
First Principles Modelling of
Thermoelectric Materials

Genadi Antonov Naydenov

Doctor of Philosophy

University of York

Physics

May 2019



Abstract

Thermoelectric semiconductor materials possess the unique ability to convert
temperature differential into electricity or vice versa. This presents excellent op-
portunities for harvesting waste heat or cooling. Thermoelectric applications
are found in many different areas ranging from medicine to space programs.
The quality of the materials is determined by their thermoelectric properties
like the Seebeck coefficient, electrical and thermal conductivity.

In this thesis we model the thermoelectric properties from first principles. The
materials of interest include Fe2VAl, NbFeSb, TaFeSb and Bi2Te3. The ther-
moelectric properties are analysed by considering the effects of doping, point
defects, grain boundaries and size reduction.

A number of key results are found. We show that the experimentally observed
behaviour of the Seebeck coefficient in Fe2VAl can be theoretically modelled
by enhancing the localisation of V electrons with the Hubbard model.

We establish TaFeSb as a new thermoelectric material which exhibits 50% bet-
ter p-type thermoelectric properties than NbFeSb due to an increased scat-
tering strength between Ta and potential dopants. We also note that mixing
NbFeSb and TaFeSb does not have a negative impact on the electronic proper-
ties and could potentially lead to further improvements in the thermoelectric
performance.

We investigate the electronic thermoelectric properties of Bi2Te3 thin films. We
find that the Seebeck coefficient increases dramatically when the film thickness
is reduced to 1–2 nm. This leads to an overall increase in the power factor of
the material and enhanced p-type thermoelectric performance.

The successful calculation of the properties for a wide range of materials also
shows that the developed in this project computational framework can be reli-
ably used for further research on thermoelectrics.
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Prologue

We can start by talking about the world energy crisis, how important it is to
have renewable energy sources and how thermoelectric devices can solve this
problem. Yes, it is all true but not the main reason why people are investigating
thermoelectric properties. Thermoelectricity is an interesting phenomenon.
That is the main reason, plain and simple.

I doubt anyone has ever done a research on thermoelectricity and has not had
the chance to hold a thermoelectric plate in their hands. Imagine we are in that
position and holding the thermoelectric is just not enough. We would like to
see what it can do. A few moments later we have an electric circuit which is
ready for testing, with a 3 V DC motor or a small bulb wired to the plate. Then
we attach an ice cube to one side of the thermoelectric plate. The other side we
touch with our fingers, and almost instantaneously, the motor starts spinning,
the bulb is shining.

The whole process feels surreal and counter-intuitive. We have managed to
run a motor with the help of an ice cube and a small plate made of semicon-
ductors. We have converted a temperature difference into electricity. Sud-
denly, we realise how much more we can do with the thermoelectric plate.
What if it is possible to make the device bigger, or smaller, or more efficient?
The possibilities are countless but for that purpose we need to investigate the
thermoelectric effect into more details. Remember when I told you that the
main motivation behind thermoelectric investigations is not the energy crisis.
I hope I have managed to convince you by now.
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Introduction

1.1 What is a thermoelectric?

A thermoelectric module is a device which is made of series of p- and n-type
semiconductors. They work together to generate electricity due to a tempera-
ture gradient or transport heat due to an electric current. Thermoelectric mod-
ules are referred to as TEG or TEC depending on whether they are used as
generators or coolers. The most important properties of a thermoelectric semi-
conductor are its electrical conductivity σ , thermal conductivity κ and Seebeck
coefficient S. The quality of the thermoelectric material is determined by the
relation between the above quantities (ZT = S2σT/κ), where ZT is the thermo-
electric figure of merit and T denotes temperature. Our goal is to maximise ZT

by achieving low thermal conductivity and high power factor S2σ . Larger ZT

means that our thermoelectric is more efficient, and larger power factor means
that it is capable of doing more work. That is a very concise summary of the
thermoelectric effect but if you are interested in understanding more details
about the phenomenon, different devices, their applications, how to model the
thermoelectric properties on a computer or how to optimise the thermoelectric
efficiency I hope you will find this and the next few chapters very interesting.

1.2 Design of thermoelectric devices

The choice of a clever architecture is mandatory when designing a thermo-
electric device. A compromise between thermoelectric conversion direction,
geometric shape, size and flexibility is essential for the longevity, efficiency
and applicability of the TEG (TEC) module.

17



Chapter 1 Introduction

1.2.1 Flat bulk thermoelectric devices

The flat bulk TEG (TEC) module, as shown in Fig. 1.1 [1], is the most common
architecture in which the electrical current and thermal current are parallel to
each other. The module has a cuboid shape and is made of multiple altering
legs of p- and n-type thermoelectric semiconductors. The tops and the bottoms
of the legs are connected via several metallic layers. The shape of a single pn-
pair looks like a gate. All gates are wired in series and enclosed between two
ceramic plates, which form the cold and hot side of the TEG. On a macro scale
it looks like the electricity runs within a plane parallel to the plates, while the
heat is transferred in a perpendicular direction. To harvest the energy, a heat
source and a heat sink need to be brought into contact with the two sides of
the module.

Figure 1.1: Flat bulk architecture of a TEG in which p-type and n-type semicon-
ductor legs (coloured in yellow and purple) are wired in series using metallic
layers. The hot and cold side plates are typically made of ceramics. All other
architectures are derived from this design. [Image taken from He et al. [1]]

It becomes apparent that the arrangement and the shape of the legs have an
impact upon the performance of the device. Studies try to find a relation be-
tween the number and height of thermoelectric legs [2]. Different shapes such
as cuboid, pyramid [3, 4], exponential [5, 6], and quadratic [7] are also being
tested and compared. Pyramidal legs are suggested to exhibit higher power
density than the rest. A recent TEG prototype based on pyramidal legs shows
they make it easier to maintain the temperature gradient across the module
by decreasing the thermal conductance of the legs [8]. The measured output
in the pyramid structure shows an incredible improvement of approximately
70% when compared to the cuboid counterpart. Thus, illustrating how impor-
tant the geometrical configuration of the thermoelectric legs is for the device
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performance.

1.2.2 Thin-film thermoelectric devices

The cooling of power electronics is a very delicate task due to the dimensions
of the system. Thermoelectric devices with a microscopic size are excellent
candidates for both cooling and harvesting the wasted heat in an electronic
device. In this case, the thickness of the thermoelectric materials need to be in
the micrometer to sub-millimeter range. Due to the small thickness, thin films
allow for low thermal resistances and very high heat fluxes which yield much
higher power densities compared with conventional modules [9].

The problem associated with the thin film architecture lies in the control of
the growth process. The most preferable fabrication technique is electrochem-
ical deposition in which the micrometer or sub-millimeter thick legs are de-
posited into cavities [1]. For example, in a template-assisted local electrochem-
ical deposition the p- and n-type material is deposited on a silicon wafer in
a sequence. The fabrication process includes patterning and depositing the
bottom contact layer, then constructing the cavities for the legs and then sub-
sequent deposition of the first thermoelectric material. The second material
need to be deposited in the same way while protecting the first deposit. A top
contact is deposited at the end of the process [10].

Aside from electrochemical deposition methods, physical deposition methods
and lithographical structuring were also successfully applied. For instance, a
thin-film TEG was realised by molecular beam epitaxy [11]. Employing sput-
tering methods, n- and p-type legs were formed on two separate substrates
and then mechanically joined by soldering [12]. In all cases, the manufactur-
ing process requires several deposition or lithography steps. In addition, any
further mechanical polishing and handling needs to be conducted in a clean
laboratory environment in order to avoid ruining the thermoelectric properties
by sample contamination [10]. Despite the benefits of the micro thermoelectric
devices, their manufacturing process presents multiple challenges which limit
their applicability.

1.2.3 Flexible thermoelectric devices

Flexible electronic devices such as rollable TV panels and foldable phones are
a very trendy topic. While the advantages of such technology are not always
immediately obvious, the interest in flexible thermoelectric devices is not sur-
prising. Innovative manufacturing techniques aim to mitigate the typical in-
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flexible design. The fabrication process can include techniques such as print-
ing, additive manufacturing, thermal spraying, melt-mixing of composites and
laser-aided restructuring [1].

The flexible effect is achieved with the help of organic components. Unlike
traditional thermoelectric materials polymers are widely available as they are
made of more abundant elements. Polymers have intrinsically low thermal
conductivity and can be easily processed in different shapes. There are sev-
eral intrinsically conductive polymers, like poly(3,4-ethylenedioxythiophene),
poly(styrenesulfonate) and polyaniline, which are regarded as suitable for ther-
moelectric applications. The good thermoelectric properties believed to be due
to the semimetal nature of the compounds [13, 14].

1.2.4 Wearable thermoelectric devices

Another interesting device is the wearable TEG. It utilises the heat from the
human body and faces some additional challenges [15]. Wearable TEG devices
need to be aesthetically appealing, lightweight and comfortable. In terms of
operation, they rely only on the temperature difference between the body and
the environment, with the cold side being cooled down by air convection.

Due to the large thermal resistance between the skin and the device, the hot
and cold side need to be designed carefully in order to increase the harvested
power density [16]. Implementations in wrist bands or designs with head
spreaders made of Y-shaped copper fins show promise in that direction [15].
Nevertheless the power density of a wearable TEG remains around 3 times
less than that of a piezoelectric based generator when a person is running at a
speed of 10 km/h [17]. The benefit of thermoelectric devices, however, is that
they are not affected by the state of the activity and that they generate more
energy over long period of time.

1.2.5 Notable mentions

There are a few other architectures which are worth mentioning. Among them
is the cylindrical bulk thermoelectric architecture [18]. The module looks like a
cylinder with a very thick wall which hosts the thermoelectric legs. This design
works similarly to the flat architecture but the module shape is beneficial for
applications where the heat flows in radical direction.

The last design considers the case in which the heat and electrical currents
in the thermoelectric compound are orthogonal to each other, which is use-
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ful for materials which exhibit anisotropic transport properties. In this archi-
tecture the p-type and n-type materials are stacked with an isolating layer in
between [19]. In such a configuration, the electrical and thermal currents are
disentangled because the isolating layers guide the electrical current towards
transversely arranged contact points.

1.3 Applications of thermoelectrics

In the previous section we talked about the different architectures and how
different design solutions try to maximise efficiency. Now we proceed by dis-
cussing the applications of TEG (TEC) modules. The ability to operate for long
periods of time with almost no maintenance makes thermoelectric generators
and coolers technically attractive. Thermoelectric devices have been utilised or
attempted to be used in a lot of different areas like medicine, the car industry,
aerospace programs, electronics, industrial factories and households [9].

1.3.1 Medical applications

The most common and accessible thermoelectric application is the portable
thermoelectric cooler. It is basically a solid-state fridge, which runs silently
and does not have any moving parts or fluids which can leak away. If care-
fully designed and constructed, the devices can be very reliable with a long
lifetime. The most important feature of thermoelectric coolers is their ability to
control the temperature proportionally rather than with an on-off cycle. This
is useful for food transportation and storage, but more importantly it is crucial
for medical services.

It is very important to keep biological products like a vaccine or blood serum
within a certain temperature range under transportation. An example for such
application is a portable thermoelectric medical cooling kit controlled by a mi-
croprocessor. It was developed for preserving human blood during transporta-
tion and operates at 12 V [20]. In remote areas or places with hot weather
portable coolers make it possible for doctors to transport products and treat
urgent health issues on-site.

Another extremely important medical application of TEG modules involves
harvesting energy from the temperature difference in the human body and
powering a heart pacemaker [21]. Pacemakers require a power source to op-
erate, which is usually a battery which needs to be replaced every 10 years.
However, every surgery poses a further risk to the patient. A TEG power
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source would eliminate that problem since it does not require maintenance
or replacement. A recent report from 2018, shows a clever TEG design which
allows the circuit to start up from very low input voltages of 40 mV. Then
the harvested energy is passed to a low-voltage oscillator and then to a low-
voltage charge pump. A voltage of 1.2 V is produced by the pump. The final
output voltage is increased to 2.4 V with the help of boost converters [22]. It
cannot be highlighted enough how remarkable the realisation of this concept
is.

1.3.2 Vehicle applications

From a commercial point of view the most attractive application of thermo-
electric devices is decreasing the fuel consumption in vehicles. At first glance,
the idea seems straightforward. A generator mounted in the exhaust system
can harvest the waste heat from the exhaust gases while the cold side being
cooled by ambient air or the engine coolant. The design of the module can be
flat or cylindrical depending on how the exhaust gases are guided through the
module.

On second thought, however, the working temperature in the vehicle is not
constant. Under normal conditions, the vehicle goes through many cycles
of acceleration and braking, which causes temperature fluctuations in the en-
gine and exhaust system. Thus, different driving conditions, which lead to a
broad exhaust gases temperature range, require either a thermoelectric mate-
rial which can operate at a wide temperature range, or different types of TEG
modules which need to be spread throughout the exhaust system. In addition,
temperature fluctuations can also lead to mechanical stress and malfunction-
ing.

Despite the aforementioned hurdles, the constant race for reduced greenhouse
gas emissions and improved fuel saving led to many studies on the effect of
thermoelectric applications in trucks [23] and cars [24, 25]. An example of
TEG module in a BMW car is given in Fig. 1.2. A joint effort of BMW, BSST
and Visteon [26] focused on recovering waste heat from the exhaust gas sys-
tem and engine radiator. The reported reduction in the fuel consumption was
between 8–12.5%. This implementation uses a closed liquid loop as a primary
heat exchanger to transfer the heat from the exhaust gas to the TEG module.
This design aims to deliver higher efficiency compared to a direct attachment.
It allows for further control which can minimise problematic thermal fluctua-
tions.

In another application by Hi-Z technologies, Bismuth Telluride was used to
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Figure 1.2: Thermoelectric generator module (yellow-orange and inset) in a
BMW 530i concept car. [Image taken from [27]]

harvest around 1 kW of power in diesel trucks. The module was placed in
the vehicle muffler as it is the component with the lowest temperature, around
250°C. The cooling water from the radiator was used for the cold side of the
module [9].

Despite the successful applications, the problem of not having the capability
to operate efficiently at a wide temperature range is still present. In a multi-
stage heat recovery system different sections are optimised for different work-
ing conditions. In such a case, the conversion efficiency would be significantly
higher. For example, another material which can be used in cars is Lead Tel-
luride. It is reported to be more suitable for higher temperatures [28]. An
automobile exhaust system by Bell utilises that and uses three TEG sections
instead of one [29]. The reported performance improvement is more than 90%
at low flow rates and over 25% at high flow rates. However, the improved ef-
ficiency comes with a cost. The presence of multiple segments which need to
work in unison and under different conditions increases the complexity of the
system, thus making it less reliable.

1.3.3 Aerospace applications

Our review of thermoelectric applications would not be full if we do not dis-
cuss how NASA managed to utilise thermoelectrics. The fact that TEG devices
have no no moving parts, no position dependence, more than 100,000 h steady-
state operation and precise temperature control makes them an excellent can-
didate for power supply in space missions [9].
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The Voyager 1 space probe was launched by NASA in 1977. It uses a radioiso-
tope thermoelectric generator (RTG), which utilise an array of TEGs to har-
vest energy from the heat released by the decay of a suitable radioactive mate-
rial, usually Plutonium 238. Similar implementations have been used in many
other space missions like Voyager 3, Cassini, New Horizons, Pioneer 10 and
11, Viking 1 and 2 [30, 31]. The vast range of missions shows that TEG mod-
ules can operate under very hostile conditions. In addition, the longevity of
the Voyager 1 mission with a lifespan of more than 40 years highlights how
incredible reliable thermoelectric devices can be.

On a slightly different note to space programs, commercial and military aero-
planes can utilise thermoelectric devices to capture waste heat from the aircraft
engine. Such implementations need to be done with care since they should not
compromise the structural stability of the aircraft. The advantage when con-
sidering an aeroplane is that the heat from the engine and the relatively low
ambient temperature at high altitudes can be used to maintain a constant tem-
perature gradient across the TEG device, thus maximising its performance.
The net result could be improved fuel consumption and reduced costs for pas-
senger and cargo airlines.

1.3.4 Thin-film applications

In Section 1.2.2 we discussed thin-film devices and some of the difficulties re-
lated to manufacturing them. In this section we will have a look at a very inter-
esting thin-film TEG implementation. It is found in a communication platform
at high altitude. This device uses the long wave infrared radiation leaving the
Earth’s surface as a heat source. The heat sink uses a simple mechanism, which
dissipates the heat by radiating it to the space. The temperature difference be-
tween the cold and hot side in this case is around 58 K [32]. Another variation
utilises heat flow parallel to the film surface and achieves a temperature dif-
ference of 85 K [33]. In terms of circuitry, a temperature difference of 80 K can
produce a steady current of 0.5 A and a voltage of 3.6 V, which is a considerable
amount for an electronic device.

1.3.5 Electronics applications

Voltage regulators and microprocessors are essential part of modern electron-
ics. In some cases, they operate at temperatures which are close to their break-
ing point. This affects both the performance and the lifetime of the electronic
device. The conventional cooling mechanism involves a heat sink which dissi-
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pates the heat to the surroundings. Under extreme conditions, when the heat
flux is large, liquid and nitrogen cooling solutions are also a viable option. In
all cases, the main task is to extract the heat out of the system as efficiently as
possible.

Thermoelectric devices are extremely good at transferring heat from one side
of the module to the other and can be implemented into electronic devices to
help with the cooling. They do not have any moving parts and can operate
silently. The advantage of a TEC module is that it can offer a very localised
cooling solution. In such application the electronic component is mounted di-
rectly onto the cold side of the TEC. Thus, the hot side of the thermoelectric
becomes the devices which needs to cooled by convection, a fan or a liquid
solution. The benefit of a TEC is that it can reach and maintain a desired tem-
perature by adjusting the input current and voltage.

For example, this concept was successfully applied to an X-ray detector [34,
35]. Only 3 W of electrical power were necessary to bring the temperature
of the detector and TEC cold side to −40°C while the hot TEC side was kept
constant at around 10°C by a cold water supply. Dramatic improvements were
reported for both the energy resolution and the sensitivity of the equipment.

In related areas, thermoelectric heat pumps were used in solar photovoltaic
panels and climate control systems. It was reported that better performance
and cheaper cost were obtained when the TEC module was used for cooling
the solar panel rather than harvesting the waste heat from it [9]. In terms of
climate control, TEC modules can work in a similar way to dehumidifiers
but with heat. They extract it from the surroundings and pump it into a
place, where the heat can be utilised. For example, car manufacturers like
Ford, Hyundai and Toyota have been using this approach to cool or heat car
seats [36].

1.3.6 Industrial applications

Factories are some of the biggest energy consumers. The manufacturing pro-
cesses involve multiple chemical or mechanical steps, which all require power.
Due to the large scale of the production lines, significant amounts of the energy
are lost to the surroundings in the form of exhaust gases, radiation or cooling.

We know that thermoelectrics are very reliable, require low maintenance, have
long lifespan and can operate in harsh environment. For all that they look ideal
for industrial applications. The type of the thermoelectric materials needs to
be selected based on the operation temperature of the facility. For example, in
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a combustible solid waste processing plant temperatures can be between 325
K and 1100 K, depending on the operation regime [37]. In terms of energy
harvesting, a 60 W thermoelectric module with 4.4% conversion efficiency was
installed near the boiler section of an incinerator plant [38]. The expectation
was that burning 100 tonnes of waste during a 16 hours working day can gen-
erate 426 kW of power [9].

In a steel plant, the furnace can provide a steady source of convenient piped
water. This can be utilised and converted by TEG devices into electricity when
large amounts of cooling water are discharged at around 90°C. For example,
implementation based on the thermoelectric material Bismuth Telluride was
employed to produce a total electrical power of 8 MW in major components of
a modern steel plant [9, 39]. For comparison, a small coal power plant of 100
MW consumes up to 3 carriages with coals per hour. While the output of the
TEG application is only 8% when compared to the power plant, its running
costs are essentially close to zero.

1.3.7 Domestic applications

Harvesting the waste heat in the domestic sector is another option which needs
to be considered. Thermoelectrics offer an opportunity to increase the power
efficiency of households which use burning stoves or other heat sources.

Such application was developed in Sweden in the middle of 1990s [40]. A
stove-top thermoelectric module was integrated with a wood burning stove in
a remote farm house in the mountains. Being too far away from the electricity
grid, farm houses in remote and difficult terrains rely on a gasoline powered
electricity generator to provide power supply for basic needs like lighting and
small appliances. The downsides of the gasoline motor are that it requires
maintenance, make a lot of noise and is expensive to run. A thermoelectric
generator offered an attractive alternative. The module was installed in the
rear of the stove, where it would not prevent the family from using the appli-
ance and where the temperature was the highest. The cold side was connected
to a heat sink and a 12 V (2.2 W) fan which was used to maintain the temper-
ature gradient. The power output of the device varied between 4 W and 10 W
depending on the day time, ambient temperature and how often the stove was
filled with fuel.

In another application, a system of thermoelectric modules was located be-
tween the heat source and the water jacked in a domestic central heating sys-
tem [9]. The efficiency of the installation was only about 5%, where the re-
maining 95% of the heat output were used for space heating in the house. Re-
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ports suggest that hypothetically the energy efficiency of the household can be
increased up to 80% by harvesting the waste heat for space heating and hot
water with another thermoelectric system [41, 42].

Other applications include a TEG system which generates electricity and hot
water by burning natural gas in a furnace [43], and a cogeneration system
which uses solar power and heat from boiler exhaust in residential houses [42,
44]. In all examples, the conversion efficiency is low, however, this does not
change the fact that households can benefit from thermoelectric devices and
harvest useful electric energy, which otherwise would be lost to the environ-
ment.

1.3.8 Summary of applications

Thermoelectric applications can be spilt into two categories, one for cooling
and one for power generation. Table 1.1 aims to summarise that. It also shows
the thermoelectric materials which are usually used in the discussed applica-
tion areas. It can be seen that there exist applications for a wide variety of op-
eration temperatures. In the next section, we will focus on the selection criteria
for thermoelectric materials and discuss which materials are more suitable for
the different temperature regimes.

Category Application Material Operation temp. Ref.
area (cold/hot)

Cooling
Medical Not specified 283 K/318 K [20]
service
Vehicle Bi2Te3 Not specified [36]
Electronics Not specified 283 K/313 K [34, 35]

Power
generation

Medical Not specified ∆T = 2−5 K [21]
service
Automobile Bi2Te3, PbTe 373 K/1073 K [45]
Aerospace PbTe, SiGe 366 K/783−1300 K [30]
Thin-films ZnSb, Bi2Te3 ∆T = 85 K [33]
Industrial SiGe 293 K/871 K [38]
Domestic Bi2Te3, PbTe 303 K/473−911 K [40–43]

Table 1.1: Summary of thermoelectric application areas, suitable materials and
operation temperature range.
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1.4 Overview of thermoelectric materials

Up until now we have looked at different designs and applications but have
not talked about which materials are used in the construction of the TEG or
TEC modules. It is apparent that different applications require different mate-
rials to operate at maximum efficiency. In this section, we will discuss the se-
lection criteria and consider factors like operation temperature range, stability,
output efficiency, availability and toxicity for the most common and interesting
materials.

1.4.1 Selection criteria for thermoelectric materials

The figure of merit (ZT ) should be as large as possible in order to get high
thermoelectric efficiency. As explained in Section 1.1, ZT shows the relation
between the electrical and thermal transport (ZT = S2σT/κ). Thermal con-
ductivity (κ) is the sum of the electronic and lattice thermal conductivity (κ =

κel +κlatt). The issue is that the electronic thermal conductivity is related to the
electrical conductivity (σ ) via the Wiedemann-Franz law (κel = LσT ). Thus,
our ZT equation becomes:

Figure 1.3: Competing processes in thermoelectric optimisation. The Seebeck
coefficient decreases with higher doping levels while electrical and thermal
conductivity increase, thus making the optimisation of ZT a difficult task.
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ZT =
S2/L

1+ κlatt
κel

, (1.1)

where L is the Lorenz factor equivalent to 2.4×10−8 WΩK−2, S is the Seebeck
coefficient and T is the temperature. A high ZT value can be obtained only if
the Seebeck coefficient is large or if the ratio κlatt/κel is very small. The latter
can be achieved when the lattice thermal conductivity is very small or when
the electrical conductivity (electron thermal conductivity) is large. It is impor-
tant to remember that even materials with high ZT and very small κlatt can
be inefficient if the power factor (PF = S2σ ) is not large enough to allow the
device to do the needed amount of work.

In summary, the recipe for a good thermoelectric material is having high S

and σ , and low κlatt . This turns out to be a very challenging task since these
quantities are not fully independent. The competing processes are illustrated
in Fig. 1.3 [46].

We can split thermoelectric materials into three sections depending on their
ZT . Materials with ZT < 1 are considered inefficient, with ZT ≈ 2 very capable
of recovering waste heat and with ZT ≥ 4 being able to match the efficiency of
refrigerators [47]. This point is illustrated very nicely in several studies [27, 48]

3 0 0 5 0 0 7 0 0 9 0 0 1 1 0 0 1 3 0 0 1 5 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

He
at 

En
gin

e E
ffic

ien
cy 

(%
)

H e a t  S o u r c e  T e m p e r a t u r e  ( K )

Z T = 1
Z T = 2
Z T = 4

Z T = 1 5

Z T � � � �

C a r n o t

                  
N u c l e a r  -  B r a y t o n / R a n k i n e

S o l a r  -  B r a y t o n
        C o a l  -  R a n k i n e

        

S o l a r  -  S t i r l i n g
       N u c l e a r  -  R a n k i n e

G e o t h e r m a l
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version technologies as a function of the heat source temperature. [Based on
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and shown here in Fig. 1.4. The black dots show some of the common energy-
conversion technologies.

Figure 1.5 shows how the thermoelectric figure of merit has improved over the
years. It can be seen that there has been a significant increase in the number of
investigated materials since 2010. Some of the most promising thermoelectric
materials are discussed in the following sections.

Figure 1.5: The evolution in time of the ZT values for different thermoelectric
materials. [Figure taken from He et al. [48]]

1.4.2 Chalcogenides: most commonly used thermoelectric ma-

terials

We can see in Fig. 1.5 and Table 1.1 that the earliest and most utilised thermo-
electric materials are Bi2Te3 and PbTe. In fact all bismuth and antimony chalco-
genide based materials such as Bi2Se3, Bi2Te3 and Sb2Te3 exhibit good thermo-
electric properties. All compounds have an identical rhombohedral crystal
structure. It is easier to think of it in terms of a hexagonal cell in which the
chemical formula (X2Y3) is repeated three times. Each repetition forms a Y(1)-
X-Y(2)-X-Y(1) structure, which is known as a quintuple layer. The numbers 1
and 2 denote two different chemical states for the anions.
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For a long period of time, the maximum figure of merit of Bi2Te3 has been
around 1, which for most applications corresponds to efficiency of about 5–
7%. The optimal operation temperature of Bi2Te3 is relatively low and the
efficiency falls off rapidly when the hot side temperature exceeds 500 K [49].

The optimisation of the chalcogenides can be done in several ways. The sim-
ilarity in the crystal structure allows for mixing the compounds. Fine tuning
of the carrier concentration can be achieved by alloying Bi2Te3 with Bi2Se3 and
Sb2Te3. Alloying creates defects in the crystal structure, like vacancies, anti-
sites defects and grain boundaries. These give rise to p- or n-type doping de-
pending on whether the X or Y elements in X2Y3 are the ones being mixed. As
a results, both the p-type compounds close to (Sb0.8Bi0.2)2Te3 and the n-type
compounds close to Bi2 (Te0.8Se0.2)3 exhibit reduced lattice thermal conductiv-
ity due to the presence of more scattering centres [49].

