (qc −q0)e
−∑P

i=1(
mP

2h̄2β
(qi−qi+1)

2+ β
PV [qi])

(3.39)

Then the equations of motion are constructed so that the centroid variable

moves in a potential of mean force generated by a sum over paths with the

same centroid, given by [28]

Vc(qc) =− 1
β

ln(ρc(qc)), (3.40)

and the equations of motion are:

dqc(t)
dt

=
1
m

pc(t) (3.41)

d pc(t)
dt

= Fc(qc(t)) (3.42)

where pc is the momentum of the of the centroid position, xc. Initial conditions

for the centroid molecular dynamics should be sampled from the phase space
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centroid distribution [29],

ρc(qc,ρc) = e−βp2
c/2mρc(qc). (3.43)

By integrating the equations of motion with an appropriate scheme, such as a

molecular dynamics integrator discussed previously or such as the symplectic

and exact method discussed in Ceriotti et al[30], a pseudo-classical trajectory

is obtained which can be used to compute centroid time correlation functions,

which are effectively Kubo-transformed[31] time correlation functions

The idea was in essence that quasi-classical information can be extracted from

the centroid mode of a wave-packet moving in a potential with a quantum

mechanical correction to its trajectory a la Feynman and Hibbs, but that this

correction could be generated by the exploration of local phase space by the

beads of a PIMD simulation with a constrained centroid. In order to achieve

this, the centroid of the ring-polymer would be treated as a (non-path-integral)

molecular dynamics simulation on a potential field, only every time the poten-

tial was evaluated, a path integral simulation with fixed centroid would be run

at that point in the MD run. The result would be an average force on the other

normal modes, over the sub-simulation which would be used to correct the

force obtained from the potential, and hence the dynamics.

Later, the concept was made more general in what is known as partially adi-

abatic centroid PIMD. The idea here is exactly the same; that the dynamics of

the centroid are physically meaningful, in that the trajectory of the centroid

represents a pseudo-classical path of the centre of mass of the delocalised par-

ticle density. Implementationally, though, PACMD is quite different. As the

higher frequency normal modes are simply a ensemble phase space sampling

device, altering their dynamics to sample more of phase space more quickly

will not affect the dynamics of the centroid mode. The better the sampling

of phase space, the more accurate the centroid trajectory will be. In PACMD,

the masses of the non-centroid normal modes are artificially reduced by some

arbitrary factor, so allowing them to move more quickly. This eliminates the

two-step process to performing CPIMD; a single PIMD run can be performed

with reduced (non-centroid) normal mode masses, which are reduced until

convergence in desired observable is obtained. Performing molecular dynam-

ics on such potentially light particles is, however, problematic due to error in

the integration algorithm. It is usually necessary, then, to reduce the timestep

as the centroid/non-centroid adiabaticity is turned up. The result is that the

algorithm can be very expensive for light particles when the simulation must

also have been converged with respect to the number of beads.
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3.6.1 Normal Mode Transformations

The beads and springs, classical picture of the path integral discussed earlier is

more than just an analogy, but a formal mapping which preserves all proper-

ties in a true isomorphism. It is then possible to invert the fundamental matrix

of the system (of a ring polymer of beads connected by springs) as would be

performed in classical mechanics to produce the monodromy matrix,

M =



















2 1 0 −1

1 2 1 0

0 1 2 0
. . .

−1 0 0 2



















−1

(3.44)

and hence then transform the coordinate system into the normal-mode coordi-

nates of the free ring polymer, by the relation:

u = Mq (3.45)

q = M−1u, (3.46)

where u is a vector of normal mode coordinates and q is a vector of coordinates

in linear space.

This transformation is particularly relevant and important because the first

normal mode of the system corresponds to the centre of mass, or centroid of

the ring polymer, which is, of course exactly the variable which we hope to

propagate in the CMD scheme.

Furthermore, for a closed ring polymer in free space, the monodromy matrix

is in fact a Vandemonde matrix, and so the transformation can be viewed as

a Fourier transform. As an operation which is performed very many times

through the course of a simulation, this is a very important observation, as the

symmetry of the linear transform can be readily exploited with a fast Fourier

transform (FFT), which scales as Nlog(N), rather than N2.

qk =
P−1

∑
l=0

ule
2π ikl/P (3.47)

In the normal mode representation, the effective masses of the normal modes

should be multiplied by the eigenvalues of 3.44. The complication of this is

that if the Fourier approach is taken then linear combinations of eigenvalues

are taken and every eigenvalue except the centroid and last mode should be
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divided by
√

2 (on top of the usual FFT normalisation).

According toMarx [32], when in the normal-mode representation, it is possible

to perform partially adiabatic CMD quickly and easily. Rather than operate the

procedure in two parts as an MD propagation of the centroid and a centroid

constrained propagation of the bead positions, the non-centroid normal modes

can be accelerated by reducing their masses with respect to centroid mode (in

the normal mode representation). A shorter timestep will be required to keep

the integration of the faster dynamics stabily, however once converged with

respect to this “centroid adiabaticity parameter”, γ , it is equivalent to the cen-

troid moving on an effective potential generated by the other normal modes.

This way of doing things is empirically much faster than the original way, at

the expense of an arbitrary convergence parameter.

Therefore, the normal mode masses are multiplied by γ as:

M′s
I = γMI, s = 2,P, (3.48)

where MI is the atomic mass and s denotes the index of the normal modes.

3.7 Thermostatted CMD

In the past, PACMD calculations have been thermostatted in either of two

ways; firstly a non-stochastic thermostat, with a deterministic effect, such as

Nose-Hoover might be employed. Nose-Hoover thermostats are known to be

non-ergodic in the long-time limit, however, so ’Nose-Hoover chains’ were

developed, though it (to my knowledge) has never been proven that this ther-

mostat converges to ergodicity in the limit of the number of auxiliary chains.

The other approach is to perform a thermostatted, standard PIMD calculation

of a long enough duration that N uncorrelated samples of the bead coordinates

can be gathered. This set of positions and momenta will then sample from the

Maxwell-Boltzmann distribution at the temperature of the thermostatted run

and these samples can then be used to initialise N un-thermostatted (micro-

canonical) PACMD runs. The resulting trajectories from these child calcula-

tions can be used to calculate N dynamical correlation functions which may be

averaged to give a correlation function at the desired temperature.

In this work, the thermostat has been used in a different way. The objective

was to model the friction in the 3He spin-echo experiments, so having a model

with a friction parameter is of particular importance. Rather than using the pa-

rameter to find themost efficient sampling, it would instead be used to find the
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Figure 3.3: In past work [3], thermostatting has been applied to CMD by run-
ning a thermostatted (NVT) standard PIMD simulation and sampling it once
some correlation function such as the self part of the Van-Hove function indi-
cates that the system is uncorrelated with the past sample, at which point a mi-
crocanonical (NVE) simulation is spawned with the initial configuration of the
parent at the point it was spawned. Measurements are taken of some observ-
able on the child runs, and averaged over runs to give a result in a canonical
ensemble. This approach was rejected for this work, for the reason it is usually
employed, as we need to directly affect the dynamics of the system in order to
see the effect of friction.

value of friction which most closely matches the dynamics of the experiment.

As it turns out, re-purposing the simple, stochastic Langevin equation as an

auxiliary equation of motion on the dynamics of the system can be made to en-

sure iso-thermal conditions. While this is a very effective thermostat [30][33],

it is advantageous also because the Langevin equation has a term for viscous

damping due to a friction with the heat-bath. This is represented by a scalar

friction coefficient. This coefficient is what has been focussed on in the current

work; in particular, how its choice affects the dynamics of the system through

ISFs and thenwhich choice most closely matches experiment through a fit with

a set of ISFs at various momentum transfers.

The Langevin equation was originally intended as a recasting of Einstein’s
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Brownian motion in terms of momentum, and hence it includes not only a

frictional damping term, but also a stochastic buffeting term which represents

the random interactions of the particle as it moves through a sea of fictitious

particles. Using the Langevin equation as a thermostat is possible because this

second term can be made to counterbalance the effect of the damping, by judi-

cious choice of coefficient to scale the magnitude of random noise.

Figure 3.4: The effect of the Langevin thermostat is twofold, there is a frictional
damping term as if the particle were moving through a viscous liquid and
reversiblity brought in through the second stochastic term which represents a
buffeting by a set of fictitious particles with random momentum.

In this capacity as thermostat, the Langevin equation is written,

F → F− γp+

√

2γm
β

ξ (t), (3.49)

where, as before F is the force acting on the particle, p is the correspondingmo-

mentum, m is its mass and β is thermodynamic β . γ is the friction coefficient,

as seen in the first term representing the damping. ξ (t) is a set of uncorrelated
random numbers for every time, with zero mean and unit variance.

3.7.1 Thermostats in Other Coordinate Systems

It may be advantageous, rather than to thermostat the linear, internal coordi-

nates of the bead-spring system, to apply the thermostat to the normal modes

of the system. It has been shown [30] that the correlation times can be min-

imised for a harmonic oscillator potential by setting the friction parameters
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for the Langevin equation on each of the normal modes to have the following

analytic form:

γk =

{

1/τ0, k = 0

2ωk, k > 0,
(3.50)

where τ0 is the free parameter for thermostat correlation time, which is to be

adjusted for fit with experiment.

In the normal mode representation, then, the path-integral Langevin thermo-

stat equation on each atom, is written as

pk → akpk +

√

mP
β

bkξk, (3.51)

where all quantities have their usual meanings and the friction parameters are

applied to the normal modes, through ak and bk in the following way:

ak = e−(∆t/2)γk (3.52)

bk =
√

1−a2
k (3.53)

The effect of this is to maximise the sampling of phase-space, under the as-

sumption that the background potential is harmonic, while keeping the fric-

tional damping on the centroid a free parameter. This was the scheme used in

this work.