Quintuple layers are weakly bonded to each other via the van der Waals forces
and can be easily exfoliated. This can be utilised to make different nanos-
tructures. Oriented p-type Sb2Te3 and n-type Bi2Te3 thin films have shown
promising properties such as improved Seebeck coefficient and reduced lattice
thermal conductivity [49]. This result illustrates that nanostructuring can be
successfully used to improve the performance of materials which are needed
for thin film applications.

Zinc antimony Zn4Sb3 is another material which is classified as one of the bet-
ter thermoelectrics. Its high efficiency is due to very low thermal conductivity.
Reports suggest that Zn4Sb3 operates the best between 450 and 670 K and has
a ZT of around 1.3 [50, 51].

We have mentioned in Section 1.3.2 that PbTe is more suitable than Bi2Te3

for high temperature operation in automobile applications. Materials based
on group IV tellurides, such as PbTe, GeTe and SnTe, are usually used for
power generation in the temperature range between 500 and 900 K. Alloys
with AgSbTe2 have shown promising results and ZT > 1 for both p- and n-type
semiconductor. In particular, the p-type alloy (GeTe)0.85(AgSbTe2)0.15 exhibits
a maximum ZT > 1.2 and has been successfully implemented in a durable TEG
module [49].

1.4.2.1 Other common materials

There are a few other materials which are being studied despite having a rel-
atively low figure of merit (ZT < 1). They are either easy to make or that it
is believed that their lattice thermal conductivity can be significantly reduced.
For example, SiGe alloys are suitable for high temperature (T > 900 K) opera-
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tions. The advantage of this compound is that both silicon and germanium are
well-known semiconducting elements, their growth is a refined process and
the combined material can be used for both p- and n-type semiconductor legs.
The main reason for the low ZT in SiGe is the high lattice thermal conductivity
of the diamond structure.

Clathrates and skutterudites are materials which are also suitable for mid- and
high-temperature applications. The problem with them is their low ZT . The
reported ZT of the Al-substituted Ge clathrate compound Ba8AlxGe46−x is only
around 0.2 despite a good power factor [52], which means that the lattice ther-
mal conductivity ruins the thermoelectric properties of the compound. The
most studied skutterudites for thermoelectric applications are based on anti-
mony, like CoSb3. A combination of high carrier mobility, high atomic masses,
good Seebeck coefficient and high electrical conductivity is a good premise for
excellent electronic thermoelectric properties. However, the thermal conduc-
tivity of skutterudites is also high with the best ZT of undoped CoSb3 being
only 0.17 at 610 K [53]. The reason why both calthrates and skutterudites are
being considered is because of their crystal structures. Both types have empty
spaces in their lattices, called cages. These cages can host various guest atoms.
That is useful for both doping and decreasing the lattice thermal conductivity.

1.4.3 Emerging materials

The following set of compounds are the new and trending materials which
combine excellent electronic properties with acceptable lattice thermal conduc-
tivity.

1.4.3.1 Heusler compounds

Heulser compounds are interesting alloys which exhibit good thermoelectric
properties. They are split into two different types depending on the chemical
composition. The chemical formula X2YZ denotes full-Heusler alloys (FH) and
XYZ denotes half-Heusler alloys (HH), where X stands for a transition metal, Y
is a noble metal and Z is a rare-earth element. Both types of alloys have a face-
centred cubic crystal structure and are known for their thermal and mechanical
stability [48].

Full-Heusler alloys, like Fe2VAl, are reported to have a substantially higher
power factor than Bi2Te3 at room temperature [54]. The interesting aspect of
Fe2VAl is that there is a mismatch between experimental results and theoretical
prediction regarding the Seebeck coefficient.
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Half-Heusler compounds, like NbFeSb, work in the high-temperature regime.
They are gaining a lot of popularity at the moment because their power factor
can be an order of magnitude higher than that of more conventional materials.
One of the main issues with HH compounds is the lack of balance between n-
and p-type performance. A study on the p-type properties reached ZT ≈ 1.5 at
1200 K by doping NbFeSb with Hf. The structure was reported to have excel-
lent mechanical strength and thermal stability [55, 56]. Doping FeV0.6Nb0.4Sb
with Ti also yielded promising results due to an increase in the mobility of
charge carriers and a decrease in the lattice thermal conductivity [57].

1.4.3.2 SnSe

SnSe is an impressive thermoelectric material. It is characterised by strong an-
harmonicty and low lattice thermal conductivity [58], which is rather surpris-
ing for a binary compound that does not contain any heavy elements like Pb,
Bi, Se or Te. This material exhibits a phase transition near 800 K from a lower
symmetry crystal structure (Pnma) to a higher symmetry one (Cmcm). While in
the Cmcm phase, the energy gap of SnSe is substantially reduced and the mo-
bility of the charge carriers is enhanced. The layered structure of SnSe is also
fundamental for obtaining low thermal conductivity. As a result, SnSe has an
extremely high ZT ≈ 2.5 at 900 K. In terms of semiconductor behaviour, good
p-type thermoelectric properties were reported for Na-doped SnSe [59, 60],
whereas Bi-doped SnSe showed promising n-type performance [61].

The strongest point of SnSe is that despite the excellent results there are a lot of
remaining questions which are yet to be answered. For example, both the effect
of native and extrinsic defects on the electrical properties and the performance
of polycrystalline SnSe materials need further investigation [48].

1.4.3.3 Oxides

Oxides are another type of material which operates the best at high temper-
atures. Initially they were regarded as poor thermoelectrics due to the low
charge carrier mobility and high lattice thermal conductivity. The low mobil-
ity comes from the strong localisation and charge carrier scattering by optical
phonons, which comes from the large electronegativity difference among the
constituent elements. The high lattice thermal conductivity is due to the high
velocity of sound, which is a result of the small mass of oxygen and large bond-
ing energy [48].

The thermoelectric studies of NaxCoO2, ZnO, and Ruddlesden-Popper homol-
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ogous series Am+1BmO3m+1 are considered groundbreaking as they showed
that contrary to expectations, oxides can exhibit useful thermoelectric prop-
erties [62, 63]. Among the advantages of oxides are their availability and ther-
mal stability. In addition, operating at high temperatures, above 900 K, ensures
that the moderate ZT is compensated by an increased efficiency, as shown in
Fig. 1.4. Oxides are also suitable for creating composite structures which are
formed by different building layers. In these structures, the layers which con-
tribute to electrical conductivity are different from the layers which act as a
phonon glass and stop the phonon propagation. Thus, the electrical and ther-
mal transport are disentangled and can be optimised separately. This concept
is known as the phonon glass-electron crystal (PGEC) effect.

1.5 Optimisation mechanisms

The most difficult task in the thermoelectric field is optimising the performance
of materials. In terms of chemistry, promising thermoelectric materials possess
one or several of the following properties [48]:

• High band degeneracy which increases the density of states near the
Fermi level and does not decrease the mobility of charge carriers.

• Complex unit cell with strong anharmonicity and heavy atoms which
yield a low intrinsic lattice thermal conductivity.

• Strong spin-orbit coupling effect which leads to topologically protected
states.

In all cases, the common goal is to obtain high mobility and low thermal con-
ductivity. The optimisation techniques which try to achieve this goal rely on
mechanisms enabled by structural defects, size effects or more exotic nanos-
tructuring.

1.5.1 Defect-enabled optimisation

Structural defects play a significant role in improving the thermoelectric per-
formance. They arise from breaking the symmetry of the perfect crystal lat-
tice. Defects can improve several properties. For example, doping changes the
charge carrier concentration and tries to maximise the power factor by find-
ing the optimal combination between the Seebeck coefficient and the electrical
conductivity, similar to the ZT behaviour shown in Fig. 1.3. Furthermore, the
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induced extrinsic point defects enhance phonon scattering and thus suppress
the lattice thermal conductivity. Along with point (intrinsic and extrinsic) de-
fects there exist linear (dislocations) and planar (interfaces and boundaries)
defects, all of which will be discussed below.

1.5.1.1 Intrinsic and extrinsic point defects

Determining the role of intrinsic point defects is not an easy task and can often
be misleading. As already mentioned, doping is a common technique for tun-
ing the properties of thermoelectric materials. For example, doping Bi2Te3 with
Sb on the Bi site or Se on the Te site creates a p-type or n-type thermoelectric,
respectively. Although the dopants are extrinsic point defects, they help the
formation of intrinsic point defects, like antisites, interstitials and vacancies,
which in turn affect the carrier concentration and the thermoelectric perfor-
mance. The problem with intrinsic defects is that they are difficult to control
and depend on the chemistry of the material. A detailed study on V2VI3 com-
pounds (V = Group V elements Sb and Bi, and VI = Group VI elements S, Se
and Te) showed that the effects of intrinsic point defects can be controlled via
chemical composition or temperature [64]. It is reported that the formation of
cation antisites and anion vacancies is affected by the electronegativity differ-
ence between the cations and anions of the compound. Further investigations
on how vacancies, antisite and interstitial defects affect the energy levels near
the Fermi level can lead to innovative ways of thermoelectric optimisation.

Extrinsic defects caused by doping can also minimise the lattice thermal con-
ductivity. For example, in caged compounds such as clathrates and skutteru-
dites, the guest atom is situated in the cage. It oscillates with its own low fre-
quency and increases the number of interactions between acoustic and optical
phonons. As a result, the anharmonicity of the system is increased, whereas
the lattice thermal conductivity is reduced [65]. Nevertheless, doping is never
a straightforward process since the dopant atoms can occupy multiple sites. A
study on Mn doped Bi2Te3 shows that the dopant atoms can accumulate in the
van der Waals gap or substitute Bi or Te on their respective sites depending on
the concentration of Mn [66]. This is further investigated in Appendix A.

1.5.1.2 Band convergence

In addition to creating intrinsic point defects, doping can be used for band con-
vergence. This mechanism affects the energy levels in a slightly different way.
It increases the degeneracy of the bands by aligning them at the valence band
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maximum or conduction band minimum. Thus, the amount of available states
near the Fermi level is increased and the Seebeck coefficient is enhanced. Band
convergence has been tested on PbTe [67–69], CoSb3 [70], Mg2(Sn, Si) [71] and
Te-Ag-Ge-Sb compounds [72]. One of the approaches is to create a pseudo-
cubic unit cell; a complex crystal structure, which introduces short-range non-
cubic lattice distortions in a long-range cubic framework. The prerequisite for
this scheme is a low-symmetry material with a prominent band gap and a low
lattice thermal conductivity. The band convergence scheme also proved suc-
cessful in SnTe. A high ZT ≈ 1.4 was obtained via In and Cd co-doping and
nanostructuring [73].

1.5.1.3 Dislocations

Dislocations are one-dimensional (linear) defects. Their presence results in
a lattice strain since the atoms around the dislocation are misaligned. A p-
type Bi2Te3 was synthesised with dense dislocation arrays on low-energy grain
boundaries. The presence of the arrays and the point defects within the grains
enhanced the phonon scattering and lowered the lattice thermal conductivity,
thus, producing an impressive ZT ≈ 1.85 [74]. Despite not being trivial, the for-
mation and control of dislocation arrays is an interesting topic which is worth
further investigation since it can improve the performance of thermoelectric
materials by a significant amount.

1.5.1.4 Planar defects

Dislocations lead to the formation of interfaces and grain boundaries when
extended to two-dimensions. Planar defects scatter phonons more effectively
than charge carriers. They also scatter and filter out low energy and minority
charge carriers better than high energy and majority charge carriers, respec-
tively. Such behaviour was reported for nanostructured Bi2Te3 in which the
majority charge carrier were less affected by scattering due to interfacial de-
fects [75, 76]. In general, interfaces and grain boundaries become a convenient
place to implement a carrier-energy filtering scheme [77]. Filtering out the
low energy charge carriers can be used to obtain a larger Seebeck coefficient.
There are plenty of reports which suggest that a proper intergrain band align-
ment [78, 79] and coherent or semicoherent grain boundaries [78, 80, 81] tend
to retain the mobility of the charge carriers. The lattice thermal conductivity is
also suppressed very effectively by rough grain boundaries [82, 83].

In principle, the filtering process aims to ’exclude’ some of the bands and is the
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exact opposite of the band convergence which we discussed in Section 1.5.1.2.
Therefore, when simultaneously used both processes must be properly bal-
anced towards a good power factor.

1.5.2 Reducing the sample size

Size effects play an important role in thermoelectric optimisation and are the
main reason for the interest in low dimensional thermoelectric materials like
nanocomposites or thin films [80, 84, 85]. Phonons are quasiparticles which
carry heat and one of the main mechanisms for suppressing the lattice thermal
conductivity is related to limiting their mean free path over a wide temperature
range.

Inevitably, classical and quantum size effects are induced when the dimen-
sionality of the sample is reduced. In the classical context, the lattice thermal
conductivity can reach its minimum when the phonon mean free path gets
close to the interatomic spacing. In that regime and from the phonons point
of view, the structure looks amorphous, thus the heat is carrier by random-
walking modes.

Charge carriers are affected by the quantum size effect. They become confined
in a given direction when the physical size of the material in that direction
becomes comparable with the wavelength of the charge carriers. That is used
to tweak the density of states and create sharp DOS features near the Fermi
level, thus enhancing the Seebeck coefficient [86, 87].

Although it is difficult to differentiate the classical and quantum size effects
since they coexist, most promising results obtained via reducing the dimen-
sionality benefit more from scattering the heat carrying phonons rather than
increasing the Seebeck coefficient. This suggests that the classical size effect
prevails over the quantum one in terms of improving the thermoelectric per-
formance.

1.5.3 Topological insulators optimisation

There is more to the chalcogenides which we discussed in Section 1.4.2. The
quantum Hall effect was discovered in 1980 [88] and showed that a strong
magnetic field confines the motion of the electrons in the bulk but gives rise
to delocalised states on the surface. As a result, a two-dimensional metal sub-
ject to a strong magnetic field is a conductor along the surface but an insulator
in the bulk. The same idea can be generalised to three-dimensional materials
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even in the absence of an external magnetic field due to a nontrivial topology of
the occupied bands [89]. These materials are called topological insulators (TI)
and are characterised by a bulk band gap and topologically protected conduct-
ing edge (surface) states [90]. The requirements for them include large spin-
orbit coupling and band inversion. The prerequisites are satisfied by heavy
elements which also have low lattice thermal conductivity [91]. Because of
that many of the most popular chalcogenide thermoelectric materials such as
Bi2Se3, Bi2Te3 and Sb2Te3 are also TIs [92].

The main motivation behind the interest in utilising and optimising TIs as
thermoelectric materials is the possibility of leaving the protected conducting
states intact while introducing scattering centres for lattice vibrations. As a re-
sult, the electrical conductivity of the material should remain the same despite
reducing the lattice thermal conductivity. In addition, the curvature of the
bands due to the inversion suggests that the charge carriers mobility should
be large, yielding good electronic thermoelectric properties. Studies showed
that the size of TI thin films directly affects the thermoelectric performance of
the materials [93]. An example of that is crossing from the topologically trivial
regime to the nontrivial one in a few quintuple layers of Bi2Te3 [94]. In ad-
dition, stacking nontrivial and trivial layers yields a very low lattice thermal
conductivity [95].

1.5.4 Exotic nanostructuring

In this subsection we will discuss some of the more exotic optimisation tech-
niques. These include adding three dimensional structures to our thermoelec-
tric material in hope of improving its performance. It can be considered that
we are expanding the concept of one- and two-dimensional defects to nanos-
tructured 3D defects.

1.5.4.1 Nanopores and nanowires

An interesting way of increasing the thermoelectric performance of thin film
Bi2Te3 is by introducing nanopores in the structure. The idea is relatively sim-
ple and can be regarded as adding holes in the thin film. In that way, we create
new surface inside the structure, which increases phonon surface scattering. A
study shows that pore scattering dominates other mechanisms at around 5%
porosity and that the porous structure has a remarkably low lattice thermal
conductivity [96]. The best results (300% improvement) are obtained when the
pores are evenly distributed across the film. The other notable result is that the
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thermal conductivity loses its temperature dependence, which should have a
huge impact on low temperature performance.

Nanowires are another interesting way of thermoelectric optimisation. The
reported improvements in Bi2Te3 are 10- and 20-fold for the thermal conduc-
tivity and Seebeck coefficient, respectively [97]. However, in both cases for
nanopores and nanowire arrays, the manufacturing process is very challeng-
ing due to the stability of the nanostructures.

1.5.4.2 Locally resonant nanophononic optimisation

Placing an array of short wires (pillars) on top of a thermoelectric material is
also a proven way of enhancing the thermoelectric performance. The techni-
cal term for this configuration is ’locally resonant nanophononic material’ and
it works in a very clever way. The pillars oscillate mechanically at their own
frequency. These vibrations propagate into the substrate and interfere with
the lattice vibrations. In practice, the pillars act as a coloured noise generator
which affects the phonon spectrum of the base material but leaves the elec-
tronic properties untouched. Results in Si based membrane with pillars show
an astonishing reduction of the thermal conductivity at room temperature of
almost 500 times when compared to bulk Si [98, 99].

The above example combines a Si membrane with Si pillars on one side of the
membrane. The success of this technique can be used as a starting point for
increasing the complexity of the structure. For example, pillars can be made
of different materials and can be placed on both sides of the membrane. It is
also not far fetched to assume that we can add nanopores to the membrane
and further decrease the thermal conductivity. In general and regardless of the
optimisation technique, current results along with the creative ways of com-
bining different optimisation mechanisms make the future of thermoelectric
materials look promising.

1.6 Computing thermoelectric properties

People are finding very innovative ways of improving the thermoelectric per-
formance. If Si based materials can achieve such remarkable improvements
through thoughtful engineering, then the prospects for other materials look
even better. One of the main problems, however, is that the experimental
study of multiple complex materials can be a very challenging and expensive
task with no guaranteed results. Therefore, having the theoretical means to
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investigate different thermoelectric materials and optimisation ideas is becom-
ing more and more important. The theoretical approach can be split into two
stages. One computes the electronic thermoelectric properties, while the other
estimates the lattice thermal conductivity. In both cases, the initial input data
is obtained via first principles calculations.

1.6.1 Software for computing electron transport properties

The first stage solves the semi-classical Boltzmann transport equation (BTE)
for electrons and gives information regarding the Seebeck coefficient, electri-
cal conductivity and electron thermal conductivity. There are two packages
which can solve the electron BTE – BoltzTraP [100] and BoltzWann [101]. Both
programs work in the constant relaxation time approximation, which means
that the scattering time of the electrons is fixed. It is provided as a constant
which is taken from experimental data or computed via alternative ways such
as the deformation potential theory [102]. A new version of BoltzTraP, called
BoltzTraP2 [103], allows the users to provide scattering times in a more sophis-
ticated way based on the electron-phonon coupling. BoltzTraP and BoltzWann
require knowledge of the electron density of states (DOS) of the material in or-
der to solve the BTE. The difference is that band energies and band derivatives
are obtained via Fourier interpolation in BoltzTraP and Wannier interpolation
in BoltzWann.

1.6.2 Methods for computing lattice thermal conductivity

The second stage calculates the phonon contribution to the thermal conductiv-
ity (κlatt). This part is computationally more demanding. There are several dif-
ferent approaches which can be used to obtain κlatt . These include (i) calculat-
ing the phonon DOS from first principles and solving the Boltzmann Transport
Equations for phonons [104], (ii) assuming an arbitrary value for κlatt [105], (iii)
calculating a theoretical minimum of κlatt for a given compound [106] and (iv)
obtaining κlatt via Slack’s equation [107], which requires knowledge of the an-
harmonicity of the system (Grüneisen parameter γ) and the Debye temperature
(θD). The last two parameters can be calculated either via the bulk and shear
moduli[108] or via the quasi-harmonic approximation [109]. The main advan-
tage of the last three approaches (ii-iv) is that they are not computationally
intensive and provide a rough estimate of κlatt , which allows the user to obtain
a reasonable estimate of ZT. The drawback, however, is that the phonon con-
tribution to κ is derived indirectly via the elastic constants or by considering
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only the acoustic phonons. Thus, results neglect the details of the geometry
and chemical structure of the material and can often be inaccurate [108].

Option (i) is the contemporary way of calculating κlatt . There exist many open-
source packages which are capable of solving the phonon BTE and allow for
thermal conductivity calculations. These are ALAMODE [110], almaBTE [111],
PhonTS [112], phono3py [113] and ShengBTE [114]. All programs require
knowledge of the force constants and anharmonicity of the system. One of
the differences is that some packages offer internal, usually less sophisticated,
routines for computing the prerequisites. For example, PhonTS can use classi-
cal potentials, whereas almaBTE can create virtual mixtures of different com-
pounds. The computation of the phonon mean free path and energy conser-
vation can also vary depending on the program [115]. The main problem of
the phonon packages is that they do not support a lot programs which can
calculate the force constants and the anharmonicity.

1.6.3 Compatibility with density functional theory codes

The Boltzmann transport equation is a semi-classical one. This means that the
components needed for solving it, like density of states, force constants and an-
harmonicity, need to be computed from first principles via density-functional
theory (DFT) codes.

In terms of electronic properties, the program with the best compatibility is
BoltzTraP. At the start of this project it could be used along with WIEN2k [116],
ABINIT [117], SIESTA [118], VASP [119] and Quantum Espresso [120] pro-
grams. In contrast, BoltzWann is implemented in wannier90 [121] and users
need to interface other codes to wannier90 first and then use BoltzWann.

The process of calculating the phonon related thermoelectric properties is not
as mature as the computation of the electronic thermoelectric properties. The
theory needed to predict the phonon properties and the resulting thermal con-
ductivity has been known for decades but it has not been implemented until
the second half of the 2000s. Both force constants calculation, based on DFT
and density functional perturbation theory (DFPT), and solutions beyond the
relaxation time approximation have been enabled by the advancement in the
computational power [115]. Therefore, it is no surprise that most programs
capable of solving the phonon BTE are developed after 2014 and that their
compatibility with DFT codes is limited. For example, ALAMODE, ShengBTE,
almaBTE and PhonTS officially work only with VASP and Quantum Espresso.
The phono3py package also supports ABINIT and CRYSTAL [122].
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The success of the first principles driven framework cannot be denied. In ad-
dition to computing the intrinsic thermoelectric properties of materials, DFT
codes allow us to investigate the effect of point defects, interfaces or bound-
aries. More complex nanostructures can also be modelled. In such a case, cal-
culations are just a matter of compatibility (between the transport programs
and DFT codes) and scalability (size of the calculation). This leads us to the
scope of this thesis, how the project fits into the thermoelectric field and how
it can benefit the DFT community.

1.7 Scope and structure of the thesis

Up until now we have looked at the different architectures and applications
of thermoelectric devices. We have discussed which materials exhibit good
thermoelectric properties and how we can optimise their performance. We
have also listed the required software to perform the calculations. In a way, this
overview shows how vast the thermoelectric field is and that it is impossible
to explore all options in a single project.

In this section we will discuss how the goals of this study fit into the field. One
thing which is not immediately obvious is that CASTEP [123], a leading code
for calculating the properties of materials from first principles, is not among
the supported DFT codes in Section 1.6. While this created an initial obsta-
cle for modelling the thermoelectric properties, it also set a supplementary
background goal for the rest of the project. Therefore, in addition to testing
different thermoelectric optimisation approaches, the aim of the project was
to develop a set of tools which can later be used by the CASTEP community
to calculate the thermoelectric properties of any material. The coding details
behind the tools are not explicitly discussed throughout the thesis since they
are not strictly related to thermoelectric properties. However, all calculations
and thermoelectric investigations were carefully considered with respect to the
development stage of the tools. The investigated materials include Fe2VAl,
NbFeSb, TaFeSb and Bi2Te3 and the theremoelectric optimisations are based
on defect-enabled mechanisms, size reduction and utilisation of topological
states.

A summary of the rest of the thesis is given below. Materials and optimisation
techniques are referenced to the relevant sections in the Introduction.

Chapter 2: Theory – The purpose of the Theory chapter is self-explanatory. It
covers the essentials which are needed to understand the first principles calcu-
lations, thermoelectric effect and the Boltzmann transport equations.
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Chapter 3: Methodology – This chapter serves as a ’how-to’ guide on perform-
ing thermoelectric calculations. It describes all programs, interfaces, parame-
ters and convergence criteria which have been used throughout the project.
If followed correctly, the explained methodology should allow other users to
repeat the experiments.

Chapter 4: Computing the electronic thermoelectric properties of Heusler
alloys – The first results chapter marks the beginning of the thermoelectric in-
vestigations. This period overlaps with the start of the BoltzTraP to CASTEP
interface development. It was necessary to choose a material which is easy to
simulate for benchmarking purposes and which has interesting electronic ther-
moelectric properties, preferably a Seebeck coefficient. The material of choice
is Fe2VAl, a full-Heusler compound (mentioned in Section 1.4.3.1). The mis-
match between the theoretical and experimental results on the Seebeck coef-
ficient presented an opportunity to test the interface with different settings.
We also observed how chemical doping and band structure modifications, like
band dispersion (overlaps with the effect in Section 1.5.1.2) and band gap size,
affect the Seebeck coefficient.

Chapter 5: Thermoelectric properties of half-Heusler compounds – The next
hurdle after finishing the BoltzTraP to CASTEP interface was to calculate the
lattice thermal conductivity. This involved making an interface between Sheng-
BTE and CASTEP and using a material with even fewer atoms per unit cell due
to phonon calculations being extremely demanding. The half-Heusler com-
pound NbFeSb (mentioned in Section 1.4.3.1) was the perfect candidate. It
has a relatively simple crystal structure and exhibits a good reduction in the
lattice thermal conductivity when subject to defects (mechanism discussed in
Section 1.5.1). Furthermore, we have decided to substitute Nb in NbFeSb with
Ta and investigate how the mass difference between the heavier Ta in TaFeSb
and potential dopant atoms affects lattice thermal conductivity. This stage of
the project also involved enabling a tool which can calculate the effective mass
of the charge carriers. Thus, it was possible to compute the constant electron
relaxation time from the deformation potential theory.

Chapter 6: Complex optimisation of electronic thermoelectric properties – It
is evident that the optimisation techniques used in Chapter 4 and 5 are selected
on purpose to be less computationally demanding. In both cases we calculate
the intrinsic properties of a material from first principles and then add the sup-
plementary effects in the later stages of the calculation. Therefore, we decided
to test more demanding optimisation techniques in Chapter 6. As a compro-
mise between structural complexity and computational costs we focused only
on the changes in the electronic thermoelectric properties. The optimisations
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include simulating doping on Fe2VAl and mixing NbFeSb with TaFeSb, in-
vestigating the effect of anti-phase grain boundaries (mechanism discussed in
Section 1.5.1.4) in Fe2VAl and Bi2Te3 (material mentioned in Section 1.4.2) and
testing the size reduction effects in Bi2Te3 thin films (mechanism discussed in
Section 1.5.2). Some of the interesting properties of topological insulators (dis-
cussed in Section 1.5.3) are also investigated in Bi2Te3 thin films.

Chapter 7: Conclusions – The last chapter summarises the achieved goals dur-
ing the project. It also discusses future goals and how the results and interfaces
from this study can be used as a starting point for other investigations.

Appendix A: Preferential sites in the van der Waals gaps of Mn-doped Bi2Te3

– This appendix presents a study which aimed to support experimental results
and determine where Mn prefers to sit in the van der Waals gaps in Bi2Te3.

Appendix B: Code snippets from developed software – This appendix shows
code examples of the developed software throughout the research.
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Theory

2.1 Density functional theory

Density functional theory (DFT) was developed by Hohenberg and Kohn in
1964 [124] and Kohn and Sham in 1965 [125]. According to them the electron
density of any system determines all ground state properties of the system.
Kohn and Sham showed that a set of self-consistent one-electron equations
can be used to solve the system. The Kohn-Sham equation (Eqn. 2.1) is the
Schrödinger equation of a fictitious system of non-interacting particles which
generate the same density as any given system of interacting particles:

(
− h̄2

2m
∇

2 +Ve f f (r)
)

ψi(r) = εiψi(r) . (2.1)

The first term in Eqn. 2.1 has its usual meaning of the kinetic energy operator,
the second term is called the Kohn-Sham potential. It is the effective external
potential in which the non-interacting particles move. The energy of particle i
is denoted by εi and the wavefunction is given by ψi(r). Equation 2.2 shows
the full form of the effective potential:

Ve f f (r) =Vext(r)+
e2

4πε0

∫
ρ(r′)
|r− r′|

dr′+
∂Exc[ρ]
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Here the first term is the external potential, the second one is the Hartree term
describing the electron-electron Coulomb repulsion, while the last term is the
exchange-correlation potential, also denoted as Vxc. The electron density is
labelled as ρ(r) and is found by Eqn. 2.3:

ρ(r) =
N

∑
i=1
|ψi(r) |2. (2.3)
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The Pauli exclusion principle, which states that two identical fermions can-
not occupy the same state at the same time, gives rise to effective repulsion
between electrons with parallel spins and causes the exchange interaction. In
addition, there is a correlated motion between electrons of anti-parallel spins
which arises from their mutual Coulomb repulsion. This is the correlation in-
teraction and means that the probability of finding one electron at a certain
position in space depends on the position of others. Therefore, the exchange-
correlation potential depends on ρ(r) and since the density depends on the
wavefunction which in turn depends on the effective potential, it is necessary
to solve the equations in a self-consistent way. This is done with an initial
guess of the electron density. As a starting point, Vxc needs to be approximated
in order to solve the Kohn-Sham equations. Figure 2.1 shows a flowchart of
how the solution is reached.

Initial guess of input
electronic density (ρin)

Calculate effective
potential (V [ρin])

Solve the Kohn-Sham
equations to obtain ψi

Calculate the output electronic
density ( ρout = ∑i |ψi|2)

Self-consistent?
|ρout−ρin|< tol.

Density mixing to give
new input density (ρnew

in )

Ouput quantities:
Energy, eigenvalues, forces, ...

Yes

No

Figure 2.1: Schematic representation of the self-consistent loop for solution of
Kohn-Sham equations.

There are two main types of exchange-correlation functional approximations.
The first one is the local density approximation (LDA). It takes the density at
a point in space and computes the exchange-correlation energy density at that
point as if the density is the same everywhere. This works well if the system
is homogeneous. A more sophisticated approach is the generalised gradient
approximation (GGA). It estimates the contribution of each volume element
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based on the magnitude and gradient of the electron density within that ele-
ment. Perdew, Burke and Ernzerhof proposed a variation of this approxima-
tion which is called GGA-PBE [126]. It is widely used nowadays and gives
a good compromise between encapsulating the right physics, agreement with
experimental results and speed.

2.1.1 Basics of band theory

Although the Kohn-Sham equation is solved for fictitious non-interacting par-
ticles, the solution of Eqn. 2.1 gives information about the discrete electron
energy levels in a real system. These energy levels, called also eigenenergies,
are obtained for a set of k-points, which represent positions in the Brillouin
zone where the Kohn-Sham equation is solved.

Band structure

Eigenenergy variations along a given k-points path form features called bands.
The full set of energy levels forms the material’s band structure. Although the
band structure is simply a plot of lines passing through the three-dimensional
Brillouin zone, it can serve as a powerful visual tool which helps explaining
the concept of a band gap, electron mobility and density of states.

Types of band gaps

A band gap is present when the space between the top valence and bottom
conduction states forms a region in which there are no allowed energy levels.
Metals do not have a band gap, semiconductors have a band gap of up to a
few electron-volts and insulators have a band gap of anything above that. In
spin-polarised materials the band gap of the spin-up and spin-down channels
need not be identical. Materials which do not exhibit a band gap in one of the
channels are called half-metals.

There are several types of band gaps depending on the position of the valence
band maximum (VBM) and conduction band minimum (CBM), as illustrated
in Fig. 2.2. If the k-vectors of the VBM and the CBM are the same, the band
gap is called direct. In a direct band gap an electron can be promoted from the
VBM to the CBM by absorbing a photon which has the energy of the band gap.
This process is called light absorption. The reverse process is light emission,
where an electron in the conduction band annihilates a hole in the valence
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Figure 2.2: Different types of band gaps. Cu is a metal and has no band gap,
MgO is a semiconductor which has a wide direct band gap, whereas Si is a
semiconductor with an indirect band gap. The semiconductor Fe2VAl exhibits
a pseudo band gap, which is also typical for semi-metals. The band structure
of the half-metal Co2MnSi is typical for metals along the first spin channel
(black bands) and typical for semiconductors along the other spin channel (red
bands).

band, thus releasing the excess energy as a photon. In these cases the crystal
momentum of the electrons and the holes is the same, hence the transitions and
the band gap are referred to as direct. An indirect band gap occurs when the
k-vectors of VBM and CBM are different. In such a case in addition to a photon
with the energy of the band gap, light absorption and emission also require the
absorption or emission of a phonon, where the phonon momentum equals the
difference between the electron and hole momentum. Thus, both energy and
crystal momentum are conserved. Since a change in the crystal momentum is
also required for the transitions to occur, the band gap is referred to as indirect.

In some cases the energy gap is partial and occurs only in some regions in the
Brillouin zone. Such a gap is called a pseudogap and can be thought of as a
negative indirect gap. An example is given in Fig. 2.2 for Fe2VAl, in which case
the pseudo gap occurs due to the VBM being at the Γ-point while the CBM is at
the X-point. Similar band alignment is associated with semimetallic elements
like arsenic, antimony, bismuth and tin.
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Band shape determines electron movement

The other useful feature of the band structure is that it illustrates how the band
energy changes with respect to momentum space. The group velocity is given
by definition as:

vg =
1
h̄

dE
dk

, (2.4)

where h̄ is the reduced Planck constant, E is the energy and k is the position
in reciprocal space. Therefore, one can see if the charge carriers are localised
or non-localised just by looking at the dispersion of the bands. The projection
of the bands along the energy axis results in a density of states plot. Localised
(flat) bands yield more states per unit of energy than non-localised (dispersive)
bands. Alternatively, it is possible to project atomic orbitals on top of the bands
of interest and visualise which species contribute to conduction.

In terms of measurable properties, the quantity which relates the voltage and
temperature in materials (Seebeck coefficient) is proportional to the change of
the density of states around the Fermi energy [54]. Localised bands yield a
larger Seebeck coefficient than the non-localised ones. And while the Seebeck
effect is discussed in more details in Section 2.3, it becomes obvious that the
band structure is a powerful tool which can allow us to make efficient screen-
ing and predictions for material’s properties based on bands shape and nature.

2.1.2 Theory of lattice dynamics

In quantum mechanics lattice vibrations are described using quasi-particles
called phonons. The uniform oscillations at a given frequency give rise to
phonon modes analogous to the normal modes in classical mechanics. Ar-
bitrary lattice vibration can be regarded as a superposition of the different
phonon modes.

In order to understand how lattice dynamics is computed from first principles
we need to consider a crystal with a unit cell containing N atoms, which are
labelled κ . To keep the expressions readable with as few indices as possible we
will restrict ourselves to using one unit cell (a). The indices α , β and γ denote
Cartesian directions. At the start, the crystal is in mechanical equilibrium with
Cartesian coordinates Rκα . The displacement of an atom from its equilibrium
position is then [127]:
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uκα = rκα −Rκα , (2.5)

where rκα is the displaced position of the κ-th atom along the α direction. We
use the fact that the harmonic lattice dynamics can be obtained from a Taylor
expansion of total energy about structural equilibrium coordinates:

Eharmonic = E0 +∑
κα

∂E
∂uκα

uκα +
1
2 ∑

κα

∑
κ ′β

Φ
κκ ′
αβ

uκαuκ ′β + ... (2.6)

There is no force acting on the atoms at equilibrium, hence the first derivative
of the energy ∂E/∂uκα vanishes. The deviation from equilibrium is considered
to be small, thus the third and higher order terms are neglected. This is called
the harmonic approximation. The second order derivative of the energy is the
force constants matrix:

Φ
κκ ′
αβ

=
∂ 2E

∂uκα∂uκ ′β
. (2.7)

The next step is to write the displacements in terms of a plane wave with re-
spect to cell coordinates:

uκα = εmq,κα ei(q·Rκα−ωmqt), (2.8)

where the index m is for the phonon modes, q is a phonon wavevector, ω is
the angular frequency of the wave and εmq,κα is a polarisation vector. Using
Newton’s force equation (Force = mass × acceleration) and taking the second
time derivative of Eqn. 2.8 and the first derivative Eqn. 2.6 lead us to a diago-
nalisation problem:

Dκκ ′
αβ

(q)εmq,κα = ω
2
mqεmq,κα , (2.9)

where Dκκ ′
αβ

(q) is the dynamical matrix and is defined as:

Dκκ ′
αβ

(q) =
1√

MκMκ ′
∑
a

Φ
κκ ′
αβ

eiq.Rκα , (2.10)

where M denotes the mass of an atom. The dynamical matrix is in fact the
Fourier transform of the force constants, which can be found either by a finite-
displacement method, which involves finding the numerical derivative from
two calculations with a small displacement of an atomic coordinate, or by us-
ing perturbation theory to evaluate a response wavefunction. Once Dκκ ′

αβ
(q) is

50



Chapter 2 Theory

known the frequencies of each mode, 3N in total, are obtained as the square
roots of the eigenvalues of Eqn. 2.9. The phonon eigenvectors correspond to
atomic displacements belonging to each mode.

In summary, the first-order force constant is simply a measure of the force on
an atom. At equilibrium this is zero. The second-order force constant shows
what is the force on a given atom if another atom in the system is moved away
from equilibrium. It shows how much atoms affect each other while oscillat-
ing. The same logic can be extended to higher order terms. The third-order
force constant involves three atoms and can be thought as a measure of the
deviation from the harmonic approximation, in other words it shows the an-
harmonicity of the systems and can be useful in determining scattering rates.

2.2 Beyond density functional theory

While density functional theory is considered to be a very successful level
of theory, it does not come without its flaws. For instance, the widely used
exchange-correlation functionals LDA and GGA, in their different flavours,
fail to predict the insulation behaviour of some strongly correlated materials,
like transition metal oxides. Not only is the electronic band gap underesti-
mated, but in some cases, qualitatively wrong metallic ground states are also
predicted [128].

2.2.1 Hubbard model

The Hubbard model aims to describe the transition between conducting and
insulating systems. Considering a solid with freely moving electrons, the in-
teraction between them is via a screened Coulomb interaction. If we imagine a
very simple picture in which there is one atom with a single energy level, then
Pauli’s exclusion principles tells us that at most two electrons can occupy that
single energy state. The interaction is the biggest for two electrons on the same
atom and is given by a term with the value of U ; in all other cases the inter-
action term is zero. There is also no interaction between electrons on different
atomic sites. Thus, our Hubbard Hamiltonian is governed by the energy scale
needed for hopping between adjacent sites and the interaction term if the site
is doubly occupied (the on-site repulsion U) [129].

A successful approach based on the Hubbard model, which tackles the prob-
lem associated with strongly correlated system, was introduced by Anisimov
et al. in 1991 [130]. In this model, a small number of localised orbitals is selected
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and the electronic correlation associated to them is treated in a special way. The
idea is to correct the standard functional by adding an on-site Hubbard-like in-
teraction EHub:

EDFT+U = EDFT +EHub−Edc = EDFT +EU , (2.11)

where EU is a combination of the Hubbard-like interaction EHub and the Edc

term, which avoids double counting the interactions of the electrons in the
Hubbard and DFT terms. Cococcioni and de Gironcoli [128] showed that EU

can be expressed in terms of an effective Ue f f parameter, which takes into ac-
count the screened on-site Coulomb (U) and exchange (J) interactions:

EU =
Ue f f

2 ∑
a

tr(ρa(1−ρ
a)), (2.12)

where ρa is the atomic orbital occupation matrix with a denoting the atomic
site and spin.

N-1 N N+1 N+2
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 DFT+U correctionE(N-1)

E(N)
E(N+1)

E(N+2)

Figure 2.3: Change in the energy profile as a function of number of electrons
in a generic atomic system attached to a reservoir. The difference between the
exact (red dashed line) and DFT (black curve) energy is given by the bottom
curve (blue ripples). Redrawn from [128].

The effect of the ”+U” correction is visualised in Fig. 2.3. The energy curve of
a system with different number of electrons (N) should represent points which
are connected by straight lines since the intermediate states with fractional
number of electrons are a statistical mixture of the boundary states with inte-
ger number of electrons. The usual LDA and GGA approaches yield a total en-
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ergy curve with unphysical curvature for non-integer occupations and a false
minimum. The self-interaction of the partially occupied Kohn-Sham orbitals is
not treated properly by the functionals and that gives a nonlinear contribution
to the total energy with respect to number of electrons. The DFT+U correction
compensates for this discrepancy once the numerical value of the U parameter
is set equal to the curvature of the respective LDA or GGA energy profile.

In summary, the Hubbard U parameter can be regarded as the unphysical cur-
vature, shown in Fig. 2.3, of the exchange-correlation functional energy as a
function of the number of electrons, which in turn is related to the incorrect
treatment of self-interaction of the non-integer electrons injected into the sys-
tem.

2.3 Thermoelectric effect

2.3.1 Seebeck effect

The Seebeck effect is the conversion of heat directly into electricity at the junc-
tion of different types of metal. Seebeck made his discovery in 1821. He ob-
served that when a metallic compass needle is placed between two different
conductors, linked by junctions at their extremities and under a temperature
gradient, the needle is deflected. This was because the electron energy levels
in each metal shifted differently and a voltage difference between the junctions
created an electrical current and therefore a magnetic field around the wires.
Seebeck did not recognise initially that there was an electric current involved,
so he called the phenomenon the thermomagnetic effect. It was later discov-
ered that a difference in the electric potential appears at the junction of two
materials when subject to a temperature gradient. The Seebeck effect is mainly
used in thermocouples for accurate temperature measurements.

The Seebeck coefficient, or thermoelectric power (thermopower), of a material
can be defined as [30]:

S =−∆V
∆T

, (2.13)

where S is the Seebeck coefficient, ∆T shows the temperature difference be-
tween the two ends of the material, and ∆V denotes the thermoelectric voltage
seen at the terminals. The minus sign comes from the fact that the voltage
gradient in the material always points against the temperature gradient.
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2.3.2 Peltier effect

The Peltier effect could be considered as the opposite of the Seebeck effect.
In 1834, Peltier discovered that a temperature gradient would appear at the
junctions of two different materials when voltage was applied. In other words,
when a current is flowing through the junctions, one junction absorbs heat
while the other generates it. The magnitude of the produced and absorbed
heat at the junction, when current is applied, is given by the Peltier coefficient:

Q = ΠI, (2.14)

where Q is the produced or absorbed heat, I is the electric current and Π is the
Peltier coefficient. The Peltier effect could be used in heat pumps. As current
is driven through the material, some of the junctions absorb heat, while others
lose heat. This phenomenon is the basics of thermoelectric coolers.

Figure 2.4 illustrates the schematics of devices based on both effects. Left dia-
gram shows a thermocouple, while right diagram shows the circuit of a ther-
moelectric cooling device.

Figure 2.4: A thermoelectric circuit composed of materials of different Seebeck
coefficient (p-doped and n-doped semiconductors), configured as a thermo-
electric generator (left) and thermoelectric cooler (right). If the load resistor
at the bottom of the left diagram is replaced with a voltmeter then the circuit
functions as a temperature-sensing thermocouple [131].

2.3.3 Thompson effect

In 1851, Lord Kelvin predicted and observed that both Seebeck and Peltier ef-
fects are related. When a single type of material is traversed by an electric
current it develops a temperature gradient and exchanges heat with the envi-
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ronment. Inversely, an electric current is generated when a material is under a
temperature gradient with heat flowing through. This phenomenon is called
the Thomson effect. The main difference with the Peltier and Seebeck effects is
that the Thomson effect involves only one material and no junction is required.

The importance of the the Thomson effect comes from the possible various
applications. On one hand, thermoelectric materials could be used as refrig-
erators in many devices which require precise temperature regulation. On the
other hand, converting heat into electricity would improve the efficiency of
modern devices and solve some of the issues related to the harmfulness of
current energy sources.

2.3.4 Thermoelectric figure of merit

The quality of thermoelectric materials is measured by a dimensionless quan-
tity called ”figure of merit” [30]:

ZT =
S2σT
κtot

=
S2σT

κel +κlatt
, (2.15)

where σ is the electrical conductivity, T is the temperature, S is the Seebeck
coefficient and κtot is the total thermal conductivity, which is the sum of the
electronic thermal conductivity κel and the lattice thermal conductivity κlatt .
The numerator S2σ is called power factor. Materials with a high power factor
are able to generate more energy and do more work, but this does not mean
they are more efficient.

In order to understand why ZT is so important for devices, it is necessary to
look at the equation for maximum efficiency:

ηmax =
TH−TC

TH

√
1+ZT̄ −1√

1+ZT̄ + TC
TH

, (2.16)

where ηmax is the maximum efficiency, TH and TC is the temperature at the hot
and cold junction, respectively, and T̄ is the average temperature. It can be
seen just by inspecting the equation, that the only way to increase ηmax is by
having TH = −TC, which is meaningless, or by improving the ZT value by a
substantial amount.

The figure of merit can be optimised by reducing the the thermal conductivity.
The problem is κel and σ are related by the Wiedemann-Franz law:
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κel

σ
= LT, (2.17)

with L being the Lorenz factor equivalent to 2.4×10−8 WΩK−2. In other words,
it is almost impossible to optimise ZT by simply increasing its power factor or
by decreasing the electronic thermal conductivity. Fortunately, the total ther-
mal conductivity is the sum of two components and there exist different strate-
gies which could minimise the lattice thermal conductivity.

In summary, the key ingredients for the most effective TE materials are high
Seebeck coefficient, high electrical conductivity and low thermal conductivity.
In the next few sections, we will go through the theory needed for calculating
these quantities.

2.4 Boltzmann transport equation

2.4.1 Electron solution

The Boltzmann transport theory is the main tool for calculating thermoelectric
properties. The fundamental assumption in deriving the Boltzmann transport
equation (BTE) is that there exists a distribution function fk(r, t) which mea-
sures the occupation number of electrons in the neighbourhood of r at time
t. At thermal equilibrium, electrons are distributed according to Fermi-Dirac
statistics f 0

k . The evolution of the distribution function with time can be con-
sidered as the sum of three terms – a diffusion term, an electric field term and a
scattering term. The total rate of change of the distribution function must van-
ish in the steady state of heat flow through the sample. Thus, the most general
form of the Boltzmann transport equation is given by [132]:

d fk

dt
=

∂ fk

∂ t

∣∣∣∣
diff

+
∂ fk

∂ t

∣∣∣∣
el.field

+
∂ fk

∂ t

∣∣∣∣
scatt

= 0. (2.18)

Then Eqn. 2.18 can be rearranged with the scattering term being put on the
right hand side [133]:

−vk
∂ fk

∂ r
− e

h̄

(
E+

1
c

vk×H
)

∂ fk

∂k
=−∂ fk

∂ t

∣∣∣∣
scatt

. (2.19)

The first two terms in Eqn. 2.19 are the diffusion and electric field terms with
the time dependence being transferred to r and k, respectively. The velocity
of the electrons is given with vk, whereas E and H denote the electric and
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magnetic field, respectively. The electron charge is given by e, the speed of light
by c and h̄ stands for the reduced Planck constant. It can be seen that the first
two terms do not contain a lot of unknowns and can be solved. On the other
hand, the precise form of the scattering term remains somewhat undefined.
It is possible to do some analysis on the collisions and describe the transition
probabilities (P) of electrons moving back and forth from state k to k′:

Pk′
k dk′ = fk(1− fk′)Q

k′
k dk′,

Pk
k′dk′ = fk′(1− fk)Q

k
k′dk′,

(2.20)

where Qk′
k = Qk

k′ is the intrinsic transition rate which can be calculated with
Fermi’s golden rule. The scattering term can be written as the difference be-
tween the probabilities given in Eqn. 2.20. When the brackets are expanded
higher order terms cancel out and we are left with first order terms. The next
step involves subtracting the equilibrium distributions for states k and k′ from
their respective perturbed distributions in the scattering term. This is possible
because the equilibrium distribution is stationary with respect to time. The
interesting physics in our system is only due to the deviation from equilib-
rium. We would also assume that the deviation from equilibrium is very small,
which allows us to substitute fk with f 0

k on the left hand side of Eqn. 2.19. As
a result, the linearised BTE has the following form:

−vk
∂ f 0

k
∂T

∇T −vke
∂ f 0

k
∂ε

E =
∫ [

( fk− f 0
k)− ( fk′− f 0

k′)
]
Qk′

k dk′, (2.21)

where ε represents the eigenenergy of the electrons. As already mentioned,
the right hand side of Eqn. 2.21 can be solved with the help of Fermi’s golden
rule. In practice, however, this is very complicated and requires very expen-
sive calculations. Therefore, it is crucial to assume that only the deviation from
equilibrium is the reason for the transport properties of the system. We also
need to define a constant which shows us how often we move away from equi-
librium. This constant is called the relaxation time of the electrons (τ) and
the Boltzmann transport equation within the relaxation time approximation is
given by:

−vk
∂ f 0

k
∂T

∇T −vke
∂ f 0

k
∂ε

E =
fk− f 0

k
τ

. (2.22)

Now it becomes trivial to rearrange Eqn. 2.22 for fk. It also becomes apparent
that the distribution function is proportional to τ and the final results would
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heavily depend on what relaxation time value we choose to use.

The thermoelectric properties of a given system can be obtained from the elec-
tric and heat current density equations:

j =
∫

evk fk
d3k
8π3 , (2.23)

q =
∫
(ε−µ)vk fk

d3k
8π3 , (2.24)

where j is the electric current density, q is the heat flux, ε is the electron energy
and µ is the chemical potential. When fk is substituted into the equations
above, one obtains the following set of equations:

[
K0

1
eT K1

1
e K1

1
e2T K2

][
E
−∇T

]
=

[
j

q

]
, (2.25)

where Kn is given by [103]:

Kn = e2
∫

σ(ε)

(
−

∂ f 0
k

∂ε

)
(ε−µ)ndε, (2.26)

σ(ε) = τ

∫
vkvkδ (ε− εk)

d3k
8π3 . (2.27)

Notice that Eqn. 2.25 is presented in a matrix notation. The matrix which acts
on the electric field and the temperature gradient gives information on the
thermoelectric properties of the system. One can obtain the electrical and ther-
mal conductivity from the diagonal of the matrix, whereas the off-diagonal
terms show the relation between temperature and electrical field, which is ex-
actly the definition of the Seebeck coefficient (S) [100, 103, 133]:

σ = K0 =
∫

σ(ε)

(
−

∂ f 0
k

∂ε

)
dε, (2.28)

S =
1

eT
K1

K0
=

1
eT

∫
σ(ε)

(
−

∂ f 0
k

∂ε

)
(ε−µ)dε∫

σ(ε)

(
−

∂ f 0
k

∂ε

)
dε

, (2.29)

κ
0 =

K2

e2T
=
∫

σ(ε)

(
−

∂ f 0
k

∂ε

)
(ε−µ)2dε. (2.30)
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The value of σ in Eqn. 2.28 is obtained when the temperature gradient in
Eqn. 2.25 is set to zero from the simple relation j = K0E. The Peltier coeffi-
cient (Π), shown in Eqn. 2.14, can be obtained from the ratio of q and j, again
at ∇T = 0. The Seebeck coefficient in Eqn. 2.29 is obtained when the relation
between E and ∇T is investigated at j = 0. The electrical thermal conductivity
κ0 defined in Eqn. 2.30 is obtained at j 6= 0. However, the electron thermal
conductivity is always measured for j = 0. Thus, by substituting E = S∇T in
the heat current density equation, we get [100, 103, 134]:

q = S2
σT ∇T +κ

0(−∇T ) = κ
0(1− S2σT

κ0 )(−∇T ), (2.31)

which means that the electron thermal conductivity in real measurements is
κel :

κel = κ
0−S2

σT. (2.32)

It is evident from Eqn. 2.26 that the relaxation time plays a very important role
in the computation of thermoelectric properties. And even though S should
not depend on τ , the constituent components do change, which further high-
lights how important it is to obtain a proper estimate of the relaxation time for
a given system.

2.4.2 Phonon solution

The process of solving the Boltzmann transport equation for phonons is very
similar to the electron example discussed in the previous section. There are,
however, a few important differences which we need to discuss.

In the phonon BTE, there is no electric field term like in Eqn. 2.18, which leaves
us only with the diffusion and scattering terms. As a result, phonons con-
tribute only to the lattice thermal conductivity and do not have a major contri-
bution to the electric transport. The phonon distribution function fλ obeys the
Bose-Einstein statistics since the particles are bosons. The subscript λ denotes
the phonon branch and the position in reciprocal space, similar to the index k
in fk. The intrinsic lattice thermal conductivity κlatt is then calculated as [114]:

κlatt =
1

kBT 2ΩN ∑
λ

vλ Fλ (h̄ω)2 f 0
λ
(1+ f 0

λ
), (2.33)

Fλ = τ
0
λ
(vλ +∆λ ), (2.34)
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where f 0
λ

is the equilibrium phonon distribution, vλ is the phonon velocity
for a given mode, ∆λ is a measure of the deviation from the relaxation time
approximation prediction, h̄ is the reduced Planck constant, ω is the phonon
frequency, Ω is the unit cell volume and N is the number of the grid points
used for the calculation. It can be seen by comparison that the terms in the
phonon Eqn. 2.33 and the electron Eqn. 2.30 match very well to each other, e.g.

f 0
λ
(1+ f 0

λ
) corresponds to the electron (

∂ f 0
k

∂ε
), both consist a squared energy

and velocity terms, etc. The main difference, however, is in the treatment of
the relaxation time.

Remember that while solving the BTE for electrons, we made an approxima-
tion that τ is constant since the the transition rate Qk′

k was very difficult to
compute. The electron-electron scattering interactions needed for the electron
τ require very large simulation cells, which makes them prohibitively expen-
sive. Unlike the electron τ , the phonon relaxation time depends on the two-
and three-phonon processes, which decay quicker with respect to distance,
and can be modelled more easily.

The phonon relaxation time, which we will call τ0
λ

in this section, is computed
by taking into account the two- and three-phonon scattering rates which are
estimated directly from Fermi’s golden rule. The scattering matrix elements
needed for Fermi’s golden rule are obtained from the third-order force con-
stants, which are briefly discussed in Section 2.1.2. The additional ∆λ term
in Eqn. 2.34 offers a way of estimating how much τ0

λ
deviates from the relax-

ation time approximation. The value ∆λ is computed in a self-consistent way
and depends on both the Fλ function and the transition rates, which in turn
depend on phonon frequencies [114].