3.8 Correlation Functions from PIMD

In this work, the most important correlation function to consider was the ISF,

as this is what was measured experimentally and so provides the means to

compare directly with experiment. Starting from a general perspective how-

ever, we can start with a time-correlation function, as the ISF can be written in

terms of an auto-correlation of Fourier coefficients of the density,

F(k, t) = 〈ρk(0)ρk(t)〉, (3.54)

where k is a particular wave-vector. This representation is particularly useful

in this work, as the experiment measures ISFs along particular azimuths with a

discrete set of momentum transfers, so for comparison with experiment, using

this representation, ISFs with the same set of momentum transfers k could

be generated from trajectory data. This is possible because we can write the
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Fourier operator as:

ρk = eik·q (3.55)

Performing the process in (3.54) is a O(N2) operation, where N represents the

number of sampled time-steps in this context. There exists a much faster way,

in practice to calculate auto-correlation functions; the Wiener-Khinchin theo-

rem states that the power spectrum of a process is the Fourier transform of its

autocorrelation function. Using this knowledge, the auto-correlation can be

written as:

A(ω) =
∫ ∞

−∞
ρk(t)e

2π itω dt (3.56)

F(t) =
∫ ∞

−∞
A(ω)A(ω)∗e−2π itω dω, (3.57)

where the integrals are standard Fourier and inverse Fourier transforms and

∗ represents conjugation. This in itself does not gain anything in efficiency,

but writing this expression discretely, we can apply the FFT, which scales as

O(Nln(N)) and the computation is much more rapid.

Algorithm 2 Wiener-Khinchin ISF algorithm

Function f : Rn → R

n, F 7→ 〈ρk(0)ρk(t)〉

A(ω) = FFT (ρk(t))

A(ω)→ A(ω)A(ω)∗ (3.58)

F(t) = FFT (A(ω))

End Function

3.8.1 Kubo Transform

CMD is based on the equations ofmotionwhichwill generate a Kubo-transformed

time- correlation function.[34] Exact quantum correlation functions must be
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calculated through an inverse Kubo transform [27], which may be written as:

C̄(ω) =
h̄βω

2
(coth(

h̄βω
2

)+1)C̄∗(ω), (3.59)

where ifC is the time correlation function of interest, then C̄ is its Fourier trans-

form and C̄∗ is the Fourier transform of its Kubo transformed counterpart. The

algorithm used to generate a time correlation function is given in algorithm

3. The function in (??) amounts to a smooth transition between a multiplation

by unity for the “DC” mode up to a multiplication by a particular modes as-

sociated frequency in the limit of high frequency. This was implemented by

working out firstly the corresponding frequency of the FFT coefficient, where

the ith is given by:

fi =

(

i
N ∗δ t

)P

i=0
, where : P =

{

N/2−1 if N is even

(N −1)/2 if N is odd
, (3.60)

in an FFT of dimension N, where δ t is the sampling step.

Algorithm 3 Inverse Kubo Transform

Function f : Rn → R

n, C 7→ IKubo(C∗)

C̄∗ = FFT (C∗)

C̄ = (h̄βω/2)∗ (coth(h̄βω/2)+1)C̄∗(ω)

C = IFFT (C̄)

End Function

3.8.2 Gaussian Approximation to ISF

Manolopoulos and Craig [35] strongly advocate generating ISFs from veloc-

ity autocorrelation functions via a “Gaussian approximation”, due to the non-

linearity of e−k·q. The Kubo-transform relations normally only hold for linear

operators. Hence, taking the inverse Kubo-transform of the autocorrelation
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of e−k·q for trajectories generated using CMD breaks down for large values of

momentum transfer.

The incoherent structure factor (the temporal Fourier transform of the self part

of the Van- Hove function, as shown in eq(2.12)) can be approximated as

Fs(k, t)≈ e−k2γ(t), (3.61)

where γ(t) is the mean squared displacement of a particle in time t, given in

terms of the velocity autocorrelation function by

γ(t) =−i
h̄t
2m

+
1
3

∫ t

0
dt ′(t − t ′)Cv·v(t ′). (3.62)

The velocity autocorrelation function is written in its usual form as

Cv·v(t) =
1
N

N

∑
j=1

〈v j(0) ·v j(t)〉 (3.63)

This approach was explored briefly, towards the end of this work, but con-

cerns were raised about its use on this project. Since we want to extract expo-

nential coefficients from the (Non-Gaussian profile) ISFs to show temperature

dependent, quantum friction and extract the associated coefficients, whether

this would indeed give suitable ISFs was questioned. Despite this, a version

which takes this approach was written into the code and initial results look

promising. It would be prudent for this to be tested more rigorously and ISFs

compared and fitted with the biexponential model of decay in a subsequent

project. Thanks to a very useful conversation with David Manolopoulos it

arose that this could be the reason for discrepancies seen in some results for

high momentum transfer (see chapter 4).

3.9 Potential Energy Surface

In order to perform a study of quantum dynamics, the background poten-

tial has to be considered. This could be calculated “on the fly”, using an ab-

initioDFT package, however the computational demands for such a procedure

would be huge, and well beyond the scope of this project. In order to show

temperature dependent friction, in the quantum regime, however, a much sim-

pler form for the potential can be used. The system under study was strongly

adiabatic with a factor of 100 between the mass of the Ruthenium atoms and

Hydrogen adsorbate. For this reason, a rigid potential energy surface was con-

structed, with no dissipative terms. The rationale behind this was that all of
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the dissipation will be mediated by the heat-bath.

Ruthenium has an HCP structure and the 0001 cleavage is hexagonal, with

basis vectors,

a1 = a(1,0,0) (3.64)

a2 = a(−1
2
,

√
3

2
,0), (3.65)

where a is the nearest-neighbour separation in the 112̄0direction. Using this as

a basis, a simple sin-cos model was constructed of the potential energy surface

(PES), with respect to the position of a Hydrogen atom, with the maximum on

top of the Ruthenium atom, two non-degenerate minima and a bridge site, as

a barrier mediating inter-site hopping. This arrangement was suggested by a

sampling of the PES performed using CASTEP [36].

Figure 3.5: The forces when performing a PIMD calculation on a potential en-
ergy surface are obtained by separately finding the forces on each bead due
to the internal, harmonic interactions of the bead-spring system and the forces
on each bead due to the background potential energy surface (−∇V ), and sum-
ming them.

3.9.1 CASTEP

CASTEP [36] is a widely used Density Functional Theory (DFT) code, which

was used in this work for two reasons (a third, somewhat detached calculation

is detailed in appendix B), firstly to roughly estimate the shape of the potential

energy surface and secondly to provide well-converged values for the energy

of the four sites in the sin-cos model for the PES, in order to parameterise it

with realistic numbers.
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To perform the grid sampling of energy surface, firstly lattice parameters were

calculated using a primitive cell of bulk Ruthenium. This was converged with

respect to plane-wave cut-off energy and Brillouin-zone sampling. A geometry

optimisation was then performed.

To sample values from the PES, a cell was set up with 4 bi-layers of Ruthe-

nium into the bulk, with the deepest layer constrained to bulk configuration.

10 Ångstroms of vacuum gap were initially placed in the z (perpendicular to

plane) direction. It was found that the total-energy of the system held within

10meV after increasing the number of bilayers beyond 6 and the increasing the

vacuum gap beyond 15 Ångstroms. The system was also geometry optimised

in ionic positions (not cell vectors) in order to account for surface relaxations.

Once this 6 bi-layer, 15 Ångstrom vacuum-gap, 500eV plane-wave cut-off en-

ergy, 12x12x2 k-point system was prepared, the PES grid could be calculated

on the irreducible wedge. In order to do this, a hydrogen was introduced,

whichwas relaxed into the surface using a geometry optimisation (the only de-

gree of freedom not constrained was the Hydrogen z-component). This would

yield the energies of the PES. In practice, however, this turned out to be a very

expensive operation for the number of points required, so the operation was

rethought.

The geometry optimisation code in CASTEP does wavefunction extrapolation

for each new step in configuration space, rather than initialising the wavefunc-

tion with random numbers. This can speed geometry optimisations up a great

deal, and so whether this procedure could speed up the calculation of a PES

was investigated. The rationale was that each step on the regular grid would

only be a small perturbation to the wavefunction for reasonably dense sam-

plings and hence should result in fewer iterations being necessary to converge

the wavefunction.

This procedure was implemented simply by taking the loops over sampling

grid into CASTEP rather than in a script calling CASTEP and calling the geom extrapolate

routine within them. The resulting speedup was useful, if not tremendous and

this code will be released to users with a subsequent CASTEP release.

3.9.2 Interpolation

If a non-analytic, lattice-sampled form for the potential is used, then some con-

sideration must be given to how the function varies between sampling points.

Of course, in the limit of small sampling interval, the error tends to zero, but

in practice, the sampling of PES points is expensive, so the mesh is sampled at
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the minimum frequency at which observables are converged to some arbitrary

tolerance and with respect to further sampling on an interpolated mesh.

The chosen interpolation method is important in that it should be continuous

(unbroken) and smooth (has a convergent Taylor series). Two possibilities for

this procedure are (bi/tri) cubic and Fourier interpolation.

3.9.2.1 Cubic-Spline Interpolation

If the function has known values on a regular grid, a third order polynomial,

f (x) = a+bx+ cx2+dx3, (3.66)

can be fitted between grid points, preserving continuity by ensuring that the

derivative of the fitting form,

d f (x)
dx

= b+2cx+3dx2, (3.67)

is constrained to be equal at nodes of the mesh. The coefficients, a, b, c and

d can be solved for, if two points and two derivatives are known at the nodes

bounding the relevant interval. If the points’ coordinates are set to be 0 and

1, then it is trivial to work out the polynomial fitting coefficients, and as this

amounts to solving a set of simultaneous equations, the problem can bewritten

in matrix form as:

z= Ay, (3.68)

where z is the vector of function values and derivatives bounding the unsam-

pled region, A is the matrix associated with the linear equation and x is the

vector of polynomial coefficients. In 1D, this can be written




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
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
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. (3.69)

The matrix can then be analytically inverted by Gaussian elimination to give

the vector of polynomial coefficients for the cubic interpolant on the interval:


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
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



a

b
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d










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
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. (3.70)
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The same process can be applied in 2D and 3D, where the interpolation meth-

ods are known as bicubic and tricubic, respectively. In these cases attention

must be paid to cross-derivatives and the matrix, A becomes 16x16 in 2D and

64x64 in 3D, if z, which represents the functional values and derivatives on the

vertices of the N-D hyper-cube interval and y a correspondingly dimensioned

object of fitting coefficients are represented as vectors in flattened form.