In summary, the phonon distribution function, velocity and frequency can be
computed from the second-order force constants, while the τ0

λ
and ∆λ terms

can be calculated from the third-order force constants. As a result, it is possible
to model fairly accurately the intrinsic lattice thermal conductivity of a system
entirely from first principles.

2.5 Quicker ways of calculating the lattice thermal

conductivity

While the solution of the phonon Boltzmann transport equation yields the
most rigorous estimate of the intrinsic lattice conductivity, it is by no means
a cheap calculation which can be used to screen different materials. In com-
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parison, Slack showed that for nonmetallic crystals in the temperature range
T ≥ ΘD, where ΘD is the Debye temperature, the intrinsic lattice thermal con-
ductivity (in W/m·K) can be estimated from [107, 135]:

κlatt = A
Θ3

DV 1/3
a mav

γ2n2/3T
, (2.35)

where Va, mav, γ and n are the volume per atom (in Å3), the average atomic
mass (in amu), the Grüneisen parameter and the number of atoms in the unit
cell, respectively. The parameter A is given by the following equation [108,
136]:

A =
2.43×10−6

1− 0.514
γ

+ 0.228
γ2

. (2.36)

The two important parameters in this model are the Debye temperature, which
can be considered as a cut-off temperature associated with the Debye cut-off
frequency, and the Grüneisen parameter, which is a measure of the anhar-
monicity of the system. In other words, ΘD and γ play roles similar to the
distribution function and the relaxation time in the Boltzmann transport equa-
tion.

Using the elastic properties

The study conducted by Jia et al. showed that Eqn. 2.35 can be solved by know-
ing the elastic properties of the material. The averaged sound velocity vav can
be calculated from the velocities of the longitude vL and shear vT waves [108]:

vL =

√
BH +(4/3)GH

ρ
, vT =

√
GH

ρ
, vav =

[
1
3

(
1
v3

L
+

2
v3

T

)]− 1
3

, (2.37)

where BH, GH and ρ are the bulk modulus, shear modulus and the density of
the compound, respectively. Then the Debye temperature ΘD can be calculated
using the velocity of sound:

ΘD =
h̄
kB

vav

(
6π2n

Va

) 1
3

, (2.38)

where h̄ and kB are the reduced Planck constant and Boltzmann constant.
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The final parameter needed for estimating κlatt from Eqn. 2.35 is the Grüneisen
parameter γ and it can be obtained from the Poisson ratio ν in the following
way:

γ =
3
2

(
1+ν

2−3ν

)
, ν =

1−2(vT/vL)
2

2−2(vT/vL)2 . (2.39)

This model works relatively well for rock-salt structures but overestimates the
value of γ for zincblende and wurtzite crystals [108]. The main advantage of
this approach is the lack of expense of the calculation since it becomes free
if the elastic constants are already known. An improvement can be made by
looking at how the bulk and shear moduli change with respect to volume but
that increases the computational cost and detracts from quickly testing a given
material.

Using the quasi-harmonic approximation

Alternatively, one can use the quasi-harmonic approximation (QHA) to obtain
ΘD and γ . The QHA is a simple approach which accounts for the anharmonic
effects by assuming the harmonic approximation at any given crystal geom-
etry, even if it does not correspond to the equilibrium structure. There are
many different models which are based on analysing a ’volume versus energy’
curve in order to fit an equation of state and then give an estimate of quanti-
ties like heat capacity, Debye temperature and Grüneisen parameter [137]. The
main drawback of the QHA is that the more reliable the results are, the more
detailed the input needs to be, which makes the computational cost in some
cases comparable to solving the Boltzmann transport equation.

2.6 Considering extrinsic defects

One of the most difficult tasks in modelling the lattice thermal conductivity is
simulating the contributions of crystal lattice imperfections, like grain bound-
aries and point defects. Such calculations are often extremely demanding to
compute. Instead we can use a simplified approach in which we find the in-
trinsic lattice thermal conductivity (κint) of a perfect crystal from Eqn. 2.33 and
assume that it is proportional to the phonon relaxation time.

The total phonon relaxation time τtot is a combination of different scattering
rates from different contributions and is calculated using Matthiessen’s rule:
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τ
−1
tot = τ

−1
3P + τ

−1
GB + τ

−1
PD + τ

−1
EP , (2.40)

where the subscripts 3P (three-phonon processes), GB (grain boundaries), PD
(point defects) and EP (electron-phonon interaction) indicate the sort of inter-
action which contributes to the the final scattering rate.

The intrinsic lattice thermal conductivity, which is obtained by solving the
phonon BTE (Eqn. 2.33), depends only on τ3P as we simulate a perfect crys-
tal. Hence all additional contributions need be included separately.

2.6.1 Grain boundaries

We can make the assumption that scattering events due to grains happen every
time a phonon passes through a grain boundary. Thus, the distance which the
phonons travel before scattering is equal to the grain size (LGB). It should be
noted that not all grains are of the same size or shape in real structures. There-
fore, the grain size LGB, which is defined here, represents an effective grain size
rather than a distribution. The grain size can be estimated by multiplying the
phonon velocity (v) and the time needed by the phonons to travel through the
grain for the scattering to occur (τGB). If this relation is rearranged with respect
to τGB then the relaxation time due to grain boundaries is given as:

τ
−1
GB = v/LGB. (2.41)

The phonon BTE result (κint) can be approximated to be proportional to τ3P

(κint ∝ constant × τ3P). When the contribution of grain boundary scattering is
included alongside the phonon BTE result, τtot is calculated using τ

−1
tot = τ

−1
3P +

τ
−1
GB . In such a case, the value of the lattice thermal conductivity with the effect

of the grain boundaries (κGB) can be expressed as:

κGB =
κint

1+ λm f p
LGB

, (2.42)

where λm f p is the mean free path of phonons. Although convenient, using
a single value for λm f p is rather unreasonable because not all phonons travel
with the same velocity, nor do they have the same relaxation time, nor the same
contribution to the total thermal conductivity (κint). Instead we can differenti-
ate the phonon BTE result for lattice thermal conductivity accumulation with
respect to λm f p. This gives us information on the lattice thermal conductivity
(κ
′
int) of phonons with a given mean free path (λ

′
m f p). Then Eqn. 2.42 is applied
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to every λ
′
m f p and its respective κ

′
int with the final result being integrated back

to obtain κGB.

2.6.2 Point defects

Doping introduces point defects into the structure and the lattice thermal con-
ductivity with point defects included (κPD) can be calculated using the empir-
ical Klemens’ equation[138]:

κPD = κGB

(
ω0

ωm

)
arctan

(
ωm

ω0

)
, (2.43)

ω0

ωm
=

√
4γ2kBT

3πGHVaxa

M
∆M

, (2.44)

where κGB is the lattice thermal conductivity obtained at the previous stage. It
could also be κint if one does not want to consider grain boundaries. The Debye
and point defects frequency cut-off are given by ωm and ω0, respectively. The
other parameters γ , GH, Va and xa represent the Grüneisen parameter, shear
modulus, volume per atom and doping concentration per atom in the unit
cell. The mass of the host atom is given by M, whereas the mass difference
between the host atom and the dopant atom is given by ∆M.

For the above two equations, Klemens makes an assumption that only phonons
with high group velocity make a substantial contribution to thermal conduc-
tivity. He uses the Debye model and computes the lattice thermal conductivity
by considering only the acoustic phonons, which can have a frequency from
zero to the Debye frequency ωm. For point defects it is possible to define a
cut-off frequency ω0, which affects the mean free path of phonons. Klemens
obtains Eqn. 2.43 by considering the mean free path due to the two frequencies
(ωm and ω0) and the ω0/ωm ratio, which shows to what extent point defects
affect the frequency of acoustic phonons in the Debye model.

2.6.3 Electron-phonon interaction

The computation of the electron-phonon interaction from first principles is ex-
pensive. However, a more empirical, but tested, approach based on the Call-
away model [139, 140] can be used to gain an insight of how the electron-
phonon interaction affects the lattice thermal conductivity in terms of temper-
ature and doping concentration. The relaxation time due to electron-phonon
interaction satisfies [141]:
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τ
−1
EP =Cω

2, (2.45)

where C is given by [142]:

C =
4nm∗veλe

15ρv2 , (2.46)

where ω is the phonon frequency, n is the doping concentration, m∗ is the ef-
fective mass, ve is the electron velocity, λe is the mean free path of the electrons,
ρ is the mass density, and v is the phonon velocity. In principle, the value of
C can be calculated from first principles. In practice, however, the value of ve

and λe is related to the electron relaxation time, which is modelled to be con-
stant with respect to doping. Therefore, estimating a parameter, which aims
to show how doping affects the electron-phonon interaction, with a relaxation
time, which is modelled to be insensitive to doping, would lead to a signifi-
cant inaccuracy in the final results. Instead, experimental results can be used
to obtain a value proportional to C. Then the doping dependency (C ∝ n) and
temperature dependency (C ∝ T−1/2) are included in the model.

2.7 Constant relaxation time approximation

The electron relaxation time (τ) is a measure of how often there are scattering
events affecting the free propagation of the carriers. In the constant relaxation
time approximation, the value of τ is fixed with respect to the chemical po-
tential. The constant τ can be expressed in terms of the mobility of the charge
carriers (µ) and their effective mass (m∗). In the Drude model this relation is
given by:

τ =
µm∗

e
, (2.47)

where e is the charge of an electron. Looking at the equation above one can
be left with the wrong impression that heavy but mobile charge carriers can
increase the time between scattering events. In fact, the deformation potential
theory introduced by Bardeen and Shockley [102] shows quite the opposite
behaviour in which light charge carriers are preferable for obtaining longer
relaxation time.

There are three major components needed in order to calculate µ . These are
the deformation potential energy, effective mass and elastic constants. The
expression for the mobility of the charge carriers is given as:
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µ =
2
√

2πeh̄4cii

3(kBT )
3
2 m∗

5
2 λ 2

DP

, (2.48)

where h̄ is the reduced Planck constant, cii is the lattice elastic constant (i =
1,2,3), kB is the Boltzmann constant, T is the temperature and λDP is the defor-
mation potential energy.

The next three subsections discuss how to calculate the variables in Eqn. 2.48.
Before proceeding, it needs to be noted that the Bardeen and Shockley theory
works for cubic isotropic materials. For the purposes of this thesis such an
approximation is reasonable. For anisotropic materials, however, one needs to
refer to the generalised theory by Herring and Vogt [143], in which cii and λDP

values depend on the direction of propagation.

2.7.1 Deformation potential energy

If we have a gradually varying electrostatic potential, which is superimposed
on the periodic potential of the crystal lattice, then we can neglect the periodic
potential and calculate the motion of the charge carriers in the gradually vary-
ing potential. As a prerequisite condition, the change in the gradually varying
potential in one period needs to be small compared to the periodic potential.

Bardeen and Shockley extended the idea to effective potentials which are gen-
erated by the change in the position of the band edges of the valence band
maximum and conduction band minimum due to a gradually varying dila-
tion [102]. Such a varying potential is referred to as the deformation potential
and for cubic isotropic systems it is given by:

λDP =
dEedge

dδα

, (2.49)

where Eedge is the valence band maximum or conduction band minimum and
δα is the uniaxial strain along the α direction, which is conveniently chosen to
be in the direction of the lattice vector a and is defined as:

δα =
a−a0

a0

∣∣∣∣∣
α=a

, (2.50)

where a0 is the equilibrium lattice constant and a is the dilated lattice vector.
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2.7.2 Effective mass

The presence of a periodic potential in solids makes particles respond to forces
in a different manner when compared to the response of free particles in a
vacuum. The effective mass (m∗) is a simplification which aims to compensate
for this discrepancy by treating the electrons and holes as free particles but
with modified masses.

The effective mass tensor is defined as:

(
1

m∗

)
i j
=

1
h̄2

∂ 2En(k)
∂ki∂k j

, i, j = x,y,z (2.51)

where indices i and j denote the x,y and z directions in reciprocal space and
En(k) is the dispersion relation for a given electronic band with a number n.
The distinction between holes and electrons comes from the sign of En(k). Par-
ticles with negative mass are regarded as holes which are moving through a
sea of electrons, similar to air bubbles in a bottle of water.

Depending on the axes’ direction the effective mass can be longitudinal (m∗l ) or
transverse (m∗t ). The averaging of the three directions is rather straightforward
but depends on type of the calculation. For density of states calculations the
effective mass is obtained via the geometric mean and is defined as:

m∗dos =
3
√

g2m∗l m∗t m∗t , (2.52)

where m∗dos is the density of states effective mass and g is the number of con-
duction band minima, called valleys. Equation 2.52 reduces to m∗dos = m∗ if the
band gap is direct at the Γ-point. For conductivity calculations the harmonic
mean is used to find the average. The conductivity effective mass (m∗cond) is
given by:

m∗cond =
3

1
m∗l

+ 1
m∗t

+ 1
m∗t

. (2.53)

When calculating the effective mass of holes, one needs to consider that the
energy levels at the top of valence band are often degenerate, which leads to
the presence of a heavy holes (hh) band and light holes (lh) band. The nature
of the holes is determined by the dispersion of the bands, with the flatter band
being responsible for the heavy holes. Both hh and lh contribute to the scatter-
ing processes, hence a combined mass is needed in order to find τ . We know
from Eqn. 2.47 and 2.48 that τ ∝ 1/m∗

3
2 and that the relaxation time is a measure

of the frequency of scattering events. Therefore, we can define the combined
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effective mass as being equal to:

m∗h =
(
m∗hh

3
2 +m∗lh

3
2
) 2

3 , (2.54)

where m∗h is the effective mass of holes.

2.7.3 Elastic constants

According to Bardeen and Shockley, the mobility of electrons and holes in non-
polar semiconductors and insulators is determined by interactions with the
acoustic phonon branches in the system and by scattering due to impurities or
other defects. In the limit where the doping is small and does not introduce
a lot of impurities, classical rather than quantum statistics may be applied to
the conduction electrons. In this case, the charge carriers interact only with
acoustic phonon modes of comparably long wavelength. The properties of
these phonon branches can be deduced from the elastic constants.

Given that the cubic elastic constants c11, c12 and c44 are obtained from first
principles, the values of cii along different directions of propagation can be
expressed as:

(100) cii = c11,

(110) cii =
1
2
(c11 + c12 +2c44),

(111) cii =
1
3
(c11 +2c12 +4c44).

(2.55)

For isotropic systems the discrepancy between cii values for different direc-
tions is relatively small and can be neglected when calculating the mobility.
The shear modulus of a cubic system can also be calculated from the elastic
constants [144]:

GV =
c11− c12 +3c44

5
,

GR =
5(c11− c12)c44

4c44 +3(c11− c12)
,

GH =
GV +GR

2
,

(2.56)

where GV and GR are Voigt’s [145] and Reuss’s [146] approximations, respec-
tively, and GH is Hill’s proposed mean arithmetic value of the former two to
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reflect the real properties of the system [147].

The bulk modulus B of a cubic system is defined as [148]:

BH = BG = BV =
c11 +2c12

3
. (2.57)

In the cubic case the three approximations are equal to each other.

2.8 Future outlook for modelling electron-phonon

coupling

The theoretical framework presented in this chapter is sufficient for the full
scale modelling of thermoelectric materials from first principles. However,
this does not mean that it cannot be improved or developed furthermore in
order to predict thermoelectric results which depend less on cross-checks with
experimental data.

Sections 2.7 and 2.6.3, which discuss the constant relaxation time approxima-
tion and the phonon-electron coupling, are excellent candidates for such im-
provements. In these cases, the interaction between charge carriers and lattice
vibrations is either omitted or extracted from experimental data.

In a very recent study Sohier et al. [149] shows how the electron-phonon cou-
pling (EPC) can be used with the electron Boltzmann transport equation (BTE)
to obtain a value for the electron relaxation time. The EPC process is rem-
iniscent of how phonons interact. For example, if a longitudinal vibration
compresses or expands the lattice at a given point, the effective electrostatic
potential at that point, which acts on electrons, is also changed. Thus, there
exist the possibility of scattering [150]. The Sohier et al. approach works for
2D materials and is very analogous to the solution of the phonon BTE, as dis-
cussed in Section 2.4.2. Instead of the third-order force constant for the phonon
solution, the electron transition rates (Pkk′) are computed from the EPC matrix
elements. As a result, one can obtain the scattering time within the energy
relaxation-time approximation (eRTA):

1
τeRTA(k)

= ∑
k′

Pkk′
1− f 0(k′)
1− f 0(k)

, (2.58)

where f 0 denotes an equilibrium distribution function for states k and k’.

While elegant, the solution of Eqn. 2.58 is computationally demanding and not
fully implemented in the various DFT codes as of writing. Once this obstacle
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is overcome one will be able to use a more accurate model of the electronic τ ,
which depends on the chemical potential. In addition, the EPC contribution
to the lattice thermal conductivity can also be included to the final results. All
that will lead to a more realistic and rigorous full-scale modelling from first
principles of the thermoelectric materials.

70



Chapter 3

Methodology

The computational workflow can be described as a staged process which in-
volves obtaining properties of materials from an ab initio runs and then using
them as an input in more specialised programs. This is done multiple times
until all components of the thermoelectric ’figure of merit’ equation are found.

This chapter will serve as a guide of how the study was conducted and how
the results can be reproduced. It will present the software needed to solve
the theoretical framework discussed in Chapter 2 and will highlight the key
parameters or assumptions which were used in the working process.

3.1 Calculating the properties of materials from first

principles

The density function theory (DFT) calculations in this project were performed
with the CASTEP program, which is a leading code using a plane wave basis
set to calculate the properties of materials from first principles [123]. CASTEP
can simulate a wide range of properties of material proprieties including ener-
getics, structure at the atomic level, vibrational properties, electronic response
properties and many others.

3.1.1 Setting up a CASTEP calculation

To perform a DFT simulation with CASTEP one needs to create two input files.
The first one is called seedname.cell and contains information about lattice vec-
tors, ionic positions, symmetry operations, pseudopotentials, Hubbard U val-
ues and a Monkhorst-Pack k-points mesh [151], which can sample the Brillouin
zone on an equally spaced grid or along a given path.
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The second input file is called seedname.param. It is used to specify parameters
like cut-off energy, exchange-correlation functional and other settings, which
depend on the task and the system of interest. These could include specifi-
cations about optimisation methods, convergence criteria, spin polarisation,
spin-orbit coupling, semi-empirical dispersion correction, etc.

3.1.1.1 Key convergence parameters

There are two key parameters which need to be converged extremely well
when one starts investigating a new system. These are the cut-off energy and
the k-point sampling.

Since the particles in the DFT calculation are in a periodically-repeating en-
vironment, the wavefunction in the Kohn-Sham equation can be written as a
Bloch wave ψk(r) = eik·ruk(r), where uk(r) is a periodic function with the same
periodicity as the crystal. The periodic Bloch function can be expressed as
plane waves in Fourier series uk(r) = ∑G cGkeiG·r, where G is a reciprocal lat-
tice vector [132, 152]. In principle, an infinite number of G vectors is needed in
order to obtain the precise form of the Bloch function. In practice, however, the
coefficients cGk become small when G is large and the series can be truncated.
Thus, we form a basis set with plane waves with wave vector lengths less than
some maximum value of G. In calculations the basis set is input in terms of
an energy cut-off value which is the energy of an electron in a periodic box
as the unit cell and a plane wave wavefunction with wave vector of length G
maximum, i.e. Ecut = h̄2

2m |G|
2.

Therefore, when we define a cut-off energy in the calculation, we set a maxi-
mum value for G. The usual way of checking if the truncation of the Fourier
series is good enough is to expand the number of the included Fourier com-
ponents by increasing the cut-off energy and check that little is affected. As a
rule of thumb the cut-off energy is considered converged when the change in
the energy of the system per atom is less than a couple of meV.

Calculations also require integrating the periodic functions of the Bloch wave
vector k over the entire Brillouin zone, i.e. the specific region of reciprocal-
space which is closest to the origin. However, it is possible to use only a
finite number of k-points if these are selected in a way which appropriately
samples the reciprocal space. The Brillouin zone in CASTEP is sampled via
a Monkhorst-Pack k-points mesh (an evenly spaced grid) [151]. The number
of k-points is gradually converged by increasing the density of the grid. The
convergence criterion is the same as for the cut-off energy and the k-points
sampling is considered sufficient when the change in the energy of the system
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per atom is less than a couple of meV.

3.1.1.2 Periodic boundary conditions and cell size

CASTEP uses periodic boundary conditions and infinite systems are approx-
imated to a small part called a unit cell. Using periodic boundary conditions
means that particles are enclosed in a box, which is virtually replicated to infin-
ity by rigid translation in all directions, completely filling the space. However,
only the particles in the box are effectively simulated. In the presence of defects
or surfaces, finite size effects can occur. This means that defects or surfaces can
interact with their own virtual copies. Such an effect can be reduced by in-
creasing the defect-defect distance or the vacuum distance between surfaces.

In terms of defects, the usual approach involves creating a supercell, which con-
tains the defect surrounded by a region of bulk crystal. Due to boundary condi-
tions the new super structure contains an array of defects rather than a single
defect. It is important to include enough bulk solid in the supercell to pre-
vent the defects in neighbouring cells from interacting with each other [152].
Although it seems that a bigger supercell will guarantee ’better’ results, that
is not always the case. The convergence of defect calculations in supercells
needs to be done methodically [153]. This includes converging carefully the
cut-off energy and the k-points grid with respect to the quantity which is be-
ing measured, i.e. defect formation energy or forces between atoms. It is also
considered that the best systematic way to treat defects is to consider the de-
fect density for each different supercell symmetry separately as it can have a
directionality effect. Once the symmetry with the best convergence is found,
the next step relies on geometry optimisation. If the defect is isolated from its
virtual copy, then there should be a region in the supercell where the structure
is bulk-like. We can assume that neighbouring atoms form shells around the
defect. In that way, we can assess the convergence of the defect structure by
considering the relative displacement of successive shells of atoms in a fixed
volume calculation. If the displacement between the relaxed and unrelaxed
defect systems of the largest allowed shell, i.e. the one which is equidistant
from the defect and its virtual copy, is larger than some predefined tolerance,
then a bigger supercell is needed.

In terms of surfaces and thermoelectric calculations, and in addition to the me-
thodical approach discussed above, one might check how the density of states
are affected by the size of the vacuum region. It is important that the vacuum
regions are wide enough so that faces of adjacent crystal slabs do not interact
across the vacuum in a way which affects the thermoelectric properties.
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3.1.2 Types of DFT calculations

The type of the DFT calculation, called ’task’ in CASTEP, is specified in seed-
name.param. Here we will focus mainly on the tasks which are relevant to com-
puting the electronic thermoelectric properties: energy and force calculations,
geometry optimisation and spectral calculations.

3.1.2.1 Energy calculations

The procedure for self-consistent electronic minimisation in CASTEP is sim-
ilar to the one described in Fig. 2.1 in Section 2.1. The old and new density
are mixed until the change in the total energy reaches the convergence criteria.
This type of calculation is performed at the start of every run before initialis-
ing another task. It is also used on its own when one starts investigating a new
material. Then the cut-off energy and the k-point sampling are converged by
running a set of simple total energy calculations. Both parameters are consid-
ered well converged when the total energy varies less than a few milli-electron
volts per atom.

The benefit of the energy runs is that they are relatively cheap and allow the
user to investigate a snapshot of the crystal structure. Thus, one can com-
pare energies between different experimental configurations, screen for possi-
ble doping sites or check structural stability.

In terms of thermoelectric properties, computing the total energy for a range
of different volumes can allows us to calculate the lattice thermal conductivity
via the quasi-harmonic approximation as discussed in Section 2.5. This can
be done with the help of the Gibbs2 program by fitting an equation of state
to the precomputed data [137]. The energy calculations can also be used to
analyse the forces between atoms in different perturbed configurations and
obtain the third-order force constants, which are crucial for solving the phonon
Boltzmann transport equation.

3.1.2.2 Geometry optimisation

Geometry optimisation is used to refine the lattice parameters and ionic coor-
dinates of a crystal structure. The essence of the calculation is for the ions and
electrons in the supercell to be moved around step-wise until the forces on the
atoms and the change in total energy between steps fall below some predefined
convergence tolerance. The ionic positions are optimised using quasi-Newton
methods, which are a class of hill-climbing optimisation techniques that seek
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a stationary point of a function. The curvature of the function is described by
a square matrix of second-order partial derivatives, which is called a Hessian
matrix.

The geometry optimisation process involves moving ions into new positions
by using a geometry optimisation algorithm. Then the electronic configuration
is optimised using conjugated gradients method, an algorithm for the numeri-
cal solution of particular systems of linear equations. Afterwards the total en-
ergy of the system is compared with previous configurations and it is checked
if forces fall within the predefined tolerance limits. If the structure is not opti-
mised, the process returns to the starting point and generates a new set of ionic
positions. This cycle is performed until the forces fall within the tolerance limit
and the energy should then be at a local minimum.

The geometry optimisation algorithms used in this project are the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [154] and its limited memory ver-
sion LBFGS [155]. BFGS was the default algorithm until CASTEP v18. It uses
the fractional atomic positions and cell strains as the variables for optimisa-
tion. It looks for a state of minimum enthalpy (fixed cell) or zero force and
stress (variable cell). BFGS allows for both variable and fixed cell calculations.
While BFGS is reasonably fast and robust, it can require a lot of memory for
large systems and therefore the limited memory version LBFGS is the default
choice from CASTEP v18 onwards.

In terms of thermoelectric calculations, structures which are not geometry op-
timised could lead to instability when calculating lattice dynamics or unreal-
istic charge carrier mobility when computing the electron relaxation time. It
is important to note that the crystal structure should be relaxed whenever the
exchange-correlation functional or the pseudopotentials need to be changed.

3.1.2.3 Spectral calculations

The spectral task in CASTEP allows the user to take the converged wavefunc-
tion, as described in Section 3.1.2.1, and use it to compute the eigenstates on a
denser k-points grid for a density of states (DOS) calculation or along a spec-
ified path for a band structure calculation. The calculated eigenvalues and
k-points coordinates are placed in a file called seedname.bands, which requires
further post-processing.
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Band structure

The band structure is calculated along a path of high symmetry points which
are defined in seedname.cell. The visualisation of seedname.bands and the type of
the band gap are done by the Perl script dispersion.pl, which is distributed as
part of the CASTEP package. The band structure calculation is crucial in deter-
mining the electron relaxation time by computing the deformation potential of
the system and the effective mass of the charge carriers.

Density of states

Density of states are computed similarly to the band structure but on an equally
spaced k-points grid rather than a path. The post-processing needs to be more
sophisticated and can be done with a program called OptaDOS [156]. It is a
code for calculating optical, core-level excitation spectra along with full, par-
tial and joint electronic density of states (DOS). One of the nice features of the
program is the adaptive DOS broadening. This means that OptaDOS adds
weight to the states depending on how localised they are, i.e. flat bands yield
more states than dispersive ones. Thus, allowing for better DOS plots with a
coarser k-points sampling. OptaDOS can also report the type of the band gap,
its magnitude and the position of the valence band maximum and conduction
band minimum.

For this project, we are interested in the full and partial density of states since
it allows us to see the type of the material, predict some of its thermoelec-
tric properties and see which atomic species are responsible for the electronic
transport. In terms of thermoelectric calculations, CASTEP density of states
data are used as an input for the program which solves the electron Boltzmann
transport equation.