For the 3D case, in particular, this represents a large computational cost; the

coefficients must be calculated for each interval on the sampled grid and the

interpolated value calculated as:

E(x) =
4

∑
i=1

4

∑
j=1

4

∑
k=1

yi jkxi−1
1 x j−1

2 xk−1
3 , (3.71)

where E is the functional value as interpolated from the bounding grid-points

on the interval, at x and y are elements from the 3D array of fitting coefficients

when unflattened.

In practice, the coefficients are only calculated once per calculation and stored.

The only expense then is to perform the operation in (3.71) whenever a func-

tional value is required (or the equivalent in 2D).

3.9.2.2 Fourier Interpolation

An alternative to cubic interpolation is to use a Fourier interpolation, whereby

all of the sampled data is used to sample each interpolated point rather than

constructing a splinemodel. Themethod consists of taking a fast Fourier trans-

form (FFT) of the sampled grid of functional values and then back transform-

ing onto only the coordinates of interest, which cannot, unfortunately be done

with a FFT.

This approachworkswell, but is expensive for dense grids, as a back-transform

onto a single point in linear-space scales with the product of sampling points

in every dimension. An alternative is to back-transform onto a much denser

grid where a (tri/bi)linear or even nearest-neighbour interpolation would not

be detrimental to the accuracy of the calculations.

3.9.3 PES Model

As the point of the project was to show how atomic-scale friction can be tem-

perature dependent through the inclusion of quantum effects, a model was

sought that could be tuned readily (could be parameterised to give results for
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the experimental evidence which motivated the work) but was also general

in the sense that this work should not be applicable only to one system, but

should lead to a simple model for atomic-scale friction in general.

It should be made clear that this is not an approximation in order to gain ac-

curacy but instead to improve the generality and transferability of the method

for calculation of friction parameters to any system with non-degenerate, bar-

rier mediated hopping sites. The method should still be good for hydrogen on

ruthenium, as it amounts to a low order Fourier expansion of the ab-initio PES.

The symmetry of the ruthenium (0001) - hydrogen PES was preserved, by the

construction of a Fourier series on the hcp(0001) basis vectors,

V (r) = ∑
i,n

Ancos(ngi · r)+∑
i,m

Amsin(mhi · r), (3.72)

where the i indices run over a set of reciprocal lattice vectors (for basis, see fig-

ure 2.2, plus b2) and n and m run over the number of Fourier coefficients to in-

clude. For the simplest representation with all four important high-symmetry

points, a set of reciprocal vectors:

g1 = Γ(1,0)

g2 = Γ(cos(
π
3
),sin(

π
3
))

g3 = Γ(−cos(
π
3
),sin(

π
3
)) (3.73)

h1 = g1

h2 = −g2

h3 = g3,

where Γ = 4π/(
√

3a). If two cos terms, n = 1,2 are included, this allows for

distinct top and bridge sites, one sin term, m = 1 is included to give non-

degenerate FCC and HCP sites. Then we have a PES which can be parame-

terised to have distinct top, bridge, FCC and HCP sites of the desired energy

difference. See figure 3.9.3 for the form of the result.

In terms of accessing the sites and parameterising the model, the four high-

symmetry points can be written in terms of the Fourier coefficients as

Vtop = 3(A1+A2)

Vbridge = 3(A2−A1)

VFCC = −3
2
(A1+A2+

√
3B1) (3.74)

VHCP = −3
2
(A1+A2−

√
3B1)
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Figure 3.6: The trigonometric model for the potential energy surface has the
same geometry as the ab-initio PES, together with each of the high symmetry
points, including the top site (above a ruthenium atom), the bridge site (energy
barrier) and two types of non-degenerate energy minima.

Figure 3.7: The potential energy surface, with spatial dimensions of the 2D PES
denoted on the plane and the difference in energy between the various sites on
the PES shown in the out of plane direction as both colour and height.
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Figure 3.8: A schematic representation of the important sites on the potential
energy surface. The top sites are represented by large, red ovals, the FCC sites
by large, green, rounded triangles, the HCP sites by small, blue triangles and
the bridge sites by small, yellow ovals. This picture was generated directly
from the PES at a fixed, arbitrary energy contour, such that the sites are visibly
distinct.
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Results

A CMD study of the behaviour of hydrogen adsorbates on a model of a ruthe-

nium (0001) surface has been completed and compared directly with results

from 3He spin-echo interferometry. The experimentwas carried outwith 0.22ML

hydrogen on the surface, so a 2x2 supercell of the PES discussed in chapter 3

has been used with a single hydrogen occupation which gives a quarter mono-

layer coverage in the simulation.

The centroid adiabaticity parameter and timestep were tuned carefully in or-

der to give good, well converged results; an adiabaticity of 0.0025 and a timestep

of 0.25fs were chosen after extensive trials.

While the method can give ISF data down to lower correlation times than the

experiment, it is unimportant both because there is no experimental data to

compare it with and because it is thought that phonon modes become an im-

portant factor in the shape of the ISF at such small correlation times. As the PES

has no dissipation term, phonons will not be observed on the simulated sub-

strate and only transverse-modes of the adsorbate will be seen. This presents

itself as a Gaussian form, which represents ballistic motion in the ISF. As all

motion can be viewed as ballistic on very short length scales, all in all, this ini-

tial part of the ISF does not hold much useful information. The simulated ISFs

are then presented on the same scale as experiment.

Part of the interest of approaching the problem with a molecular dynamics

technique was that it would be possible to see the trajectories of the adsorbate,

something which is not possible with experiment. While there is a one to many

mapping from ISFs to trajectories, a trajectory can certainly be producedwhich

presents the correct behaviour, if not identically the trajectory of the actual ad-

sorbate in reality. A set of simulated trajectories for comparison of temperature

and classical versus quantum diffusion is presented in figure 4.
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Figure 4.1: Four trajectories are explored in order to show the differences in
adsorbate behaviour between the classical (1 bead) dynamics on the left and
the quantum mechanical (16 bead) behaviour on the right. Also the two ex-
perimentally measured temperatures are shown, 250K and 150K. It is clear
that 250K diffuses further than 150K, and the quantum mechanically correct
behaviour increases the diffusion, not only for 150K, but is also an important
effect at 250K. All trajectories run for 12.5ns and the friction parameter was set
at η = 0.01ps1.

What is immediately striking is that quantum behaviour effects the dynamics

of diffusion not only at 150K, but is strongly apparent also at 250K. Care must

be taken not to draw too much from single trajectories, as the behaviour pre-

sented may be an outlier, however, this was seen to be the case in most of the

data that has been generated and examined; quantum effects play a role even

at 250K in the mechanism of diffusion.

While trajectories are useful for visual inspection of the dynamics of the adsor-

bate, for comparison with experiment ISFs are necessary. Principally ISFs were

the main observable against which the PIMD was converged with respect to

number of beads. It can be seen in figure 4 that ISFs are visually converged af-

ter about 16 beads. In that example, calculated for the trajectories above, more

evidence can be seen for the change in diffusive behavior from 150K to 250K
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and the necessity for quantum dynamics.

Figure 4.2: A convergence graph of the ISFs is presented. The ISFs are plotted
with a time-window of 1 to 600 ps for consistency with the presentation of
experimental data.The figure shows 150K on the left and 250K on the right. It
is clear that the 150K 1-bead (classical) case exhibits very little diffusion, while
at 250K there is a decay. As for the quantum convergence, the calculations
with 4 (blue), 8 (red), 16 (green) and 32 (pink) beads are shown. It is clear that
they show more decay than the classical case and that there is a convergence
towards a particular profile. This data was generated along the 〈112̄0〉 azimuth
with amomentum transfer magnitude of 1Å−1at a friction of η = 0.01ps−1, and
averaged over a consistent number of trajectories.

As this data is averaged over many trajectories, the behaviour presented is

more compelling than that of the single trajectories picture. It can clearly be

seen that at 150K, the change in profile and hence increase in diffusion events

from classical to fully converged quantum mechanical dynamics is immense.

The adsorbate is almost diffusionless, classically, at 150K. It is perhaps the 250K

picture which is more interesting as a result though, as at what is not far off

room temperature, quantum effects are necessary in order to fully characterise

the decays in the ISF.

Fitting the two exponential model to the data turned out to be an extremely

awkward, unstable and time consuming challenge. This was in part due to the
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very different time-scales on which the diffusion processes occur (part of the

reason why the ISFs have been plotted with logarithmic time scales is to show

this), leading to a very ill-conditioned problem, but also because the functional

space has local minima and undefined regions, when trying to fit with a nu-

merical optimiser (a standard Levenberg-Marquart minimiser). After a lot of

effort, a rough estimate for the α could be determined, but not well enough to

confident in the results.

The Cambridge surface physics group has, however, developed a Bayesian

fitting system for fitting the model against experimental data. While much

more computationally demanding, the stability of this method is much better,

so all further fit were performed using this system. Data fitted with the LM

minimiser was still used however to be sure that the simulation was not giving

wildly different answers at increasing bead numbers, see 4.

Figure 4.3: The α(∆k) was also checked for convergence with respect to the
number of beads in the calculation. Shown here is convergence data for both
principle azimuths at a friction coefficient η = 0.01ps for 1 bead (black), 4 beads
(red), 8 beads (green), 16 beads (blue), 32 beads (turquoise).

Of course with the amount of noise in these fits it is impossible to tell howwell

the α(∆k) plots are converged with bead number, though they showmarkedly

similar behaviour in the same region, plus the ISFs were all checked to be well

conserved above 16 beads.
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The next step was to attempt to fit friction values to experiment by running

well converged simulations at a series of friction values to calculate several

α(∆k) plots to compare with experiment. This was completed at 250K (figure

4) and 150K (figure 4), along both azimuths.

Figure 4.4: Simulated α(∆k) plots have been calculated at 13 values of friction
in Å−1 at 250K along both the 〈11̄00〉 azimuth on the left and the 〈112̄0〉 az-
imuth on the right. All calculations were completed with 32 beads and plotted
against experimental data (black crosses). It is clear that there is not a good
agreement between the mechanism of diffusion presented by the simulation
and experiment beyond about 1Å−1 of momentum transfer, however, in the
low momentum transfer limit, it is clear that before the effect of interactions
becomes apparent the agreement between simulation and experiment is quite
good.

The data does not match over the entire domain, however this is to be ex-

pected, as we have investigated a very simplified model for the potential en-

ergy surface with no inter-adsorbate interactions. It is suspected that effect of

such interactions will be to correct for the profile of the curves in the limit of

large momentum transfer, as has been witnessed in the Monte-Carlo simula-

tions performed by the Cambridge surface physics group before this project.