3.2 Computing the electronic thermoelectric prop-

erties

The program which was used to compute the electronic thermoelectric prop-
erties is called BoltzTraP [100]. The Seebeck coefficient, electronic thermal con-
ductivity and electrical conductivity are obtained within the constant relax-
ation time approximation by solving the Boltzmann transport equation. The
program relies on smooth Fourier interpolations of the band energies. Group
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velocities are calculated as derivatives of the energies; therefore, the band en-
ergies must be well resolved. This could be achieved only if a very dense
k-points grid is used in density of states calculations.

DFT calculation
(CASTEP)

Density of states Deformation
potential Effective mass Elastic constants

τ
BTE solution
(BoltzTraP)

σ/τ

κel/τ

S

Figure 3.1: Workflow for calculating the electronic thermoelectric properties.
Red boxes illustrate different type of software used, orange boxes show the
intermediate stages and blue boxes show final results.

Figure 3.1 summarises the workflow for obtaining the electronic thermoelec-
tric properties. BoltzTraP is interfaced with CASTEP via a Python script called
castep2boltz.py. Both the script and the program can handle spin-polarised and
spin-orbit coupling cases. The prerequisites for the script are the eigenenergies
from seedname.bands and the crystal structure from seedname.castep. The latter
informations is used to harness the symmetry operations of the system. Set-
tings needed for obtaining the thermoelectric properties in the left section of
Fig. 3.1 are discussed below, while the computation of the relaxation time is
explained in Section 3.3.

3.2.1 Performing a BoltzTraP calculation

BoltzTraP input parameters are defined in a file called seedname.intrans and the
user can tweak them to their preference. The most common parameters which
need modification include the temperature range, temperature step and dop-
ing levels. In BoltzTraP the term ’doping’ refers to chemical doping. Instead
of adding electrons to the simulation, the program calculates the electron ther-
moelectric properties for a given energy level which corresponds the Fermi
energy if the system had a given amount of additional of electrons or holes.

One of the special BoltzTraP features which is implemented in the program is
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the possibility of adding a scissors operator when solving the BTE. first prin-
ciples calculations often predict an unrealistic band gap. Thus, the ability to
manually set the band gap size becomes very useful for testing different sce-
narios, especially for materials for which there is no definite agreement be-
tween theory and experiments, e.g. Fe2VAl full-Heusler alloys.

The last feature worth discussing is the ability to add a relaxation time estimate
to the calculation. Such calculations were not performed in this project since
it would have required including experimental data. However, the develop-
ment of the field along with the discussed in Section 2.6.3 electron-phonon
coupling, would enable more accurate estimates of the relaxation time from
first principles. Thus, the ability to include relaxation time values to the Boltz-
TraP calculation will become extremely useful.

3.2.2 Successor of BoltzTraP

It is worth pointing out that BoltzTraP was superseded in 2018 by a newer
version called BoltzTraP2 [103]. The new code is distributed as a free Python3
library and offers all features of the old program but is better prepared to vi-
sualise output data. It can also load relaxation time values obtained via the
electron-phonon coupling for each individual eigenstate. BoltzTraP2 does not
rely on external interfaces to work with other DFT codes. Instead internal
loaders are used to analyse the input intelligently and decided how the data
need to be loaded. CASTEP is part of the supported programs and can be
used along with BolzTraP2 but for consistency purposes all calculations in this
project were performed with the first version of BoltzTraP.

3.3 Computing the relaxation time

The electron relaxation time (τ), present in the right section of Fig. 3.1, is calcu-
lated using the deformation potential theory, which is discussed in Section 2.7.
The deformation potential is obtained from a set of band structure calcula-
tions in which the energy values of the valence band maximum (VBM) and
conduction band minimum (CBM) are measured when the unit cell is dilated
or contracted along one direction. Elastic constants are computed with the
help of two scripts generate strain.py and elastics.py, which are distributed with
the CASTEP software. The first script generates a set of seedname.cell files de-
formed according to the appropriate strain pattern. Each .cell file corresponds
to a different CASTEP calculation. Once all calculations are done, the second
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script can extract the forces between atoms and estimate the elastic constants.

3.3.1 Effective mass effects

The effective mass of the charge carriers is computed with the help of an exter-
nal program called ’Effective mass calculator’ (EMC) [157], which was modi-
fied to work with CASTEP. The program uses finite difference method to eval-
uate energy derivatives numerically. It calculates the derivatives from a 3- or
5-point stencil around a given k-point. Therefore, the code requires as an input
the VBM or CBM k-point coordinates, the respective band index and the spac-
ing between the k-points in the pattern. Once the list of k-points is generated,
the user needs to include it in the seedname.cell file and perform a band struc-
ture calculation. Once the calculation is done, the EMC code is used again to
estimate the charge carrier effective mass.

There are two aspects of the calculation which need to be considered carefully.
The first one is the spacing between the k-points in the pattern. It is not a bad
practice to test several values and check how the parabola described by the
pattern points matches the shape of the whole band in the band structure. If
the spacing is too small, the charge carriers will be too light. If the spacing is
tto wide, the charge carriers will be too heavy The second parameter worth
paying attention to is the band index. If the input unit cell is not an elementary
unit cell, then band folding will be present. As a result, light hole band and
heavy hole band need not be next to each other in terms of indices.

3.3.2 Drawbacks of constant relaxation time approximation

Despite being the most widely used approach, there are some drawbacks to the
present τ scheme, which need to be mentioned. The most prominent one is the
lack of dependence on the chemical potential. Regardless of the doping levels,
the relaxation time remains constant. This further highlights why implement-
ing ways for obtaining τ from the electron-phonon coupling is considered very
important. In addition, current models do not consider how point defects and
grain boundaries affect the movement of the electrons. Including all defects
directly to the DFT calculations would make them very expensive.
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3.4 Lattice thermal conductivity

The software package used to calculate the lattice thermal conductivity (κlatt)
is called ShengBTE [114]. It can solve the Boltzmann transport equation for
phonons by knowing the second- and third-order force constants of the system.
The program computes converged sets of phonon scattering rates and uses
them to obtain κlatt along with other related quantities, such as the relaxation
time and Grüneisen parameter. ShengBTE harnesses the symmetries of the
system to make calculations more efficient and is able to deal with isotropic as
well as anisotropic crystals. Additionally, the ShengBTE implementation does
not rely entirely on the constant relaxation time approximation, but rather uses
an iterative method for finding the phonon τ . The theoretical explanation is
given in Section 2.4.2.

Structural minimisation
(CASTEP)

Relaxed structure

Phonon calculations
(CASTEP)

Supercell calculations
(CASTEP)

2nd-order IFCs 3rd-order IFCs

Solution of the BTE
(ShengBTE)

Ouput quantities:
Lattice thermal conductivity, specific heat, ...

thirdorder.py

thirdorder.py

Figure 3.2: Workflow for thermal conductivity calculations using a real-space
supercell approach for force constants. Red boxes represent starting points for
DFT and BTE calculations, orange boxes show the intermediate stages, com-
puter programs are denoted in brackets and blue boxes show the final output.
The script thirdorder.py is part of the ShengBTE program.

The computation workflow for obtaining the lattice thermal conductivity is
given in Fig. 3.2. Here we will discuss the input settings needed by ShengBTE,
while the methodology for obtaining the force constants is discussed in the
next two subsections.

ShengBTE and CASTEP are linked with a program called castep2shengbte.py.
It is a Python script which creates two files – one with control settings and
one containing second-order force constants. The control file contains infor-
mation about the crystal structure, phonon q-point grid, referred as supercell,

80



Chapter 3 Methodology

temperature steps and range, number of ShengBTE integration grid planes
and a parameter called scaleboard. One of the computational tricks used in
ShengBTE is that Dirac delta distributions arising from conservation of energy
can be approximated by a Gaussian function. The Gaussian smearing is con-
trolled by the scaleboard parameter. According to the authors the default value
(scaleboard = 1) is theoretically guaranteed to work, but significant speedups
can sometimes be achieved by reducing it. Literature results, even for the same
material, should be analysed carefully without knowing the scaleboard value
since it represents a compromise between speed and accuracy. The other pa-
rameter which affects the speed of the ShengBTE run is the number of integra-
tion grid planes. This is analogous to the k-points mesh in CASTEP and also
needs to be converged systematically.

3.4.1 Modelling second-order interatomic force constants

In this section we will follow the process of calculating the second-order force
constant with CASTEP. It was discussed in Section 2.1.2 that the dynamical
matrix can be obtained in several ways. CASTEP contains implementations
of both the finite-displacement supercell approach and the density-functional
perturbation theory method. In either case, having a fully relaxed crystal struc-
ture is absolutely mandatory, otherwise the phonon calculation might fail to
complete or phonon frequencies might indicate mechanical instability.

3.4.1.1 Finite-displacement supercell approach

The finite-displacement approach is based on displacing the atoms by a small
amount from their equilibrium position and numerically differentiating the
forces between them. The condition that the displacements are necessarily
periodic with the simulation cell makes only the phonons at the Γ-point mean-
ingful. This limitation in reciprocal space can be overcome by increasing the
size of the system in real space, hence using a supercell. The size of the super-
cell is guided by how quickly the force constant matrix decays with respect to
interatomic distance. The assumption is that after a given cut-off radius Rc the
force constants are small and can be neglected. Due to periodicity, the size of
the supercell L needs to be L > 2Rc, where it is the best to imagine that a virtual
sphere with a radius Rc illustrates the range of the force constants. Therefore,
a cubic supercell is the best option for capturing the most interactions in the
smallest volume possible.

The computational workflow includes includes two key steps. The first one,
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as already mentioned, is to relax the crystal structures. The second step is to
decide the size of the supercell. It is preferable to start with a big supercell
calculation as CASTEP allows you to later decrease the cut-off radii, test dif-
ferent values and determine if a smaller supercell is also usable. In general, the
drawback of the supercell approach is that even a small primitive unit cell of
2 atoms, would result in a relatively big supercell, i.e. a 4×4×4 supercell will
contain 128 atoms. Transforming a non-cubic cell to a cubic one could also in-
crease the number of atoms. In general, DFT calculations scale as O(N3), where
N is the system size, and the computation time can become extremely long.

3.4.1.2 Density-functional perturbation theory method

Alternatively, one could use the density-functional perturbation theory (DFPT)
method to calculate the force constants. Unlike in the finite-displacement ap-
proach, here we compute the response wavefunction (dΨ

dλ
), where λ is atomic

displacement. One of the benefits of DFPT, as implemented in CASTEP, is
that one can calculate phonon modes at the Γ-point and elsewhere equally
easy [158]. The calculation is performed by adding a list of q-points to the
seedname.cell file, without generating a supercell. In this case, the q-points grid
defines the cut-off range of the interatomic interactions. For example, the force
constants computed on a 4× 4× 4 q-point grid using the DFPT method are
equivalent to the force constants obtained in a 4× 4× 4 supercell using the
finite-displacement approach. In this project the DFPT method was employed
for computing the second-order force constants.

In terms of scaling, having more q-points is better than having more atoms
in the simulation cell. Nevertheless, calculations aside from the Γ-point are
more demanding due to decreased symmetry. The DFPT method also re-
quires using norm-conserving pseudopotentials. Inside a certain core cut-off
radius, where the pseudized part of the potential is, the norm of each pseudo-
wavefunction needs to be identical to its corresponding all-electron wavefunc-
tion. The wavefunction is varying very quickly when the potential is very
attractive, i.e. close to the nuclei, which means that large G components (dis-
cussed in Section 3.1.1.1), are needed to describe this region of space. There-
fore, the DFPT method requires a higher plane wave basis set cut-off energy,
which increases furthermore the computational cost. As a result, it becomes
impractical to use a very dense q-points grid due to the norm-conserving pseu-
dopotentials. The other types of calculations in this project can be performed
with ultrasoft pseudopotentials, which relax the norm-conserving constraint,
and thus require a smaller G and lower cut-off energy.
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In a solid, the interactions between atoms have a finite range and decay rapidly
to zero. Specifically, the elements of the force constant matrix in Eqn. 2.7 de-
crease as 1/r5 with interatomic distance [159]. A pragmatic way of checking
the convergence of the interatomic force constants is by comparing the phonon
dispersion and density of states curves for different q-points grids. Whenever
qualitative changes stop occurring, it can be concluded the force constants
are converged. Figure 3.3 shows an example of how the dispersion curve
of NbFeSb converges when the density of the q-points mesh is gradually in-
creased. The unconverged force constants on the 2×2×2 mesh are often being
used in the literature [109, 160], which highlights that in some cases accuracy
sacrifices need to be made due to the computational costs.
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Figure 3.3: Illustration of how the phonon dispersion of NbFeSb gradually
convergences when the q-points mesh is increased from a 1×1×1 to 5×5×5
grid. Notice the differences in the W-L regions (red ellipses) between the 2×
2×2 and 5×5×5 meshes despite both data sets being Fourier interpolated on
a similar denser grid.

A detailed dispersion, like in Fig. 3.3, or density of states plot requires thou-
sands of q-points, which contradicts the fact that we are using a relatively
coarse grid. The quickly decaying force constants and the smoothly varying
phonon frequencies with a wavevector q allow CASTEP to use Fourier inter-
polation to generate dynamical matrices on an arbitrarily fine grid or line sam-
ple in reciprocal space. Thus, it becomes possible to obtain high quality results
on a coarse q-point grid.

83



Chapter 3 Methodology

3.4.2 Computing the anharmonicity of the system

The third-order force constants are computed using the finite-displacement
supercell approach. The calculation process is as follows. A program called
thirdorder.py, part of the ShengBTE suite, creates a set of supercells containing
atoms with perturbed positions. Then CASTEP computes the forces between
atoms in all possible configurations in separate runs by using an energy cal-
culation, as explained in Section 3.1.2.1. Afterwards, thirdorder.py gathers the
forces from the CASTEP output and constructs the third-order force constants.
It should be noted that the default energy tolerance for the electronic minimi-
sation in the energy calculations must be reduced below the default value and
set on par with the default value used in the DFPT calculations. Otherwise,
noise will dominate the third-order force constants.

All aspects of the supercell approach discussed in Section 3.4.1.1 still need to
be considered. The advantages here are that third-order force constants are
expected to decay even quicker, hence, a smaller supercell is required. Hav-
ing multiple independent configurations means that parallelisation on a su-
percomputer can be done very easily. CASTEP also allows reusing the equi-
librium electron density as a starting point for new runs, which can reduce
the computation time by 20%. As an example and in terms of CPU time, 15k
CPU hours are needed for the computation of the second-order force constants
of NbFeSb with the conventional cubic cell, while the third-order force con-
stants require 12k CPU hours. A similar system but with a reduced symmetry
(Nb0.25Ta0.75FeSb) requires 45k and 36k CPU hours for the second- and third-
order force constants, respectively. There are a couple of drawbacks when
computing the third-order force constants with the finite-displacement super-
cell approach and an external program. For example, thirdorder.py neglects the
symmetries in some cases which leads to a few identical runs in the set. There
is also no easy way of going for one big calculation and then checking how
the force constants change by decreasing the interaction cut-off radius. At the
end, computing third-order force constants of a small system can prove even
more computationally demanding than calculating its second-order force con-
stants. Nevertheless, obtaining such set of results is fundamental for the accu-
rate modelling of the intrinsic lattice thermal conductivity from first principles.

3.5 List of developed software

This section discusses the developed software as part of the research. A short
summary is presented in Table 3.1. The table footnotes provide links to the
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Table 3.1: Summary of developed scripts and loaders.
Interface name Short description Code snippets
castep2boltz.py1 CASTEP to BoltzTraP interface Listing B.1
castep2shengbte.py2 CASTEP to ShengBTE interface Listing B.2
castep2almabte.py3 CASTEP to almaBTE interface Listing B.3
thirdorder castep.py4 Script for computing 3rd-order Listing B.4

force constants with CASTEP.
Part of the thirdorder.py package

gb2shengbte.py5 Computes grain boundaries effect Listing B.5
on lattice thermal conductivity

CASTEP loader Function which allows Listing B.6
for emc.py6 using emc.py with CASTEP
CASTEP loader Added CASTEP support Listing B.7
for BoltzTraP27 for Python3 module BoltzTraP2

1 https://github.com/ganphys/castep2boltz
2 https://github.com/ganphys/castep2shengbte
3 https://github.com/ganphys/castep2shengbte/blob/master/castep2almabte.py
4 https://bitbucket.org/sousaw/thirdorder/src/master/thirdorder castep.py
5 https://github.com/ganphys/castep2shengbte/blob/master/gb2shengbte.py
6 https://github.com/afonari/emc/blob/master/emc.py
7 https://gitlab.com/sousaw/BoltzTraP2

webpage of the every program. Examples with code snippets are given as
listings in Appendix B.

The castep2boltz.py, castep2shengbte.py and castep2almabte.py scripts were writ-
ten by me. They allow CASTEP users to compute the desired transport proper-
ties with CASTEP and the BoltzTraP, ShengBTE and almaBTE programs. Parts
of the scripts are shown in Listings B.1, B.2 and B.3.

The thirdorder castep.py interface is now part of the thirdorder.py package, which
can compute the third-order force constants using the finite-displacement su-
percell approach. I wrote the following functions in the CASTEP interface:
’read CASTEP cell’, ’gen CASTEP supercell’, ’write CASTEP cell’ and ’nor-
malize CASTEP supercell’. The rest of thirdorder castep.py script along with
the ’read forces’ and ’build unpermutation’ functions was also adapted by me
to work with CASTEP. Example of ’gen CASTEP supercell’ can be seen in List-
ing B.4.

I wrote a short program gb2shengbte.py which estimates the effect of grain
boundaries on the lattice thermal conductivity as computed by ShengBTE. The
program code is shown in Listing B.5.

The emc.py is an effective mass calculator which was developed by Alexandr
Fonari and Christopher Sutton [157]. The function ’parse bands CASTEP’ in
the emc.py script was written by me. It adds support for CASTEP. The part of
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the effective mass calculator which contains the CASTEP loader is shown in
Listing B.6.

BoltzTraP2 is a Python3 module which can be used to solve the Boltzmann
transport equation for electrons. The CASTEP loader for BoltzTraP2 was writ-
ten by me. The loader includes the ’CASTEPLoader’ class and the functions
’ get CASTEPsystemname’, ’read CASTEP bands’ and ’read CASTEP output’.
An example of ’CASTEPLoader’ and ’ get CASTEPsystemname’ is given in
Listing B.7.
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Computing the electronic
thermoelectric properties of Heusler
alloys

4.1 Background

Fe2VAl is a full Heusler-type intermetallic compound which has been exten-
sively studied as a potential thermoelectric material due to its ecologically
friendly properties and earth abundance of Fe, V and Al [161–164]. Fe2VAl
alloys have a very large power factor comparable to some of the best ther-
moelectrics, e.g. Bi2Te3. However, their thermal conductivity, which is about
10 times higher than Bi2Te3, results in a small thermoelectric figure of merit
(ZT) [54, 165]. The high thermal conductivity of Fe2VAl is phonon dominated
and provides much room for improvement of ZT, hence several theoretical
and experimental studies which aim to optimise the thermal conductivity (κ)
as well as the Seebeck coefficient (S) and electrical conductivity (σ ) have been
conducted in the past two decades [162, 163, 166–168].

The majority of the thermoelectric properties can be calculated from the den-
sity of states (DOS), the conductivity tensor and the group velocity of the elec-
trons [100]. Therefore, it is important to obtain a proper electronic structure in
order to calculate the transport properties correctly. In the case of Fe2VAl, bulk
band structure calculations [166, 169–174] consistently predict the presence of
an indirect pseudo band gap at the Fermi level. In contrast to these predic-
tions, experimental measurements of Fe2VAl alloys show typical behaviour
for direct band gap semiconductors with hole carriers. Photoelectronic spec-
troscopy [161, 175] and optical conductivity measurements [176] confirm the
existence of a pseudo band gap without taking into account the k-dependence
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and hence cannot distinguish between direct and indirect gaps. These stud-
ies show that the widely accepted and theoretically predicted level of EF in
the band structure of Fe2VAl cannot explain both the experimentally mea-
sured hole carrier concentration [177] and the lack of temperature dependence
in optical conductivity [176]. Moreover, recent ARPES measurements of off-
stoichiometric Fe2VAl alloys mapped the k-dependence and showed that no
conduction bands are crossing the Fermi level at the X high symmetry point in
the irreducible Brillouin zone [178], once again disagreeing with the theoreti-
cally predicted band structure [171, 172, 174, 179, 180].

In addition, current theoretical band modelling underestimates the maximum
value of the Seebeck coefficient and cannot explain its asymmetry with re-
spect to doping [166]. Several studies have tried to explain the magnitude of S
(for both n- and p-type doping) by modifying the electron-electron exchange-
correlation functional [171] or by including the Hubbard U [172]. In all cases
the calculations failed to model the asymmetric behaviour of the Seebeck co-
efficient and thus overestimated the maximum value of S for p-type semicon-
ductor. In this work, we show that conduction bands responsible for the p-type
behaviour of Fe2VAl come from Fe rather than V, and as a result the experi-
mentally measured values of the Seebeck coefficient can be reproduced. This
is accomplished only if a larger Hubbard U term is added to V than to Fe.
We also thoroughly investigate the band structure of Fe2VAl, describe how the
bands fold when the size of the simulation cell is changed and demonstrate
how an apparent lack of periodicity in the conduction bands can be removed
by the inclusion of the Hubbard U . Also, the Hubbard U model can predict the
asymmetry in the Seebeck coefficient, i.e. the dependence of S on the chemical
potential.

4.2 Calculations setup

4.2.1 Crystal structure of Fe2VAl

Heusler alloys have chemical formula X2YZ, where X and Y are transition
metals and Z is a main group element. Calculations were performed on the
ordered L21 structure of Fe2VAl, which is shown in Fig. 4.1. The structure is
face-centred cubic, having space group Fm3̄m (225). There are four Fe2VAl for-
mula units (f.u.) in the cubic unit cell, with Fe atoms reside at (1/4, 1/4, 1/4)
and (3/4, 3/4, 3/4), Al at (1/2, 1/2, 1/2) and V at (0, 0, 0). A primitive rhombo-
hedral unit cell, which contains 1 f.u., can be extracted from the cubic cell. Bulk
properties of Heusler alloys are usually calculated with a primitive unit cell,
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whereas doped systems are investigated with a supercell in order to obtain the
desired doping concentration.

Figure 4.1: Schematic of the cubic (solid lines) and rhombohedral (dashed
lines) Fe2VAl unit cell. Fe atoms (orange) reside at (1/4, 1/4, 1/4) and (3/4,
3/4, 3/4), Al (grey) at (1/2, 1/2, 1/2) and V (red) at (0, 0, 0).

4.2.2 Density functional theory calculations settings

The first principles calculations were performed with the CASTEP [123] code
and a GGA-PBE exchange-correlation functional [126]. On-the-fly ultrasoft
pseudopotentials (C9 set) were used with a plane-wave cut-off energy of 700
eV with a grid scale of size 2.0. The Brillouin zone was sampled using a
MonkhorstPack [151] grid with a 24× 24× 24 k-points mesh (equivalent to
k-points spacing of 0.013 2πÅ−1) for the rhombohedral unit cell. Spin-orbit
coupling was included for the rhombohedral cells but did not influence the
final results significantly and therefore was not considered for the other cases.
The structure was fully optimized until pressure and energy were converged
to 0.01 GPa and 0.02 meV/atom, respectively. Transport properties were calcu-
lated using the semi-classical Boltzmann transport formalism as implemented
in the BoltzTraP code [100]. The eigenenergies required for the transport prop-
erties were calculated with a 48× 48× 48 k-points mesh. Density of states
(DOS) and partial density of states (PDOS) were analysed using the OptaDOS
code [156].
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4.2.3 Theoretical expectations

Theoretically, the relation between the thermoelectric figure of merit, ZT, and
S, σ , and κ , is given by Eqn. 4.1:

ZT =
S2σT

κ
. (4.1)

One of the requirements for a good thermoelectric material is the presence of
a rapid change in the density of states across the Fermi level (EF). This could
be explained with the formula for the Seebeck coefficient S (T) for metallic
systems at a given temperature T [181]:

S(T ) =
π2kB

2T
3(−e)

(
∂ lnσ(E)

∂E

)
E=EF

. (4.2)

Considering that the electrical conductivity σ (E) is proportional to the density
of states, N(E), it could be shown with Eqn. 4.2 that a steep slope, ∂N(E)/∂E,
near EF, would result in a large Seebeck coefficient and better ZT. Thus, semi-
conductors whose DOS varies rapidly on either side of the band gap are con-
sidered as promising candidates for efficient new thermoelectric materials.

4.3 Electronic structure

We start by presenting the electronic properties and band structure of Fe2VAl
using a primitive rhombohedral cell without the inclusion of the Hubbard U

on any of the atoms. After relaxation, the optimized lattice constant of the
primitive rhombohedral cell was found to be 4.03 Å (equivalent to 5.70 Å for a
cubic cell). The obtained lattice constant is smaller than the experimental value
of 5.76 Å [161, 180] by 1%, similar to other DFT studies [166, 169, 179]. Spin-
polarised calculations showed that Fe2VAl is nonmagnetic, in good agreement
with other theoretical [175, 182] and experimental [161, 169] studies.

Fig. 4.2(a) and (b) show the band structure of Fe2VAl in the irreducible Bril-
louin zone and the contribution of the V and Fe d-orbitals to the total DOS
near EF, respectively. Fig. 4.2(a) shows the small overlap between the bottom
of the conduction band (X-point) and the top of the valence band (Γ-point),
which is typical for semimetals. The small indirect overlap between them
leads to the formation of a pseudo band gap with a magnitude of −0.13 eV,
in good agreement with other DFT studies [166, 169, 179, 183]. Fig. 4.2(b) illus-
trates several important points. First, states below EF are due to Fe d-orbital

90



Chapter 4 Electronic thermoelectric properties of Heusler alloys

WW L Γ XU,K Γ
-1.5

-1

-0.5

0

0.5

1

1.5

E
n
er

g
y
 (

eV
)

(a)

0 0.01 0.02
DOS (arb. units)

-0.5

-0.25

0

0.25

0.5

Total DOS

V  d-orbitals

Fe d-orbitals

(b)

Figure 4.2: Band structure of Fe2VAl (a) and the contribution of Fe and V d-
orbitals to the total DOS near the Fermi level (b). The small arrows in (b) show
the symmetry problem.

electrons, whereas states above EF are mainly due to V d-orbital electrons. Sec-
ondly, the change of DOS near EF is symmetric, illustrated by the arrows in
Fig. 4.2(b). According to Eqn. 4.2 this symmetry would also be imposed on the
Seebeck coefficient, consistent with previous theoretical predictions [166]. This
predicted symmetry is contrary to the experimentally observed asymmetry of
S [54]. Therefore, the similarity in the dispersion of the valence and conduction
bands in Fig. 4.2(a), which is also responsible for the change in DOS near EF,
does not correspond to experimental results [163, 184].