Alternatively, as discussed in chapter 3 the effect could be due to the nonlin-

earity of the exponential operator in the generation of ISFs.
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Figure 4.5: Again, simulated α(∆k) plots have been calculated at various val-
ues of friction in Å−1, but this time at 150K along both the 〈11̄00〉 azimuth on
the left and the 〈112̄0〉 azimuth on the right. All calculations were completed
with 32 beads and plotted against experimental data (black crosses). In the
150K case, it is more difficult to map between the simulated data and the ex-
perimental data, as there are fewer experimental data-points. For clarity, then,
four simulated plots which appear to bracket the experimental data in the low
momentum transfer regime.

What is striking about the results is that they do match the low momentum

transfer regions of both azimuths at both temperatures and give different best-

fit friction parameters at each temperature. At 250K the friction parameter η
lies somewhere between about 0.125 and 0.2 Å−1 whereas at 150K, while it

is much more difficult to tell, because of the sparsity of the data in the low

momentum transfer regime, across both azimuths, the friction parameter η is

likely to be < 0.05Å−1.

The result of this, is that even though the curves have not been matched ex-

actly, there has still been shown to be a significant difference in the best-fit

friction parameters for a system at two different temperature.
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Conclusions

It has been shown that there is a clear, quantum-mechanical basis for friction.

In the results presented in chapter 4 it was seen that centroid molecular dy-

namics together with a Langevin thermostat was used to generate ISFs for

comparison with experiment. The first result was that there was no value of

frictional damping for which the ISFs generated from classical MD trajecto-

ries were qualitatively similar in profile to experimental ISFs. In the limit of

large numbers of beads, however, in the case of CMD, the ISFs converge to

self-consistency, but also tend toward closer agreement with experiment.

The second, more compelling evidence for the technique is given by α −∆k

plots, generated by fitting a bi-exponential model to both experimental and

simulated ISFs at every experimentally sampled momentum transfer, at vari-

ous values of frictional damping. The profile of the experimental curves could

be matched, with particular values of friction in the low momentum-transfer

regime.

What is profoundly interesting about the fits, however, is that we see temper-

ature dependent friction; that is, a single frictional damping parameter cannot

be used to best-fit both the data at 150 and 250 Kelvin. This was the hypothesis

of the collaborating experimental group and modelling it was the aim of this

project.

Two possible explanations for the disparity in the profile of the α −∆k curves

along the (112̄) azimuth have been mooted. Firstly, that Hydrogen-Hydrogen

interactions are the cause. In previous work, the Cambridge surface physics

group [Eliza] has performed quantumMonte-Carlo calculationswith andwith-

out a dipole-dipole term in the potential. This has been seen to correct for the

difference in profile between the experimental and simulated α −∆k curves as

∆k increases. The other possibility is that, as discussed by Craig andManolopoulos[37],

the non-linearity of the density operators in the Kubo-transform is to blame for
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this phenomenon.

The groundwork for investigating this has now been laid; the software pack-

age which was used to perform the calculations has recently been updated in

order to explore the observed deviations. Inter-particle potentials as well as

generating ISFs from the velocity autocorrelation, through the Gaussian ap-

proximation are now supported. So, it should be straightforward to show in a

subsequent project that either or both of these options will improve the results

in the high momentum transfer, (112̄) azimuth regime.

These disparities do not take away from the overall finding, however, that is

CMD, together with a stochastic, Langevin thermostat and a simple model for

the potential energy surface have been used to give a quantum mechanical

basis for temperature dependent friction, as seen experimentally for hydrogen

on a ruthenium surface and that quantum mechanical effects are important

even at the relatively high temperature of 250K.

5.1 Further Work

The Cambridge surface physics group has alsomeasured that when deuterium

is used as the adsorbate, the interstitial hopping rate diminishes greatly be-

yond what is expected. They have also developed a large set of data for H and

D adsorbates on nickel, for which the methods outlined in this work could be

applied.

5.2 Evaluation

Apart from a slow start, mostly thanks to computational and programmatic

difficulties, together withmany tangents and fruitless side-projects (see appen-

dices), this project has been broadly successful, in my view. We have shown

what we set out to show and we have matched experiment with good agree-

ment in at least the domain of lowmomentum transfer. Furthermore, the tech-

nique gives more insight into the phenomena than alternatives such as QMC.

I think that more is still to come; I have some confidence that the issues with

the high momentum transfer regime will be settled and that the technique will

continue to show its efficacy for other systems. That, however, is for someone

else, in a subsequent project to address.
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Generalised Langevin Equation

Thermostat

It has been shown recently[30] that through the use of the generalised Langevin

equation (GLE), better efficiency of phase-space sampling can be obtainedwith

repect to Langevin equation thermostats. It was initially hoped that through

the use of a generalised Langevin thermostat, more information about the fric-

tion could be generated in this project.

The GLE approach is formulated by writing the coefficients in the damping

and stochastic terms in (3.49) as matrices,

F′ → F′−Γ1p′+

√

M
β

Γ2ξ , (A.1)

where,

Γ1 = e−(∆t/2)γT
, (A.2)

and,

ΓT
2 Γ2 = Γ1C+CΓT

1 , (A.3)

where Γ1 and Γ2 are called the drift and diffusion matrices, respectively and

C is the static covariance matrix. The primed vectors represent the forces and

momenta of each degree of freedom, of each bead of each atom augmented

with s auxiliary variables, such that taking an individual DoF, bead and atom,

what was before a scalar becomes a vector;

p′α
i, j =

[

pα
i, j

sα
i, j.

]

(A.4)

Unfortunately, since the fitting was so unreliable and noisy, it was hard to ex-
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tract frictional damping parameters even with Langevin thermostats, and be-

cause the relationship between a GLE drift matrix and the physical friction was

unclear, this approach was abandoned.

The method was, however, implemented and a version of the procedure de-

scribed in Ceriotti et al [?] for generating matrices was implemented. The ap-

proach was not of particular note, except that a different approach to generat-

ing correlation times for the optimiser was used.

Ceriotti describes a fitting procedure, whereby GLE matrices can be generated

with various properties. In this work, weweremost concernedwith the canon-

ical case. A GLE matrix is produced which gives more efficient thermostatting

over a wide range in frequency, versus a Langevin thermostat, when applied

to a harmonic oscillator. This work will not discuss the importance of the har-

monic oscillator, except to say that it is an important local limit of smooth,

continuous systems such as have been studied.

Firstly, autocorrelation times of potential and total energy can be defined as,

τV =
1

〈V 2〉

∫ ∞

0
〈(V (t)−〈V 〉)(V (0)−〈V 〉)〉dt, (A.5)

τH =
1

〈H2〉

∫ ∞

0
〈(H(t)−〈H〉)(H(0)−〈H〉)〉dt. (A.6)

Ceriotti goes on to define a renormalised coupling efficiency:

κ(ω) = (τ(ω)ω)−1, (A.7)

which allows for the definition of a merit function such as

χ = (∑
i
|log(κ(ωi))|m)1/m, (A.8)

where m defines the order of the norm and ωi are on a logarithmic grid in

the fitting range, for a canonical thermostat. This approach allows the use

of generic non-linear optimisation procedures, such as l-BFGS or Levenberg-

Marquardt, which were both used in this work.

The crux of this method, then is in producing τ values from the GLE matrices.

If,

τi jkl =
∫ ∞

0
(xi(t)x j(t)xk(0)xl(0)−〈xix j〉〈xkxl〉)dt (A.9)

Ceriotti writes that this can be done through spectral decomposition, by writ-
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ing:

Xi jkl = ∑
mn

Oim(O−1C)mlO jn(O−1C)nk

αm +αn
, (A.10)

where O is the matrix of eigenvectors of Γ1 and α the corresponding eigenval-

ues. Likewise, C can be computed from (A.3) in a similar way by,

Ci j = ∑
kl

Oik(O−1Γ2ΓT
2 O−T )klO jl

αk +αl
, (A.11)

then

τi jkl =
1
4
(Xi jkl +Xi jlk +Xkli j +Xlki j), (A.12)

and

τH =
ω4τqqqq +2ω2τqqpp + τpppp

ω4c2
qq +2ω2c2

qp + c2
pp

, τV =
τqqqq

c2
qq

. (A.13)

This is claimed to be a more efficient way of computing C from (A.3), and

generating τ values, than the “direct” approach.

In this work, however, another approach was taken. Firstly in computing C,

(A.3) is a continuous Lyapunov equation. The direct approach is presumably

to take

(I ⊗Γ1+ΓT
1 ⊗ I)vec(C) = vec(Γ2ΓT

2 ), (A.14)

where ⊗ is the Kronecker product and vec represents the “flattening” of a ma-

trix into a vector, so that C can be solved for easily. Since the matrix in paren-

theses, multiplying vec(C) is N4, this is an extremely expensive operation. The

solution can be computed in O(N3) operations, however, by QR factorisation

and simultaneous back-substitution [38].

Since the integrand of (A.9) may be written as,

xi(t)x j(t)xk(0)xl(0)−〈xix j〉〈xkxl〉= (e−|t|Γ1C)ik(e
−|t|Γ1C) jl +(e−|t|Γ1C)il(e

−|t|Γ1C) jk,

(A.15)

it was recognised that quantities such as (e−|t|Γ1C)ik(e−|t|Γ1C) jl are tensor prod-

ucts of permuted matrices, and so:

(e−|t|Γ1C)⊗ (e−|t|Γ1C) = (e−|t|Γ1 ⊗ e−|t|Γ1)(C⊗C), (A.16)

which may be written as

(e−|t|Γ1 ⊗ e−|t|Γ1)(C⊗C) = (e−t(Γ1⊕Γ1))(C⊗C), (A.17)

if we are only concerned with the positive part of the integral in (A.9) and
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where ⊕ represents the Kronecker sum. Integrating from 0 to ∞, then,

∫ ∞

0
(e−t(Γ1⊕Γ1))(C⊗C)dt = (Γ1⊕Γ1)

−1(C⊗C). (A.18)

If we expand out the Kronecker sum, then,

(Γ1⊗ I + I ⊗Γ1)X =C⊗C, (A.19)

which can be written as a Lyapunov equation, which can be solved in the same

way as above! The elements can be summed, following this procedure to give

values of τ .
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