4.4 Lack of periodicity in conduction bands and a

possible solution

It has been argued in the literature that doping Fe2VAl changes the position of
the pseudo band gap [166, 167]. Next we show that the shift of the pseudo gap
is not a result of doping but merely a consequence of the change of the size
of the simulation cell. Fig. 4.3 presents (i) the band structure of the primitive
rhombohedral cell along the W-X-L-Γ-X-W path, (ii) the band structure ob-
tained with a cubic cell and (iii) a 2×2×2 rhombohedral supercell. The band
structure in Fig. 4.3(ii) can be obtained from Fig. 4.3(i) by folding the right X-
point onto the Γ-point and overlaying the X-W section on top of the new Γ-X
section. The R-Γ region in Fig. 4.3(ii) can be obtained by folding the W-X-L-Γ
section along the L-point towards the Γ-point so that the X-point goes again
on top of the Γ-point. The band structure in Fig. 4.3(iii) is obtained by folding
the R-Γ section in Fig. 4.3(ii) to the right and overlaying an X-K region from
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Figure 4.3: Fe2VAl band structure of a primitive rhombohedral unit cell (i),
cubic unit cell (ii) and 2×2×2 rhombohedral unit cell (iii). Fermi level is indi-
cated with a horizontal dashed line. The orbital character for each conduction
band exactly at the X-point in (i) is labelled as (a) V dx2−y2 , (b) Fe dx2−y2 , (c) Fe
dz2 and V dxz, (d) Fe dz2 . The green (solid and dashed) bands illustrate the start-
ing (a) and (c) positions at the left X-point and the possible final (b) and (c)
positions at the right X-point. The red (solid and dashed) bands illustrate the
starting (b) and (d) positions at the left X-point and the possible final (a) and
(d) positions at the right X-point. Visual illustration of labels (a)-(d) is shown
in Fig. 4.4 (a)-(d).

the primitive cell onto the Γ-X region in Fig. 4.3(iii). Therefore, the change in
the position of the pseudo band gap is due to band folding rather than doping,
and can be seen in this undoped material.

Fig. 4.3(i) also reveals a lack of periodicity within the calculated band structure
when plotted along the X-L-Γ-X path. The two X-points are equivalent and
form a closed path. Hence the bands along this path are expected to return
to the same eigenvalues. However, this is not the case, as illustrated by the
red and green coloured bands in Fig. 4.3(i). Note that the colours of the bands
do not represent their orbital character but rather aim to make them distin-
guishable for the reader and illustrate the interrupted periodicity. Our calcula-
tions showed that this lack of periodicity is observed with both PBE and LDA
exchange-correlation functionals. We would further like to emphasise that the
reason we call the pure PBE band structure anomalous is because it is in quali-
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tative disagreement with the experimental evidence (thermoelectric response);
it is of course perfectly possible for a material to have such features in its band
structure, but in this case they arise because of the spurious self-interaction in-
herent in standard PBE calculations (and LDA) and disappear with even the
modest Hubbard U potentials used in this work.

Figure 4.4: Wave functions of the bottom four conduction bands only at
the X-point, shown in Fig. 4.3(i)(bands ’a’–’d’). The yellow and blue colours
represent different wave function phase. Different shapes represent differ-
ent d-orbitals. Subfigure (a) shows the dx2−y2 orbitals around V (band ’a’ in
Fig. 4.3(i)), subfigure (b) shows dx2−y2 orbitals around Fe (band ’b’), subfigure
(c) shows a hybrid Fe dz2 and V dxz orbitals (band ’c’), and subfigure (d) shows
Fe dz2 orbitals (band ’d’). The coordinate systems of the orbitals and the unit
cell are illustrated with a grey schematic of an orbital and a shaded area of the
rhombohedral cell, respectively. The orbitals are plotted with respect to a cubic
coordinate system with the y-axis coming out of the plane.

We proceed by plotting and analysing the conduction bands at the X-point in
conjunction with the wave functions in real space, superimposed on the atomic
positions in the cell (Fig. 4.4). For better visualisation, the primitive rhombohe-
dral cell was extended to occupy the same region of space as a 2×2×2 rhom-
bohedral supercell. For simplicity, only a portion of the cell, indicated by the
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dashed area next to the rhombohedral coordinate system in Fig. 4.4, is shown.
The labels (a)-(d) in Fig. 4.3 correspond to the images shown in Fig. 4.4(a)-(d).
Our calculations also showed that the only crossing point between the ’red’
and ’green’ band in Fig. 4.3(i) happens in a region where there is almost no
hybridisation in the bands, thus the periodicity problem remains unexplained.
The given representation is in agreement with another DFT study [172].

Fig. 4.3 and 4.4 indicate that the electrons need to go along the X-L-Γ-X path
twice to return to the same starting energy and band. That is, if one starts at
positions (a) or (b) at the left and right X-points (which are identical due to Bril-
louin zone periodicity) in Fig. 4.3(i), it becomes impossible to reach the same
eigenenergy at the Γ-point. The bottom conduction bands have V-Fe hybridis-
ation character as one moves away from the X-points, thus it becomes difficult
to pinpoint exactly whether Fe or V is the reason for the lack of periodicity
in them. Recent ARPES measurements [178] managed to map the top valence
bands in Fe2VAl. Our results agree well with the ARPES mapping and show
that these bands are entirely due to Fe. The top valence bands are also respon-
sible for the p-type behaviour and magnitude of the Seebeck coefficient, which
could be modelled well even within the standard DFT framework. It has been
also shown in a recent DFT+DMFT study [185] that the V site displays stronger
orbital-localised states than the Fe site. The requirement for a double period-
icity in reciprocal space, the agreement between theory and experiments on
the Fe bands dispersion and p-type peak Seebeck coefficient magnitude, along
with the results from the DFT+DMFT study give enough reasons and good
motivation for applying an additional on-site Coulomb term only to V in the
form of the Hubbard U , while leaving Fe untouched.

4.5 Testing the Hubbard model on Fe2VAl

Next we present the results of the Fe2VAl band structure with the inclusion
of the U parameter only on V. Fig. 4.5 shows how the band structure changes
when UV = 1.0, 2.0, 2.75 and 3.0 eV is added. The inclusion of UV modifies
mostly the bottom conduction band at the X-point, as expected and in agree-
ment with another study [172]. The general trend presented in Fig. 4.5(a)-(d)
shows that the eigenvalue of the bottom conduction band at the X-point moves
upwards with the increase of UV. Looking specifically at the X-L section of the
band structure, the bottom conduction band (green) moves upwards up to UV

= 2.75 eV. An increase of UV above 2.75 eV stops affecting the movement of
the bottom conduction band (green), while the band above (red) starts mov-
ing upwards. As a result, the lack of periodicity disappears for all UV values
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Figure 4.5: Band structure of Fe2VAl along the X-L-Γ-X path with UV of 1.0
eV(a), 2.0 eV(b), 2.75 eV(c), 3.0 eV(d). Fermi level is represented by a dashed
horizontal line. Arrows indicate which bands are being pushed upwards. The
colour of the bands is for illustration purposes and shows that the lack of peri-
odicity is no longer present in (c) and (d).

> 2.75 eV. In addition, the green band in the Γ-X section, which for this re-
gion specifically is due to Fe, becomes the major contributor to the conduction
states. The flat dispersion of the Fe band in the Γ-X section results in a sharp
change in DOS, thus eliminating the symmetry problem outlined in Fig. 4.2.
This result agrees very well with the recent DFT+DMFT study [185] which
also reports the lifting of the DFT-based symmetry.

As discussed above we demonstrate that the values of UV larger than 2.75 eV
overcome the DOS symmetry and band structure lack of periodicity problems.
The precise value of UV is difficult to determine without experimental data
which maps the dispersion of the V conduction bands in Fe2VAl, which to the
best of our knowledge is not available at present. In order to remain as close
as possible to the original PBE exchange-correlation functional the smallest
value of UV (2.75 eV), which solves the problems discussed above, was used
for transport properties calculations.

The inclusion of the Hubbard U only on V opens a large band gap of 0.4 eV.
This value of the band gap results in an overestimate of S maxima when com-
pared to the experimental results [163]. As indicated by the more accurate
DFT+DMFT method [185] the band gap is a lot smaller at low temperatures.
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Therefore, a scissors operator was added to the thermoelectric calculations in
order to correct for the significant increase in S. The scissors operator set the
difference between the top conduction and valence bands to 0.04 eV and 0.2 eV
at the Γ- and X-points, respectively, with an overall (indirect) band gap value of
0 eV. This zero-band gap semiconductor model is also implied by experimental
studies [184].

4.6 Electronic thermoelectric properties

Considering the Hubbard U on V and the scissors operator correction we cal-
culated the thermoelectric properties of Fe2VAl at room temperature. The
calculated values of S, σ/τ and κel/τ within PBE and PBE + ∆, with ∆ = U

+ scissors operator, are presented in Fig. 4.6. The Seebeck coefficient max-
ima obtained within PBE (Fig. 4.6(a), black line) are 58 and −52 µV/K for
p- and n-type, respectively. This is in good agreement with other theoretical
studies [166, 171, 172, 186], but as expected disagrees with experimental re-
sults [54, 184]. In contrast, the maximum values of S obtained within PBE +
∆ (Fig. 4.6(a), green line) yield 76 and −158 µV/K for p- and n-type, respec-
tively. These results capture the asymmetry in the variation of S and are now
in good agreement with the experimental results [162, 163]. The values of σ/τ

and κel/τ (Fig. 4.6(b) and (c)) within the constant relaxation time approxima-
tion are presented in Table 4.1. The value of τ (Table 4.1) is obtained by fitting
the theoretical value of 1/σ to the experimental one of 0.75 mΩcm [184, 187].

Table 4.1: Values of σ/τ , κel/τ and τ obtained within PBE and PBE + ∆.
σ/τ κel/τ τ

(Ω−1m−1s−1) (Wm−1K−1s−1) (s)
PBE 1.14×1019 1.23×1014 1.17×10−14

PBE + ∆ 0.82×1019 1.50×1014 1.62×10−14

Our calculations also showed that the theoretically obtained maxima of S heav-
ily depend on the strength of the scissors operator, in agreement with other
studies [171, 172]. A small variation of 30 meV in the magnitude of the band
gap (set at 0 eV in the present calculations) moves the maximum of S across the
whole experimental range, especially for the n-type semiconductor. Therefore,
the uncertainty in the experimental [54, 162, 163] measurements of S makes it
difficult to determine the precise value of the band gap. Furthermore, we also
note that the valence bands at the X-point (Fig. 4.5(d)) are slightly lower in
energy compared to ARPES measurements [178]. As shown in this study, the
bands dispersion determines the magnitude and the symmetry of the Seebeck
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Figure 4.6: Thermoelectric properties of Fe2VAl at T=300 K. Black and green
solid lines represent results obtained within PBE and PBE + ∆, respectively;
∆ represents U + scissors operator. Fermi level is indicated by a vertical dashed
line at 0 eV. The subfigures show the Seebeck coefficient (a), electrical conduc-
tivity (b) and the electronic thermal conductivity (c).

coefficient. Therefore, a small increase in the energy of the bands at the X-point
would increase the p-type and decrease the n-type values of S, putting them in
even better agreement with experimental data.

Next we show a further comparison between our theoretical prediction and
experimental results in Fig. 4.7. Subfigure (a) shows the power factor com-
puted with PBE (black) and PBE + ∆ (green). We compare n-type PF perfor-
mance to the reported experimental values (horizontal dashed lines) between
5.0–5.5 mW/m·K2 [162, 188] for Fe2VAl1−xSix with x = 0.1. We obtain a new
value for τ by fitting the theoretical value of 1/σ to the experimental one of
0.35 mΩcm for x = 0.1 in Fe2VAl1−xSix [162]. Chemical doping of x = 0.1 cor-
responds to an energy of 0.09 eV above the Fermi level in the PBE + ∆ model.
Compared to τ values in Table 4.1 the relaxation time increases by 65% for PBE
and decreases by 27% for PBE + ∆. A reduction in τ is the expected behaviour
as dopants increase the scattering rates. Regarding the power factor we see
that the n-type peak for the PBE + ∆ curve agrees very well with experimen-
tal results and falls within the experimental range marked by the horizontal
dashed lines. Figure 4.7(b) compares the Seebeck coefficient obtained via PBE
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Figure 4.7: Power factor (a) of Fe2VAl at T=300 K for PBE (black) and PBE + ∆

(green); ∆ represents U + scissors operator. Horizontal dashed lines show the
experimental range for the power factor. Comparing S (b) obtained with PBE
+ ∆ and experimental measurements at different doping levels [162].

+ ∆ to experimental results for doping concentrations of 0, 6, 10 and 20% ad-
ditional electrons per formula unit [162]. The good agreement between our
prediction and experimental measurements means that the PBE + ∆ method
not only captures correctly the maximum values of the Seebeck peaks for p-
and n-type semiconductor but also model properly their position and spread
along the chemical potential.
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4.7 Applying the Hubbard model to Fe and V

We know from other studies [172] that having a larger Hubbard U on Fe than
V does not result in an asymmetric S. Based on our calculations we find that
the U value on V needs to be at least 2.75 eV in order to make the conduction
bands periodic and recreate the asymmetry in S. In principle, this suggests that
the Hubbard U on V needs to be 2.75 eV higher than the U on Fe but does not
indicate what would happen if UFe > 0. As we are using a very pragmatic ap-
proach to the problem we would like to investigate if the difference of 2.75 eV
remains the same when we apply the Hubbard U model to both V and Fe with
UV >UFe.
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Figure 4.8: Comparing how different Hubbard U settings on Fe and V affect
S of Fe2VAl at T=300 K. Solid curves show cases when conduction bands are
periodic. Dotted curves represent cases when conduction bands are non peri-
odic.

Figure 4.8 shows the Seebeck coefficient when there is a Hubbard U on both
V and Fe, with UV >UFe. We have set the band gap to 0 eV for all cases when
it had a positive value. Results are presented with dotted and solid curves.
Dotted curves do not exhibit the expected asymmetry of S. We noted that in
all dotted cases bottom conduction bands exhibited the periodicity problem.
In contrast, solid curves all agree with each other and recreate the asymmetric
behaviour of S, similarly to the result shown in Fig. 4.6(a). In addition to our
initial settings of UFe = 0 eV and UV = 2.75 eV (green curve), other successful
attempts included UFe = 1 eV and UV = 3.2 eV (red curve), and UFe = 2 eV
and UV = 4 eV (blue curve). The difference between Fe and V gradually falls
down to 2 eV when we add the Hubbard U to the Fe atoms. We noted that all
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solid curve examples belong to cases in which the bottom conduction bands
are periodic. Based on Fig. 4.8 results we can conclude that even with UFe >

0 eV the Seebeck coefficient of Fe2VAl can exhibit the expected experimental
asymmetric behaviour as long as the localisation on V atoms is stronger and
conduction bands are periodic.

One might wonder whether the PBE + ∆ approach would remain applicable
for more challenging structures where no experimental data is available. For
simple doping, e.g. with Si or Ge, the states around EF remain unaffected
and the parameters used in this study will be the same. For off-stoichiometric
compounds, it was shown experimentally by Nishino and Tamada [163] that
the asymmetry in S is always present. As our method does not affect the va-
lence states in Fe2VAl, the magnitude of the p-type peak of S could be used
as a guide to deduce the value of the scissors operator for more complicated
structures. Alternatively, if the power factor is used as a reference point, then
the scissor operator becomes less significant since for any positive value of the
band gap, S and σ changes compensate each other and yield no net change
in PF. In most cases, the aim of more challenging modifications of Fe2VAl is
to reduce the lattice thermal conductivity, and our approach provides a very
cheap way of checking whether the rest of the thermoelectric properties are af-
fected. Our method makes it obvious that Fe2VAl is a special compound which
is hard to model within the conventional DFT/DFT+U framework. Analysis
of the results should be done with care and for more challenging structures it
would be appropriate to check the accuracy of the results with a higher level
of theory, e.g. the more expensive but more accurate DFT+DMFT method.

4.8 Conclusions

In summary, our calculations show that in simple DFT the bottom conduction
bands in Fe2VAl lack periodicity. The inclusion of UV > 2.75 eV resolves the
problem, modifies the bands dispersion and changes the order of the bottom
conduction bands from V to Fe being at the bottom. As a result, the exper-
imentally observed asymmetry in S could be theoretically reproduced. Fur-
thermore, Fe2VAl was modelled as a zero-band gap semiconductor by adding
a scissors operator to the transport calculations. Thus, the maxima of S be-
come +76 and −158 µV/K for p- and n-type, respectively, in good agreement
with experimental results [163]. The ability of our approach to model simulta-
neously the p- and n-type sides around EF provides a good starting point for
understanding the Fe2VAl thermoelectric properties, as well as further studies
which may include structure modifications or movement along the chemical
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potential in pursuit of a better thermoelectric figure of merit (ZT). We note that
this should be accompanied by a very careful interpretation and analysis of the
results, especially for more challenging structures.
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Chapter 5

Thermoelectric properties of
half-Heusler compounds

The results discussed in this chapter have been published in [189].

5.1 Background

In this chapter we focus on NbFeSb and TaFeSb, which are half-Heusler in-
termetallic compounds. NbFeSb has recently attracted a lot of attention as
a potential thermoelectric material due to its ecologically friendly properties
and the relatively high earth abundance of Nb and Fe. NbFeSb alloys are re-
ported to have a large power factor of up to 10 mW/(m·K2) [140], beating
some of the best thermoelectrics, e.g. Bi2Te3. However, their thermal con-
ductivity is also a lot higher than Bi2Te3 [140, 190, 191]. The high thermal
conductivity of NbFeSb is phonon dominated and this provides much room
for improvement of the current thermoelectric figure of merit maximum of
ZT=1. As the thermoelectric figure of merit is given by the equation ZT =

S2σT/κ , several theoretical and experimental studies aim to optimise the ther-
mal conductivity (κ), the Seebeck coefficient (S) and the electrical conductivity
(σ ) [55, 105, 106, 109, 140, 190, 192–194]. This optimisation is done by p-type
doping with Ti, Hf and Zr for Nb or Sn for Sb. Such an approach maximises
the power factor by fine tuning of the doping levels and decreases the lattice
thermal conductivity by enhancing the phonon scattering due to the mass dif-
ference between the dopant and host atoms. To date, the best NbFeSb results
are obtained by Ti-doping [140] due to the large mass difference between Ti
and Nb. The mass difference can be further enhanced if Nb is substituted with
a heavier but chemically similar element like Ta, which is something that has
not yet been thoroughly investigated.
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The first aim of this study is to compute the lattice thermal conductivity (κlatt)
of NbFeSb using the semi-classical Boltzmann Transport Equation (BTE) and
compare the obtained theoretical thermoelectric (TE) results to experimental
measurements. The second aim is to use the same approach and calculate the
TE properties of a compound very similar to NbFeSb, namely TaFeSb. A theo-
retical study by Bhattacharya and Madsen [105] reports that TaFeSb is a stable
compound which can also be doped with Ti in a similar way to NbFeSb. A
very recent experimental study by Zhu et al. [195] investigates extensively the
phase stability of the compound and provides an XRD pattern after the suc-
cessful experimental synthesis of TaFeSb. The main interest in TaFeSb comes
from the fact that it has the same number of valence electrons as NbFeSb, while
Ta has almost twice the mass of Nb. This suggests that TaFeSb should have the
same good electronic TE properties as NbFeSb. In addition, the heavier Ta
should also lead to an increase in the scattering strength in doped TaFeSb due
to point defects and thus decrease κlatt . As a result, TaFeSb may be expected
to have a significantly higher ZT than NbFeSb but until now there have been
no full-scale theoretical studies on the pure TaFeSb compound to confirm this
hypothesis. Zeeshan et al. [160] investigates the thermoelectric properties of
TaFeSb but without computing the electron relaxation time or including the
additional phonon scattering mechanisms. Another recent study conducted
by Yu et al. [193] investigates the effect of Ta but in NbFeSb systems. Hence,
this is clearly a very hot topic and there is a strong need for a full study of the
thermoelectric properties of TaFeSb.

The results are split into two sections. The first one presents the calculations
on the TE properties of NbFeSb. We start by following the well-established
procedure of using BoltzTraP [100] to obtain the electronic properties of the
material and then solve the phonon BTE using ShengBTE [114]. Furthermore,
we build upon the method proposed by Hong et al. [109] for the inclusion of
point defects and introduce the contributions of grain boundaries and electron-
phonon interaction to the lattice thermal conductivity of NbFeSb. To the best
of our knowledge, this is the first instance when the lattice thermal conduc-
tivity of NbFeSb is calculated by solving the BTE and including all these ad-
ditional contributions. For this reason, the results are thoroughly compared
to the available experimental data. The second section follows a similar lay-
out but is focused on TaFeSb and the observed improvements in TE properties
with respect to NbFeSb.

It is worth pointing out that BolzTraP calculates the TE properties at differ-
ent doping levels by changing the chemical potential implicitly and hence the
dopant atoms are not explicitly included. For this reason, the p-type com-
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pounds in electronic properties section are referred simply as NbFeSb and
TaFeSb. However, the computation of the change in the lattice thermal con-
ductivity due to point defects requires knowledge of the atomic mass of the
dopant atoms. In this case, the structures are referred as Nb1−xTixFeSb and
Ta1−xTixFeSb, with Ti being used for the p-type doping.

5.2 Computational settings

5.2.1 Electronic thermoelectric properties

The first principles calculations were performed with the CASTEP [123] code
and the generalized gradient approximation Perdew–Burke–Ernzerhof (GGA-
PBE) exchange-correlation functional [126]. On-the-fly ultrasoft pseudopoten-
tials (C9 set) [196] were used with a plane-wave cut-off energy of 700 eV with a
grid scale of size 2.0. A cubic unit cell, corresponding to four elementary rhom-
bohedral cells, was used for all simulations. The Brillouin zone was sampled
using a MonkhorstPack grid [151] with an 8× 8× 8 k-points mesh (equiva-
lent to k-points spacing of 0.021 2πÅ−1). The structure was fully optimized
until pressure and energy were converged to 0.1 GPa and 0.02 meV/atom, re-
spectively. Density of states (DOS) and partial density of states (PDOS) were
analysed using the OptaDOS code [156].

Electronic transport properties were calculated using the semi-classical Boltz-
mann transport formalism as implemented in the BoltzTraP code [100]. The
electronic eigenenergies required for the transport properties were calculated
with CASTEP on a 48× 48× 48 k-points mesh, which was later interpolated
on a 5 times denser mesh in BoltzTraP. The simulated half-Heusler alloys are
isotropic and the Seebeck coefficient S, electrical conductivity σ and electron
thermal conductivity κel can be evaluated as the average of the trace of the re-
spective tensors. The final results are obtained as a function of the temperature
(T) for 37 fixed doping levels from nh = 1018 cm−3 to nh = 1022 cm−3. BoltzTraP
calculates both electrical and electron thermal conductivity as σ/τ and κel/τ

where τ is the relaxation time. We use the deformation potential (DP) theory
to compute τ [102].

5.2.2 Lattice thermal conductivity

The lattice thermal conductivity was calculated by solving the phonon BTE in
ShengBTE, which as inputs requires the second order force constants (usually
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just called the ‘force constants’) and the anharmonicity (third order force con-
stants) of the system. The second order force constants were obtained with
CASTEP using density-functional perturbation theory (DFPT) [158]. The cal-
culations used the GGA-PBE exchange-correlation functional [126], on-the-fly
norm-conserving pseudopotentials (NCP17 set) and a plane-wave cut-off en-
ergy of 2000 eV with a grid scale of size 2.0. The Brillouin zone was sampled
using a MonkhorstPack [151] grid with an 5× 5× 5 k-points mesh (equiva-
lent to k-points spacing of 0.034 2πÅ−1). A q-point grid of the same size and
spacing was used for calculating the second order force constants.

The third order force constants were calculated using the finite-displacement
supercell approach. The set of supercells and the reconstruction of the force
constants was performed by the thirdorder.py script that is supplied with the
ShengBTE package. The ab initio calculations were done using CASTEP. The
settings for these runs included: on-the-fly ultrasoft pseudopotentials (C9 set),
a plane-wave cut-off energy of 600 eV with a grid scale of size 2.0 and a very
fine energy per atom convergence tolerance of 2× 10−10 eV. The size of the
supercells in the set containing 332 jobs corresponded to a 2× 2× 2 cubic su-
percell containing 96 atoms. The interactions up to the third nearest neighbour
were computed, which corresponds to a cut-off radius Rc = 0.545 nm.

In addition to the force constants, the ShengBTE CONTROL file requires a few
more convergence parameters to be defined. In our case, a 9× 9× 9 grid of
planes in reciprocal space and a scalebroad of 1.0 were enough to converge the
lattice thermal conductivity.

ShengBTE computes the intrinsic lattice thermal conductivity κint due to 3P
(three-phonon) processes. We have also included the effect of GB (grain bound-
aries), PD (point defects) and EP (electron-phonon) interaction to the lattice
thermal conductivity.

5.3 NbFeSb

5.3.1 Electronic structure

NbFeSb is a half-Heusler compound, which has a composition of XYZ, where
X and Y are transition metals and Z is a main group element. The crystal struc-
ture is face-centred cubic, having space group F 4̄3m (216). The lattice constant
is calculated to be 5.96 Å, which agrees well with the experimental value of
5.95 Å [55]. The band structure and density of states (DOS) are presented in
Fig. 5.1. The figure shows that the conduction band minimum (CBM) is at
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the Γ-point, whereas the valence band maximum (VBM) is positioned at the
L-point. The magnitude of the formed indirect band gap (εg) is 0.53 eV, which
is in an excellent agreement with other theoretical [106, 109, 140] (εg = 0.52 and
0.53 eV) and experimental [140] (εg = 0.51 eV) studies. The partial DOS show
that Fe and Nb are the main contributors to states around the Fermi level. This
means that the power factor is mainly affected by Fe and Nb rather than Sb.
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Figure 5.1: Density of states (a) and band structure (b) graphs of NbFeSb.

5.3.2 Electronic thermoelectric properties

The parameters needed to calculate the electron relaxation time of NbFeSb
are given in Table 5.1. These include the deformation potential (VDP), effec-
tive mass of the charge carriers (m*), carrier mobility (µ) and relaxation time
(τ). The elastic constants are given in Table 5.3 in Section 5.4.4. The values
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Table 5.1: Parameters needed for electron and hole τ calculations of NbFeSb.
These include the deformation potential (VDP), effective mass of charge carriers
(m*), carrier mobility (µ) and relaxation time (τ) at 300 K for electrons and
holes.
Carrier type VDP (eV) m* (me) µ (cm2V−1s−1) τ (fs)
holes −13.98 1.65 28.02 26.23
electrons −14.53 0.35 1243.93 247.54

of the parameters obtained for holes are slightly higher, but within the mar-
gin of error, than the ones obtained experimentally by He et al. [140] and Fu et
al. [55] The experimental measurements have been performed on doped sys-
tems which exhibit structural defects. Therefore, a slight overestimate is to
be expected when the results are compared to the modelled perfect bulk sys-
tem. To the best of our knowledge there are no experimental results on the
electron parameters. However, the electron values presented in Table 5.1 agree
extremely well with the theoretical prediction of Hong et al. [109] The magni-
tude of the deformation potential constant for holes (VDP =−13.98 eV) is lower
than the one for electrons (VDP =−14.53 eV). This can be explained by the dif-
ferent dispersion of the valence and conduction bands. The bottom conduction
band is more dispersive than the top valence band, and the applied strain has
a smaller effect on the flatter bands. Due to the difference in the dispersion
of the bands, the effective mass of electrons m∗el=0.35(me) is much smaller than
that of the holes m∗h=1.65(me). This results in a much lower mobility (µh = 28.02
cm2V−1s−1) of the heavier holes and a lower relaxation time of τh = 26.23 fs at
300 K. This value of the relaxation time, with the included temperature depen-
dence of τ ∝ 1/T 3/2 is used to post-process the results obtained from BoltzTraP
for the p-type behaviour of NbFeSb.

The thermoelectric properties of p-type NbFeSb are shown in Fig. 5.2. All
quantities agree very well with results obtained in the other theoretical stud-
ies [106, 109]. It can be seen that the Seebeck coefficient (top left graph) reaches
values up of 700 µV/K at low temperature (around 300 K) and at extremely
small doping levels (between 0.04 and 0.004% hole concentration). When the
doping concentration is increased to the experimental values of x = 0.04 (nh =

8×1020cm−3) the Seebeck coefficient becomes 129 µV/K and 266 µV/K at 300
K and 1000 K, respectively. These values are slightly lower than the experimen-
tal results obtained by Fu et al. [55] (S = 150 µV/K and 285 µV/K at 300 K and
1000 K, respectively) and He at al. [140] (S = 175 and 300 µV/K at 300 and 1000
K, respectively). It is worth mentioning, however, that a lower doping level in
the theoretical model of nh = 6×1020cm−3 (x = 0.03) yields identical results to
the experimental ones obtained for x = 0.04 by Fu et al. [55] This could mean
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Figure 5.2: Colour maps of the electronic TE properties of p-type NbFeSb. The
magnitude of the electrical conductivity σ (top right) and electronic thermal
conductivity κel (bottom left) is given on a log scale. A maximum power factor
(bottom right) value of PF = 9.15 mW/(m·K2) is obtained at 300 K and nh =
7×1020cm−3 (x = 0.037).

that an x = 0.04 does not strictly correspond to 8×1020cm−3 hole concentration
in the experimental samples, and some of the holes could be compensated.
The presence of defects can be responsible for such a compensation. For exam-
ple, other studies on NbFeSb state that anti-phase boundaries make NbFeSb
n-type semiconductor [197]. Therefore, it is not unreasonable to assume that
the presence of grain boundaries, vacancies, dislocations and anti-site defects
can tweak the electronic structure in such a way that some of the holes to be
compensated in experimental samples. In fact, Fu et al. [55] results show that
a doping level of x = 0.04 corresponds more to nh = 6× 1020cm−3 rather than
nh = 8× 1020cm−3, as the theory suggests. For simplicity, however, we use
the theoretical relation between x and nh (volume = x/nh), where the volume is
theoretically calculated to be 52.86×10−24cm3.

The electrical conductivity σ and electronic thermal conductivity κel also agree
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very well with other theoretical studies [106, 109], but are slightly larger than
found in experiment [55, 140]. There are a few reasons for this discrepancy. As
already mentioned, the carrier mobility of the perfect crystal is expected to be
higher than µ of the doped compounds, hence τ and σ are also larger. Second,
the temperature dependence of τ is no longer proportional to T−3/2 at temper-
ature < 450 K [55, 140]. Finally, the constant relaxation time approximation
lacks dependence on the chemical potential, which means that additional scat-
tering events are not captured when the doping levels are increased. Thus, σ

and κel tend to be overestimated at high doping levels. Nevertheless, the cur-
rent model for τ is a computationally inexpensive approach that allows us to
calculate values for σ and κel , which agree relatively well with both theoretical
and experimental studies.

The highest value of the power factor PF = S2σ is obtained at nh = 7×1020cm−3

(x = 0.037) and yields PF = 9.15 and 5.23 mW/(m·K2) at 300 K and 1000 K, re-
spectively. This result is very close to the key result of He et al. [140] study
of PF = 10.6 mW/(m·K2) at room temperature and x ≈ 0.05. In general, the
power factor values remain consistent with the experimental measurements
up to nh = 2×1021cm−3 (x = 0.1). Beyond that value, the theoretical prediction
starts to overestimate the experimental results by values up to≈ 2 mW/(m·K2)
when one reaches x = 0.3. Such behaviour is also noticed by the other theoret-
ical studies mentioned before. The reason for this could be either the constant
relaxation time approximation, or the fact that the heavy doping significantly
changes the electronic structure of the system. However, as shown experimen-
tally, NbFeSb exhibits its best thermoelectric performance at around x = 0.05,
and this region is accurately modelled by the current theoretical approach.

5.3.3 Lattice thermal conductivity

The phonon density of states (DOS) are presented in Fig. 5.3. The data is in
a good agreement with the results obtained by Hong et al. [109] and Zeeshan
et al. [160] and as there are no imaginary frequencies the structure is mechan-
ically stable. The phonon DOS can be split into three regions. The first one is
at low frequency, ω < 170 cm−1 where the lattice vibrations are primarily due
to Sb atoms. The dominant contributor to the phonon DOS for 170 < ω < 230
cm−1 is Nb, whereas for ω > 230 cm−1 lattice vibrations are predominantly
due to Fe with a small contribution from Nb. The Nb atomic vibrations have
the biggest frequency spread among the constituents of the material. In ad-
dition, the mass difference between Nb and the dopant atoms (here assumed
to be Ti) leads to an increase in the scattering strength. Thus, the lattice ther-
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Figure 5.3: Phonon density of states of NbFeSb.

mal conductivity κlatt of NbFeSb can be reduced significantly by doping. Our
results show the clear presence of a phonon gap at ω ≈ 275 cm−1, something
which is not observed either by Hong et al. or Zeeshan et al. [160] The reason
for this discrepancy comes from the choice of the q-point grid for the phonon
calculations. The phonon DOS converges slowly and the gap only becomes
apparent when the q-point mesh is at least 3×3×3 or equivalently a spacing
of 0.056 2πÅ−1 .

Next we focus on the estimated value for the lattice thermal conductivity and
how different contributions affect it. The intrinsic value of κlatt obtained from
ShengBTE is 21.82 and 6.49 Wm−1K−1 at 300 and 1000 K, respectively. This
agrees very well with the theoretical result obtained by Hong et al. [109] but is a
bit higher than the experimental measurements [55, 140]. The main reasons for
this discrepancy is the fact that there are no defects such as grain boundaries,
point defects or dopant atoms in the modelled structure. To correct this, we
include the effect of all mentioned impurities by using Klemens’ model [198]
and calculating the impact on the intrinsic value obtained from ShengBTE.

5.3.3.1 Grain boundaries

The study conducted by He at al. reports that the size of the grain boundaries
in NbFeSb varies between 0.3 and 4.5 µm, depending on the hot pressing tem-
perature. Figure 5.4 shows how the lattice thermal conductivity of phonons
with a given mean free path changes at room temperature when grain bound-
aries are included in the theoretical model. The graph illustrates the effect of
grain boundaries (LGB) by considering two different average sizes of LGB = 4.5
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Figure 5.4: The impact of grain boundaries on the lattice thermal conductivity
of NbFeSb at 300 K.

and 0.5 µm. Blue circles represent the intrinsic values of κlatt and it can be seen
that LGB = 4.5 µm, illustrated with black and white squares, have an almost
negligible impact on κlatt . However, there is a noticeable change in κlatt when
the size of the grain boundaries is reduced to 0.5 µm (orange triangles), and
the accumulated value of κlatt becomes 18.84 Wm−1K−1. For completeness,
LGB = 0.3 µm was also tested and yielded a result of κlatt = 17.59 Wm−1K−1 at
300 K. Both results for LGB = 0.3 and 0.5 µm are within the margin of error of
the experimental value of κlatt ≈ 17 Wm−1K−1 (undoped NbFeSb, 12% relative
error).

5.3.3.2 Point defects and electron-phonon interaction

To complete the calculation, we include the effect of point defects and electron-
phonon interaction to κlatt . The computation of the electron-phonon interac-
tion requires knowledge of the electron τ . The lack of doping level dependence
in the constant relaxation time approximation makes it unsuitable for calculat-
ing the electron-phonon contribution. The experimental data from the He et al.
study, including the temperature and doping dependencies, was used in accor-
dance to the theoretical model and is discussed in more details in Section 2.6.3.
Figure 5.5(a) shows how the lattice thermal conductivity of Nb1−xTixFeSb is
reduced when all contributions are included. The results are presented for
doping x = 0.05 and the best match to the experimental data is obtained with
LGB = 0.5 µm. Figure 5.5(b) compares κlatt when all contributions have been
added to the experimental results. The computed values for the lattice thermal

111



Chapter 5 Thermoelectric properties of half-Heusler compounds

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
4
8

1 2
1 6
2 0
2 4

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
4
8

1 2
1 6
2 0
2 4

� l
att

 (W
m-1 K-1 )

T e m p e r a t u r e  ( K )

t h i s  w o r k  ( x = 0 . 0 5 )
 κi n t
 κi n t +  G B  
 κi n t +  G B  +  P D
 κi n t +  G B  +  P D  +  E P

e x p .  r e s u l t s
H e  e t  a l .  κl a t t  +  κb i p  ( x = 0 . 0 5 )
F u  e t  a l .  κl a t t  +  κb i p  ( x = 0 . 0 6 )

( a )

( b )
t h i s  w o r k

 κi n t
 x = 0 . 0 4
 x = 0 . 0 5
 x = 0 . 1 0

� l
att

 (W
m-1 K-1 )

T e m p e r a t u r e  ( K )

H e  e t  a l .
 x = 0 . 0 4
 x = 0 . 0 5
 x = 0 . 1 0

F u  e t  a l .
 x = 0 . 0 4
 x = 0 . 0 6
 x = 0 . 1 2

Figure 5.5: Figure (a) shows the contribution of grain boundaries GB, point de-
fects PD and electron-phonon interaction EP to the lattice thermal conductiv-
ity κint of NbFeSb. Figure (b) compares the theoretical prediction of this study
(solid lines) for Nb1-xTixFeSb with LGB = 0.5 µm to the experimental results
(stars and circles).

conductivity agree very well with the experimental study, particularly with the
He et al. study at temperature up to 700 K. There is a slight underestimate of
the theoretical value of κlatt at higher temperature for x=0.04 and x=0.05. This
can be explained by the lack of a bipolar thermal conductivity (κbip) term in the
calculations. In order to compute that, one needs to calculate a value for the
electron relaxation time which depends on the doping level. Therefore, using
the constant relaxation time approximation to compute κbip would yield inac-
curate results. However, as it can be seen in Figure 5.5(b), the contribution of
κbip is sufficiently small that the computed values are still in a good agreement
with the experimental measurements.
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5.3.4 Thermoelectric figure of merit

Figure 5.6 presents the final results on the thermoelectric figure of merit ZT for
the p-type Nb1−xTixFeSb. A comparison between ZT values obtained in this
study and the experimental data is shown in Figure 5.6(a). There is a good
agreement up to T = 650 K between our results and the measurements con-
ducted by He et al. The overestimate of ZT above this temperature for x = 0.04
and 0.05 can be explained by the missing κbip term in the lattice thermal con-
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Figure 5.6: Comparison between our theoretical results and experimental mea-
surements on p-type NbFeSb at x = 0.04, 0.05 and 0.10 (a). Colour map of p-type
ZT with respect to the charge carrier concentration and temperature (b), with
a maximum ZT of 1 at nh = 2×1021 cm −3 (x=0.1) and T = 1000 K.

113



Chapter 5 Thermoelectric properties of half-Heusler compounds

ductivity. This has already been discussed in the previous section and explains
why the agreement between the experimental and theoretical results at high
temperatures improves with the increase of the doping concentration. Addi-
tionally, the limitations of the constant relaxation time approximation, e.g. no
dependence on the chemical potential and no inclusion of the extrinsic scatter-
ing mechanisms, can easily add up and lead to the observed discrepancies at
lower temperatures.

The results in this study slightly overestimate ZT when compared to Fu et
al. [55] However, as with the lattice thermal conductivity results, there is a
mismatch between the experimental results presented by He et al. and Fu et
al. The latter uses a much lower annealing temperature, and so the density
of the grain boundaries in the sample is expected to be higher. This further
confirms that the constant relaxation time approximation could play a major
role along with the bipolar term in the discrepancy between the theoretical and
experimental results. The sample preparation in the Fu et al. study influences
both the electrical and thermal conductivity, and as a consequence, the mea-
sured ZT values are expected to be a bit lower than the ones obtained in our
calculations.

The colour map in Fig. 5.6(b) shows that NbFeSb remains most efficient at high
temperature, despite the big power factor of PF = 9.3 mW/(m·K2) at 300 K.
The p-doped NbFesb displays its best figure of merit (ZT≈1.0) at T = 1000 K
and high doping levels between x = 0.05 and 0.10, corresponding to nh = 1×
1021 and 2× 1021 cm−3. This result is typical for half-Heusler alloys [53] and
illustrates that a reduction of κlatt can significantly enhance the thermoelectric
performance of similar half-Heusler alloys.

5.4 TaFeSb

5.4.1 Electronic structure

The crystal structure of TaFeSb is very similar to NbFeSb with the only differ-
ence being the atomic species on the X-site. The lattice constant is calculated
to be 5.95 Å. The band structure and density of states (DOS) are presented in
Fig. 5.7. The band gap of TaFeSb is calculated to be 0.86 eV, close to the value
εg = 0.93eV computed by Bhattachrya and Madsen [105]. It can be seen that
the valence bands and DOS near the Fermi level remain almost unchanged
when compared to NbFeSb. This suggests that the p-type S, σ and κel should
exhibit the same behaviour as in NbFeSb, leaving the relaxation time as the
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determining factor for any change in the electronic TE properties.
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Figure 5.7: Density of states (a) and band structure (b) graphs of TaFeSb.

5.4.2 Electronic thermoelectric properties

The relaxation time along with the parameters necessary for its calculation are
shown in Table 5.2. There is a noticeable reduction in the deformation potential
values for both holes VDP = −11.06 eV (−13.98 eV for NbFeSb) and electrons
VDP =−11.81 eV (−14.53 eV for NbFeSb). This means that stress has less effect
on the electronic structure of TaFeSb. In addition, a slight reduction in the
effective mass is also observed, with m∗h = 1.57(me). As a result, the mobility
of the holes and relaxation time are increased to µh = 53.11 cm2V−1s−1 and
τh = 47.32 fs.
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Table 5.2: Parameters needed for electron and hole τ calculations of TaFeSb.
These include the deformation potential constant (VDP), effective mass of
charge carriers (m*), carrier mobility (µ) and relaxation time (τ) at 300 K for
electrons and holes.
Carrier type VDP (eV) m* (me) µ (cm2V−1s−1) τ (fs)
holes −11.06 1.57 53.11 47.32
electrons −11.81 0.38 1629.74 350.26

Next we present the electronic TE properties of TaFeSb in the form of colour
maps in Fig. 5.8. The colour maps investigate a very wide doping and tem-
perature range and might not be intuitive for comparison purposes. For that
reason, we also provide 2D plots in Fig. 5.9, which compare the electronic prop-
erties of TaFeSb and NbFeSb for the common doping levels of x = 0.04, 0.05 and
0.10. The value of the p-type Seebeck coefficient for x=0.05 is calculated to be
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Figure 5.8: Colour maps of the electronic TE properties of p-type TaFeSb. The
magnitude of the electrical conductivity σ (top right) and electronic thermal
conductivity κel (bottom left) is given on a log scale. A maximum power factor
(bottom right) value of PF = 16.11 mW/(m·K2) is obtained at 300 K and nh =
7×1020 cm−3 (x = 0.037).
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113.81 and 247.5 µV/K at 300 and 1000 K, respectively. The change in S with
respect to the NbFeSb results for the same doping concentration is less than
1%, which is expected due to the similarity in the valence bands of both ma-
terials. On the other hand, the bigger band gap in TaFeSb results in a bigger
p-type S at a very low doping concentration and temperature around 600 K.
This is visualised with an increase of the red area in Fig. 5.8(a) when compared
to NbFeSb in Fig. 5.2(a). The results confirm that not only does TaFeSb ex-
hibit a competitive Seebeck coefficient around the experimentally investigated
doping levels, but also shows a significant improvement at very low nh and
moderate T.
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Figure 5.9: Comparison of the thermoelectric properties of TaFeSb and NbFeSb
for x = 0.04, 0.05 and 0.10. The subfigures compare the Seebeck coefficient
(a), electrical conductivity (b), electronic thermal conductivity (c), and power
factor (d).

The results obtained from BoltzTraP for σ and κel predict a behaviour analo-
gous to the changes observed for p-type S. Therefore, the increase of τ (holes),

117



Chapter 5 Thermoelectric properties of half-Heusler compounds

which is ≈ 80%, yields a significant improvement in σ , and an increase in κel .
The increase of σ leads to an astonishing power factor of PF ≈ 16 mW/(m·K2)
at room temperature and x=0.03-0.05. For comparison, the power factor of
NbFeSb is estimated to be 9-10 mW/(m·K2), while the maximum value for
Fe2VAl is measured to be 5.5 mW/(m·K2) [54]. The compounds based on
the already established TE material Bi2Te3 have a power factor between 1.5
and 6 mW/(m·K2) [191, 199, 200]. The improvement in PF of TaFeSb over
NbFeSb is maintained over a wide range of doping levels from nh = 1020 cm−3

to nh = 2× 1021 cm−3 and at higher temperatures (compare Fig. 5.8(d) and
Fig. 5.2(d) and note the unchanged ranges). In summary, TaFeSb has a sig-
nificantly better electronic TE performance than NbFeSb due to the increased
band gap and higher mobility of the charge carriers.

5.4.3 Lattice thermal conductivity

The phonon density of states of TaFeSb, presented in Fig. 5.10, show a close
resemblance to the NbFeSb results. There are no imaginary frequencies and
so this structure is also mechanically stable. The data is again in a very good
agreement with the results obtained by Zeeshan et al. [160] The low frequency
region is up to 150 cm−1 and is dominated by Sb. The intermediate region
between 150 and 220 cm−1 is due to Ta, instead of Nb. The last region is dom-
inated by Fe atomic vibrations and occupies the high frequencies up to 350
cm−1. It is also noticeable that a gap is formed in between the regions dom-
inated by Ta and Fe. Our calculations show that the intrinsic value of κlatt is
20.57 and 5.75 Wm−1K−1 at 300 and 1000 K, respectively. This is slightly lower
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Figure 5.10: Phonon density of states of TaFeSb.
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than the NbFeSb results and can be accounted for by the gap between Ta and
Fe in Fig. 5.10.

5.4.3.1 Grain boundaries

The effect of grain boundaries on κlatt of TaFeSb at 300 K is shown in Fig. 5.11.
Grain boundaries of size 4.5 µm have an almost negligible effect on the lattice
thermal conductivity. When their size is reduced to 0.5 µm κlatt is computed
to be 17.63 Wm−1K−1. Although a similar behaviour was noticed in NbFeSb,
the presence of an additional gap in the phonon DOS of TaFeSb leads to a dif-
ferent phonon mean free path λm f p distribution. A common dip in the phonon
thermal conductivity is observed for both TaFeSb and NbFeSb between 0.3
and 0.4 µm. This can be explained by the common gap in the phonon DOS
at ω ≈ 275 cm−1. However, whilst the Ta-Fe gap in TaFeSb leads to an ex-
tra dip at 0.08 µm, this has a small effect as phonons with λm f p less than 0.3
µm contribute less to the total lattice thermal conductivity. Despite this differ-
ence, grain boundaries of the same size seem to reduce κlatt in both TaFeSb and
NbFeSb by a similar amount. This means that the change in the phonon mean
free path distribution has an effect only on the intrinsic value of κlatt but little
impact on the effect of grain boundaries.
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Figure 5.11: The impact of grain boundaries on the lattice thermal conductivity
of TaFeSb at 300 K.

5.4.3.2 Point defects and electron-phonon interaction

Next we proceed by adding the contribution of the point defects due to Ti
doping. The major difference between TaFeSb and NbFeSb is in the atomic
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mass of the X element. The mass of Ta is 180.95 amu, whereas Nb is signif-
icantly lighter with a mass of 92.906 amu. One of the crucial parameters in
the Klemens model [198] for the thermal conductivity of systems with point
defects is the mass difference between the dopant atom (Ti) and the atoms
which are substituted (Ta or Nb): a larger mass difference results in a greater
reduction in the lattice thermal conductivity. Therefore, the lattice thermal
conductivity of Ta1−xTixFeSb is expected to be affected significantly by the Ti
dopants. Fig. 5.12(a) illustrates this point by comparing the Ta1−xTixFeSb and
Nb1−xTixFeSb results. It is indeed seen that the reduction in κlatt of the Ta-
based compound due to point defects (Ti doping) is much more significant.
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Figure 5.12: Figure (a) compares the lattice thermal conductivity of
Ta1-xTixFeSb (solid lines) and Nb1-xTixFeSb (dashed lines) when the contribu-
tion of grain boundaries GB, point defects PD and electron-phonon interaction
EP are added. The biggest change occurs when the contribution from point
defects is added to the Ta-based compound. Figure (b) compares κlatt with all
contributions included at different doping levels.
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For Nb1−xTixFeSb the lattice thermal conductivity is reduced by 23% and 9%
at 300 K and 1000 K, respectively, when the point defects are included. For
Ta1−xTixFeSb these numbers increase to 37% and 18% at 300 K and 1000 K,
respectively.

The last contribution which needs to be added is the electron-phonon inter-
action. As already described, it is meaningless to use the constant relaxation
time approximation to compute the electron-phonon interaction. For that rea-
son, experimental data was used earlier to obtain a value for the NbFeSb com-
pound. Unfortunately, there are no experimental measurements which can be
used to extract a value for the electron-phonon contribution in TaFeSb. For
practical purposes and because of the similarity in the electronic structure and
phonon DOS between TaFeSb and NbFeSb, we will use the electron-phonon
contribution which was extracted for NbFeSb. In the worst case, such an ap-
proximation would lead to an overestimate of κlatt and an underestimate of the
ZT of TaFeSb rather than the opposite.

The lattice thermal conductivity of Ta1−xTixFeSb and Nb1−xTixFeSb at differ-
ent doping levels with all contributions included is shown in Fig. 5.12(b). The
trend shows that κlatt of the Ta-based compound is lower at all doping lev-
els. At x=0.05, κlatt is lower by 21% (κlatt=8.99 Wm−1K−1) and 15% (κlatt=4.04
Wm−1K−1) at 300 K and 1000 K, respectively. At x=0.10, the reduction is 23%
(κlatt=8.43 Wm−1K−1) and 18% (κlatt= 3.20 Wm−1K−1) at 300 K and 1000 K, re-
spectively. The improvement of 15-23%, as already discussed, comes from the
slightly lower intrinsic value of κlatt for TaFeSb and the bigger mass difference
between Ta and Ti. There is also a noticeable similarity of the lattice thermal
conductivity of Ta1−xTixFeSb at x=0.05 and that of Nb1−xTixFeSb at x=0.10. This
hints that TaFeSb might require less doping than NbFeSb to reach its maximum
ZT value.

5.4.4 Alternative ways of computing the intrinsic lattice ther-

mal conductivity

As discussed before, the intrinsic lattice thermal conductivity can be calculated
in several ways. Here we compare the results obtained for NbFeSb and TaFeSb
by solving the phonon BTE (ShengBTE) and Slack’s equation. For Slack’s equa-
tion, we use the approach suggested by Jia et al. [108], where ΘD and γ are
calculated from the bulk and shear moduli. These results are presented in Ta-
ble 5.3. We also compare the NbFeSb results to the one obtained by Hong et al.,
who employed the quasi-harmonic approximation (QHA) to calculate ΘD and
γ before solving the Slack’s equation. In terms of speed, Jia et al. approach is
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the fastest one, followed by QHA method, while the phonon BTE remains last.

Table 5.3: Elastic constants, bulk (BH) and shear (GH) moduli of NbFeSb and
TaFeSb. The longitudinal, transverse and average phonon velocities are given
by vL, vT, vav, respectively. Grüneisen parameter and Debye temperature are
given by γ and ΘD. Experimental results are taken from Tavassoli et al. [190],
where the data is obtained via Resonant Ultrasound Spectroscopy (RUS) at
room temperature.
Compound NbFeSb NbFeSb TaFeSb

(this work) (exp RUS [190]) (this work)
c11 (GPa) 311.5 - 326.8
c12 (GPa) 94.3 - 100.3
c44 (GPa) 66.0 - 77.6
BH (GPa) 166.7 156 175.8
GH (GPa) 80.7 81 89.6
vL (m/s) 5 674 5 597 5 115
vT (m/s) 3 082 3 099 2 818
vav (m/s) 3 438 3 452 3 140
γ [from phonon BTE] 1.76 - 1.79
γ [from elastic moduli] 1.72 - 1.64
ΘD (K) 393.4 394 359.5

We can see in Fig. 5.13 that all tested methods yield relatively close results for
NbFeSb, with the largest difference between the values of κint being 11% at
room temperature. The TaFeSb results, however, show a difference up to 27%
at room temperature, which will have a noticeable impact on the rest of the ZT
calculations.
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Figure 5.13: Comparison of the intrinsic lattice thermal conductivity of NbFeSb
(left) and TaFeSb (right) when obtained by solving the phonon BTE and the
Slack’s equation.

Our analysis suggests the larger discrepancy in the TaFeSb results is mainly
due to the different Grüneisen parameter (a measure of the anharmonicity of
the system) obtained using ShengBTE or the elastic moduli, as shown in Ta-
ble 5.3. Therefore, it can be concluded that Slack’s equation offers a rather
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inexpensive way of calculating the lattice thermal conductivity of NbFeSb, but
a more sophisticated approach, like the phonon BTE, is required to calculate
accurately the anharmonicity and the lattice thermal conductivity of TaFeSb.

5.4.5 Comparison between ZT of p-type TaFeSb and NbFeSb

Finally, we present the results on ZT of Ta1−xTixFeSb and compare them to the
Nb1−xTixFeSb results. Fig. 5.14 shows that the maximum thermoelectric figure
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Figure 5.14: Comparison between p-type TaFeSb and NbFeSb at x = 0.04, 0.05
and 0.10 (a). Subfigure (b) is a colour map which shows the ZT of p-type
TaFeSb with respect to the charge carrier concentration and temperature, with
a maximum ZT of 1.53 at nh = 1×1021cm−3 (x=0.05) and T = 1000 K.
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of merit is obtained at T=1000 K, x=0.05 and is equal to ZT=1.53. For com-
parison the maximum ZT value for Nb1−xTixFeSb is only 1.01, and at x=0.10.
Fig. 5.14(a) shows that Ta1−xTixFeSb exhibits higher ZT across the entire tem-
perature range and at all doping levels. The main difference to Nb1−xTixFeSb
is that there is a 50% increase in ZT and that the peak is achieved at x=0.05
rather than x=0.10, which is in agreement with the prediction made in the lat-
tice thermal conductivity section.

The colour map in Fig. 5.14(b) reveals a broad area between 800 and 1000 K,
and x=0.02 and x=0.15 in which the ZT of Ta1−xTixFeSb is higher than 1.2. At
moderate temperature (500–700 K) the ZT value drops to ≈ 1, which is still
considered as an excellent TE result. Even at room temperature, the TE figure
of merit (ZT=0.3) is almost 2 times bigger than that of NbFeSb (ZT=0.17). The
wide range of conditions, which result in a good ZT value, suggests that p-
type TaFeSb can indeed be used as a novel material for efficient thermoelectric
devices.

5.5 Conclusions

We have conducted a thorough study of the thermoelectric properties of p-type
NbFeSb and TaFeSb. In addition to solving the Boltzmann transport equations
for electrons and phonon with ab initio inputs, several approximations were
also included in the process. These are the constant relaxation time approxima-
tion with no dependence on the chemical potential due to doping, the choice
of grain boundary size and the inclusion of the electron-phonon interaction
based on experimental data. This multi-step procedure needs to be executed
with caution, and so at each step the results have been thoroughly compared
to the available experimental measurements. We would like to point out that
although the results in this study look promising and are consistent with the
expectations, one should not use the presented theoretical framework lightly
on fully unknown compounds. The key feature of this study was to preserve
the chemical environment of NbFeSb and change it slightly to TaFeSb in a way
that the empirical Klemens’ equation is still applicable.

In summary, the NbFeSb results agree extremely well with multiple theoreti-
cal and experimental studies. The same procedure was then used to perform a
full-scale computation on the TE properties of TaFeSb. The results have shown
that both compounds exhibit high power factor at room temperature and have
a good thermoelectric figure of merit at high temperatures. At 1000 K we find
PF = 9 mW/(m·K2) and ZT = 1 for NbFeSb and PF = 16 mW/(m·K2) and ZT =
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1.5 for TaFeSb. The higher atomic mass of Ta (compared to Nb) increases the
scattering strength in Ti-doped TaFeSb, which reduces the lattice thermal con-
ductivity of the compound. At the same time, p-type charge carries in TaFeSb
exhibit higher mobility and relaxation time, which increases the power factor.
The net result is a material with an amazing power factor of 16 mW/(m·K2)
and ZT value which is approximately 50% better than that of NbFeSb.

In conclusion, TaFeSb not only appears to be a better TE material than NbFeSb,
but it also opens a new path of TE optimisation of materials based on the two
alloys. In theory, an alloy based on Nb1−xTaxFeSb should exhibit good elec-
trical properties due to the similarities in the electronic structure of NbFeSb
and TaFeSb. At the same time, the mass difference between Nb and Ta should
create additional scattering centres which would suppress the lattice thermal
conductivity even before doping, and so the final doped compound should
exhibit an even higher ZT value. This is further hinted by a very recent ex-
perimental study by Yu et al. [193], which reports the successful synthesis of
Nb1−xTaxFeSb alloys and a measured ZT of up to 1.6.
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Chapter 6

Complex optimisation of electronic
thermoelectric properties

6.1 Introduction

There are multiple mechanisms which can be used to optimise the thermoelec-
tric performance. The best thermoelectric candidates usually exhibit excellent
electronic properties but high thermal conductivity. Lattice vibrations are re-
sponsible for the majority of the heat transport in semiconductors. Therefore,
most optimisation techniques aim to disrupt the lattice heat transport by in-
troducing scattering centres, i.e. making the structure as complex as possible.
As a side effect this could lead to a reduction in the electronic thermoelectric
performance, thus yielding no net improvement in the figure of merit.

So far we have focused on computing the properties of bulk materials with
simple unit cells which contain only a few atoms. In this chapter, we will
change the approach and test more complex structures. We will include the
structural modifications due to the various optimisation techniques explicitly
into the first principles calculations. The number of simulated atoms will in-
crease an order of magnitude from 4-12 in the bulk cases to 48-120 for the su-
perstructures. The computation time scales cubically with the number of elec-
trons and while density of states calculations remain feasible, force constants
calculations become extremely demanding. Nevertheless, we know that all
thermoelectric optimisation techniques discussed in Section 1.5 ruin the per-
fect crystal lattice and affect negatively the lattice thermal conductivity. There-
fore, we will focus only on the electronic properties and see how affected they
are by the structural modifications. Superstructures also make calculating elec-
tron relaxation time (τ) computationally very demanding. For that reason and
due to the lack of chemical potential dependence in the deformation potential
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theory, we will assume a constant value of τ = 10−14 s for all BoltzTraP results
in this chapter. This will not only make the computation time manageable, but
will also allow us also to draw a comparison between different compounds
entirely based on the changes in their density of states.

The optimisation techniques which we test in this chapter include doping, pla-
nar defects and size reduction. In terms of materials, we revisit the Heusler
alloys and investigate various Bi2Te3 structures. Results are split into three
main sections. First we investigate how doping changes the Seebeck coeffi-
cient (S), electrical conductivity (σ ), electronic thermal conductivity (κel) and
power factor (PF). This involves testing both cases with and without changing
the number of valence electrons. The second section investigates how anti-
phase boundaries modify the electronic thermoelectric (TE) properties of both
Fe2VAl and Bi2Te3. The final section reveals some very interesting results on
the thermoelectric properties on Bi2Te3 thin films.

6.2 Effects of doping thermoelectric compounds

6.2.1 Doping Fe2VAl with Si, Ge and Sn

We start by looking at the simplest case, which is explicitly doping Fe2VAl with
group IV elements: Si, Ge and Sn. Calculations were performed on the ordered
L21 structure of Fe2VAl in a hexagonal unit cell. The usage of the hexagonal
cell allows for an uniform distribution of the dopant atoms in a superstructure
which contains only 48 atoms. In case of a cubic supercell, the number of atoms
would have been 128. The bulk structure contains 3 formula units while the
doped systems are investigated with 2×2×1 supercells containing 12 formula
units. Dopants substitute 1 Al atom in the supercell which corresponds to a
doping concentration of x=0.083 in the n-type Fe2VAl1−xZx (Z=Si, Ge or Sn).

First principles calculations were performed with the CASTEP code [123] and
a GGA-PBE exchange-correlation functional [126]. On-the-fly ultrasoft pseu-
dopotentials (C9 set) were used with a plane-wave cut-off energy of 700 eV and
a grid scale of size 2.0. The Brillouin zone was sampled using a Monkhorst-
Pack grid [151] with a k-points spacing of 0.05 2πÅ−1. The ionic positions were
fully relaxed until forces between atoms were less than 0.01 eV/Å. Transport
properties were calculated using BoltzTraP [100]. Density of states were com-
puted on a much denser k-points grid of spacing 0.008 2πÅ−1. The Hubbard U

model was not used in this set of calculations. The main motivation behind this
decision was to see whether dopants can affect on their own the symmetry of
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the Seebeck coefficient and bring it closer to the experimental expectations [54].
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Figure 6.1: Electronic thermoelectric properties of doped Fe2VAl at T=300 K.
S, σ , κel and PF are given in subfigures (a)–(d). Bulk results are given in black,
while Si-, Ge- and Sn-doped results are in red, green and blue, respectively.
Dotted line simulates chemical doping. Dashed line corresponds to the Fermi
level.

The electronic thermoelectric properties of the explicitly doped Fe2VAl at T=
300 K are shown in Fig. 6.1. Fermi level is given with a vertical dashed line at
0 eV. Results above and below the Fermi level correspond to n- and p-type
doping, respectively. Looking at Fig. 6.1(a) we notice that there is a very
small change in the shape of S. The absolute maximum for n- and p-type
doping changes from around −/+ 55 µV/K for the bulk structure to around
−/+ 70 µV/K for the doped compounds. The difference is cause by the re-
duction of the pseudo gap from−0.13 to−0.11 eV. While the states introduced
by the dopants have a small effect, they do not lead to the experimentally ob-
served asymmetric behaviour of the Seebeck coefficient. The other noticeable
difference is that the Fermi level has been shifted by the same amount when
doping with Si, Ge and Sn. We see that in all cases a change of 0.3 eV cor-
responds to doping with x=0.083 additional electrons per formula unit. This
agrees well with expectations since all dopants introduce only one additional
electron to the system. When comparing the doped compounds to the bulk,
we should note that the region between −0.3 and +0.3 eV for the bulk corre-
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sponds to the region between −0.6 and 0 eV for the doped structures. This
is highlighted by the dotted line, which is obtained via chemical doping, i.e.
setting the Fermi level in the bulk at an energy level which yields a doping con-
centration of x=0.083. Apart from the small change in S, the BoltzTraP chemical
doping matches very well the explicit doping in that area.

When we look at σ and κel in Fig. 6.1(b) and (c) we notice that there is a small
decrease in the absolute minimum of both quantities, which is expected since
we had an increase in the Seebeck maximum value. It can also be seen that in
both cases the increase of σ and κel above the Fermi level does not follow the
trend predicted by the bulk material. It seems that heavier doping would have
a reduced positive effect on both types of conductivity. The power factor in
Fig. 6.1(d) shows that all doped compounds exhibit similar behaviour between
−0.3 and 0 eV, which is in a good agreement with the bulk prediction for the
region between 0 and +0.3 eV. The similarities between the Si- and Ge-doped
results agree well with the experimental observations made by Nishino and
Deguchi [187].

While we could not reproduce the experimental asymmetry in the Seebeck co-
efficient of Fe2VAl by explicitly doping the material, we observed that Si, Ge
and Sn modify the electronic properties of the Heulser alloy in an identical
way. It can be noted that the doping concentration of x=0.083 is slightly be-
yond the optimal efficiency and lower doping levels would be more beneficial.
Taking into account the reduction of the total lattice thermal conductivity due
to the mass-difference scattering strength and that Sn is the heaviest among the
investigated dopants we can expect that Fe2VAl1−xSnx will exhibit the highest
ZT of the three cases.

6.2.2 Transitioning from NbFeSb to TaFeSb

The next optimisation technique which we investigate involves some heavy
doping. It does not attempt to make the semiconductor n- or p-type but rather
keep its neutral bulk properties. In other words, we will be trying to find a
new starting compound, which can be tuned later on. We have investigated
the half-Heusler alloys NbFeSb and TaFeSb in Chapter 5. They both exhibit
excellent p-type thermoelectric properties with the main difference being that
TaFeSb exhibits larger hole relaxation time and lower lattice thermal conduc-
tivity due to the heavier Ta atom. Since Nb and Ta have the same number of
valence electrons and both NbFeSb and TaFeSb have almost identical lattice
constants, it will be interesting to investigate if mixing them would result in
a stable structure which keeps the excellent thermoelectric properties. In this
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chapter we test the thermoelectric properties of Nb1−xTaxFeSb with x=0, 0.25,
0.50, 0.75 and 1.

In terms of computation, we kept using the GGA-PBE exchange-correlation
functional and the on-the-fly ultrasoft pseudopotentials from the C9 set. The
plane-wave cut-off energy was 700 eV with a grid scale of size 2.0. The Bril-
louin zone sampling was done on a mesh with k-points spacing of 0.021 2πÅ−1.
Spectral calculations were performed on a denser mesh with k-points spacing
of 0.007 2πÅ−1.
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Figure 6.2: Formation energy of Nb1−xTaxFeSb.

We show the formation energy of the intermediate compounds with respect to
the stable NbFeSb and TaFeSb in Fig. 6.2. The formation energy is computed
using Eqn. 6.1:

∆Eform = E(Nb1−xTaxFeSb)− ((1− x)×E(NbFeSb)+ x×E(TaFeSb)). (6.1)

Despite all values being positive, the scale on y-axis (meV/atom) suggests that
we might be close the noise level within the DFT calculation.

Figure 6.3 shows the electronic thermoelectric properties of Nb1−xTaxFeSb. The
power factor of these half-Heusler alloys is at its maximum around room tem-
perature and therefore we plot the data at T=300 K. The maximum value of
the Seebeck coefficient increases gradually with the concentration of Ta. The
other quantities σ , κel and PF are described by similar curves which are have
an off-set along the x-axis. Such behaviour can be explained by the fact that
these materials have similar band structures but different band gaps. In fact,
the band gap of NbFeSb is 0.53 eV and increases linearly with the concentra-
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tion of Ta up to 0.93 eV for TaFeSb.
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Figure 6.3: Electronic thermoelectric properties of Nb1−xTaxFeSb at T=300 K. S,
σ , κel and PF are given in subfigures (a)–(d). Different doping concentrations
of x = 0, 0.25, 0.50, 0.75 and 1 are given in black, red, green, orange and violet,
respectively. Dashed line corresponds to the Fermi level.

The only difference between the Nb1−xTaxFeSb compounds is in the band gap
and in this case it is more convenient if we change the x-axis from energy to
number of additional electrons per formula unit, as if the compounds were
doped with another material (Y), e.g. (Nb1−xTax)1−yYyFeSb. Figure 6.4 illus-
trates the thermoelectric properties of Nb1−xTaxFeSb if we make it p-type (neg-
ative additional electrons) or n-type (positive additional electrons). We see
that p-type thermoelectric properties of all Nb1−xTaxFeSb alloys are identical
when using similar hole relaxation time. The n-type side is different though.
It shows that the compounds with more Ta exhibit much higher n-type power
factor when there are more than 0.1 additional electrons per formula unit.

One of the advantages of the intermediate Nb1−xTaxFeSb (x=0.25, 0.50 and 0.75)
compounds is that the mixture of Nb and Ta introduces additional scatter-
ing centres which should decrease the intrinsic lattice thermal conductivity.
The fact that the compounds are stable and the mixing does not ruin the p-
type electronic thermoelectric properties suggests that Nb1−xTaxFeSb can ex-
hibit p-type ZT values which are even higher than that of TaFeSb (ZT=1.5).
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Figure 6.4: Nb1−xTaxFeSb electronic thermoelectric properties at 300 K with
respect to additional electrons per formula unit. S, σ , κel and PF are given in
subfigures (a)–(d).

In addition, the n-type results reveal a surprising trend which suggests that
TaFeSb might exhibit very good n-type thermoelectric properties. Consider-
ing how scattering centres affect the lattice thermal conductivity in the mixed
compounds, Nb0.25Ta0.75FeSb might posses the best n-type ZT among the in-
vestigated group of half-Heusler alloys.

6.3 Modelling planar defects in thermoelectric com-

pounds

The next optimisation mechanism which we test is based on planar defects. In
theory, they should act as a wall which scatters phonons more effectively than
charge carriers. In this section we investigate how anti-phase grain boundaries
(APBs) affect the electronic thermoelectric properties of Fe2VAl and Bi2Te3.
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6.3.1 Anti-phase boundary in Fe2VAl

We start by looking at Fe2VAl. We use a hexagonal unit cell to model the APB,
shown in Fig. 6.5. There are usually two boundaries due to periodic bound-
ary conditions in this type of calculations. Here, however, the stacking in the
hexagonal cell allows us to remove one Fe atom and return to the expected
order at the cell boundary. Therefore, instead of two boundaries there is only
one APB along the c-axis of the hexagonal cell and the height of the unit cell
determines the separation between the APBs.

Figure 6.5: Illustration of the anti-phase boundary in Fe2VAl.

Anti-phase boundaries can be considered as an array of antisite defects. This
can be seen in the boundary illustration in Fig. 6.5, where Fe and V-Al layers
swap places within the boundary. One speculations for the discrepancy be-
tween theory and experiments regarding S asymmetry is the presence of anti-
site defects in Fe2VAl [178, 201]. Therefore, we will use the same computational
settings as in Section 6.2.1 (again without Hubbard U) and test how APBs af-
fect the electronic thermoelectric properties. The separation between APBs in
Fe2VAl is reported to be around 100 nm in experimental studies [202, 203].
Such a calculation would require a simulation with more than a thousand
atoms. Instead we focus on three manageable cases in which the boundaries
are separated by 1.2, 2.2 or 4.2 nm. The height of the hexagonal unit cell with-
out any stacking faults is 1 nm.
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Figure 6.6: Effect of the anti-phase boundary on the electronic thermoelectric
properties of Fe2VAl at T=300 K. S, σ , κel and PF are given in subfigures (a)–
(d). Dashed line corresponds to the Fermi level.

The electronic thermoelectric properties are shown in Fig. 6.6. Looking at the
Seebeck coefficient we see that there is a huge difference in the maximum val-
ues when the boundaries are only 1.2 nm across each other. The shape of the
curve is asymmetric and the maximum S for p- and n-type becomes +95 and
−170 µV/K, respectively. When we increase the separation between the APBs
to 2.2 and 4.2 nm, the maximum n-type values of S decrease drastically and
return to the bulk values of −55 µV/K. On the p-type side both maxima re-
main above +90 µV/K though. The other interesting finding is that for 2.2
and 4.2 nm boundary separation the Fermi level looks shifted towards the n-
type. Such behaviour is rather similar to the results reported in recent study
which states that APBs make NbFeSb n-type semiconductor [197]. Regarding
σ we see that decreasing the density of the APBs brings the electrical conduc-
tivity closer to bulk values for n-type semiconductor but leaves them much
lower for p-type. The electrical thermal conductivity remains below the bulk
values in all cases. Power factor behaviour is rather interesting. We see that
the best n-type performance is obtained when the APBs separation is only 1.2
nm but would require light doping of approximately 0.03–0.04 additional elec-
trons per formula unit. The energy range in Fig. 6.6 corresponds to having a
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maximum of −0.2 to +0.2 additional electrons per formula unit. The 2.2 and
4.2 nm cases look somewhat similar thus we focus on the 4.2 nm APBs. In
this case we see that PF has a finite value of 0.2 mW/m·K2 at the Fermi level,
which does not require further doping to be achieved. This comes from the
fact that σ remains close to the bulk values at the Fermi level but S is enhanced
to −55 µV/K. Regardless of the finite PF at the Fermi level, Fig. 6.6(d) shows
that n-type doping does not further improve the PF of the 2.2 and 4.2 nm APBs
and leave their performance on par with bulk.
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Figure 6.7: Difference in the electronic thermoelectric properties for the 4.2
nm boundary in planes parallel (‖, orange curve) and perpendicular (⊥, green
curve) to the boundary. Bulk isotropic properties are in black, whereas the
trace for the boundary properties is in blue. S, σ , κel and PF are given in sub-
figures (a)–(d). Dashed line corresponds to the Fermi level.

Up until now we have not considered that anti-phase boundaries make our
material anisotropic. Figure 6.7 shows the difference in the electronic thermo-
electric properties for the 4.2 nm boundary in planes parallel (orange curve)
and perpendicular (green curve) to the APB. We see that there is a big dif-
ference in S when moving along the two directions. The Seebeck coefficient
almost overlaps with the bulk values when we are in the plane parallel to the
APB, with the main difference being a slight shift of the Fermi level towards the
n-type side. The value of S along the perpendicular direction is much higher at
the Fermi level while the curve does not show any resemblance to the shape of
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S in the bulk isotropic case. In terms of conductivity, APBs act as expected and
completely ruin σ and κel in the plane perpendicular to the boundary. Results
along the parallel plane are bulk-like but shifted towards the n-type side, sim-
ilar to the Seebeck coefficient. In terms of PF, the perpendicular plane exhibits
higher value at the Fermi level than the parallel plane. This result is rather
counter-intuitive, especially considering the low values of σ illustrated by the
green curve in Fig. 6.7(b).

Anti-phase grain boundaries have a significant impact on the electronic ther-
moelectric properties of Fe2VAl. We have seen that n-type properties are con-
siderably improved when the APB concentration is very high (1.2 nm). The
asymmetry in S is also present. While such high density is not reported ex-
perimentally, it creates an interesting opportunity for nanostructuring and sta-
bility investigations. Lower APB densities exhibit n-type semiconductor prop-
erties. In the plane parallel to the APB with separation of 4.2 nm, S, σ seem
to be converging towards the bulk values. In contrast, the results in the plane
perpendicular to the APB remain inconclusive, especially considering that our
modelled APB separation of 4.2 nm is much shorter than the experimentally
measured values of 100 nm and that the shape of S in Fig. 6.7(a) is qualitatively
very different to the bulk one. Taking into account that the experimental APB
separation is much longer than in our model and that we did not observe an
asymmetric behaviour in S for the boundary separations of 2.2 and 4.2 nm, it
seems very unlikely that anti-phase boundaries are responsible for the asym-
metry in the Seebeck coefficient of Fe2VAl.

6.3.2 Anti-phase boundary in Bi2Te3

We have already discussed that Bi2Te3 is the most widely used thermoelec-
tric material. It has a trigonal crystal structure with space group R3̄m (166).
Each repetition of the formula unit creates a layered structure, called quintuple
layer (QL), in a sequence of Te(1)-Bi-Te(2)-Bi-Te(1), where 1 and 2 denote two
different chemical states for the anions. Quintuple layers are weakly bonded
to each other via the van der Waals forces, which means that during growth
the structure is susceptible to the formation of grain boundaries. There are re-
ports which suggest that grain boundaries have a positive effect on the p- and
n-type thermoelectric properties of Bi2Te3[75, 76]. One hypothesis is that the
positive effect is due to the presence of charged donor-like defects arising from
an antisite altering at the grain boundary. Here, we test whether anti-phase
boundaries can give rise to a similar behaviour.

To model the APBs we use a hexagonal unit cell with experimental lattice con-
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Figure 6.8: Modelling anti-phase boundary in Bi2Te3. Solid shapes are within
the unit cell, dashed ones are due to periodic boundary conditions. Vertical
lines show the position of anti-phase boundaries. Horizontal lines visualise
the order of QLs.

stants of a=b=4.39 Å and c=30.49 Å, and distance between the atoms Bi-Te1 =
3.04 Å, Bi-Te2 = 3.24 Å and Te1-Te2= 3.72 Å [204]. The APBs are illustrated in
Fig. 6.8. They were formed by expanding the unit cell 8 times along the a-axis
and rigidly shifting half of the structure by ±3/5 of QL along the c-axis. This
creates two APBs. One is in the middle of the cell with 2 Bi-Bi pairs and 1 Te-Te
pair (highlighted with solid shapes in the figure). The other is at the end of the
cell with 1 Bi-Bi pair and 2 Te-Te pairs (highlighted with dashed shapes in the
figure). The distance between the APBs is effectively 17.54 Å, half of the cell
width. The superstructure contains 120 atoms and was not further relaxed.

Calculations were performed using the GGA-PBE exchange-correlation func-
tional and ultrasoft pseudopotentials with spin-orbit coupling. The plane-
wave cut-off energy was 600 eV. The Brillouin zone sampling for the electronic
minimisation was done on a mesh with k-points spacing of 0.053 2πÅ−1. Spec-
tral calculations were performed on a much denser mesh with k-points spacing
of 0.0066 2πÅ−1. An interpolation factor (lpfac) of 10 was used for the Boltz-
TraP calculations.
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Figure 6.9: Effect of the anti-phase boundary on the electronic thermoelectric
properties of Bi2Te3 at T=300 K. S, σ , κel and PF are given in subfigures (a)–(d).
Dashed line corresponds to the Fermi level.

We compare the electronic thermoelectric properties of bulk Bi2Te3 to the re-
sults with APBs in Fig. 6.9. The layered structure of Bi2Te3 makes its thermo-
electric properties anisotropic. For the bulk there are two different directions
which are parallel to the vdW gaps (xx or yy) and perpendicular to the vdW
gaps (zz). For the APB we need to consider that the boundary ruins the pe-
riodicity along the a-vector, which means that the xx (perpendicular to APB)
and yy (parallel to APB) directions are no longer equivalent.

Bulk results with S up to +254 µV/K for p-type and −200 µV/K for n-type
and PF of 2.55 mW/m·K2 for p-type and 1.73 mW/m·K2 for n-type agree qual-
itatively well with the accepted theoretical prediction for Bi2Te3 [100, 133]. Re-
garding the APB, we note that it has a negative effect on the p-type thermo-
electric properties with PF falling below 0.5 mW/m·K2 in all directions. The
power factor on the n-type side is slightly higher, with maximum values of 0.6
mW/m·K2 along xx and yy. This is comparable to the bulk n-type PF of 0.4
mW/m·K2 along the zz direction. Based on these results, APBs have an equal
negative effect along all directions. Results along xx and yy axes appear to be
very similar, despite the two directions being perpendicular and parallel to the
boundaries.
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The initial impression from our investigation is that APBs ruin the electronic
thermoelectric properties of Bi2Te3. Based on Fig. 6.9 it looks as if the Fermi
level remains unchanged and that the semiconductor is around the charge neu-
trality point, where there is no excess of charge carriers. Thermoelectric prop-
erties also appear to be negatively affected on the n- and p-type sides. This
slightly contradicts expectations based on experimental results [75, 76, 205],
which suggest that nanostructuring and grain boundaries can be used to im-
prove the thermoelectric performance. We need to note, however, that the ex-
perimentally reported grain size is in the range between 50–200 nm, whereas
the distance between APBs in our model is only 1.75 nm. The study by Bae et
al. [205] reports that the thermoelectric properties of Bi2Te3 not only improve
but also switch between n- and p-type when the grain size reaches 150 nm. This
suggests the APBs density in our model needs to be reduced by two orders of
magnitude before we can observe an improvement in the thermoelectric prop-
erties of Bi2Te3. Such a calculation is prohibitively expensive at the moment.
Therefore, we will change our approach and test another optimisation mecha-
nism on Bi2Te3. One which goes in the oposite direction in terms of modelling
and aims to reduce the size of the structure. In the next section we investigate
the thermoelectric properties of Bi2Te3 thin films.

6.4 Electronic thermoelectric properties of a few quin-

tuple layers of Bi2Te3

One of the great features of Bi2Te3 is that the quintuple layers (QLs) can be
mechanically exfoliated due to the weak van der Waals forces which bond the
layers together. Therefore, it is possible to tune the thickness of Bi2Te3 samples
and produce thin films. We know that conducting states should be present at
the surface of the films since Bi2Te3 is a topological insulator. We have also
already seen that the electronic thermoelectric properties of bulk Bi2Te3 are
anisotropic. Thus, it will be interesting to investigate how the electronic ther-
moelectric properties of Bi2Te3 thin films changes with thickness size.

We use the same computational settings as in Section 6.3.2 with one major dif-
ference regarding geometry optimisation. This time we relax both the lattice
constants and ionic positions for the bulk and only the ionic positions for the
thin films. Semi-empirical dispersion correction [206] was used to take into ac-
count the vdW interaction between the QLs. After the geometry optimisation
the hexagonal lattice constants for bulk Bi2Te3 were found to be a=b= 4.43 Å
and c = 30.53Å. These results are in a good agreement with other theoretical
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studies [207, 208] but longer than the experimental values which we used for
the APB study. A vacuum gap of 10 Å is used to separate the films. Thin film
thickness varies from 1 QL to 4 QLs (0.8–3.8 nm).

(a) (b)

(c) (d)

(e)

Figure 6.10: Bandstructure of Bi2Te3 thin films – (a) 1 QL, (b) 2 QLs, (c) 3 QLs,
(d) 4 QLs, (e) bulk.

First we look at the band structure of the thin films and compare it to the bulk
in Fig. 6.10. We see that gradually a Dirac cone is formed when we increase the
thin film thickness. As the number of layers increases going from (a) to (d), the
bottom conduction band gets closer to the top valence band, which closes the
band gap present in 1 QL. We can also see that as the thickness increases bands
arising from atoms inside the material represent more and more the bulk-like
band structure. A direct comparison can be made between Fig. 6.10(c) and
(e). Both structures are made of 3 QLs, but the Dirac cone is missing in sub-
figure (e) since bulk material lacks the surface states. A prominent band gap
is only present in 1 QL (0.18 eV) and in the bulk (0.09 eV). These results are
within the range of other theoretical predictions [93, 207, 209–211], which ar-
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gue that the band gap in 1 QL can be between 0.09 and 0.39 eV. Our prediction
for the band gap in bulk yields a value which is also smaller than the experi-
mental band gap of 0.15 eV. It is worth mentioning that the band gap of bulk
Bi2Te3 with experimental lattice constants and ionic positions, as modelled in
Section 6.3.2, is also 0.09 eV. Therefore, the discrepancy between the experi-
mental and theoretical value cannot be explained by the mismatch between
the experimental and theoretical lattice constants.
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Figure 6.11: Bi2Te3 thin films thermoelectric properties along xx direction. S,
σ , κel and PF are given in subfigures (a)–(d). Dashed line corresponds to the
Fermi level.

Next we investigate the electronic thermoelectric properties of Bi2Te3 thin films.
The results are split into two. Figure 6.11 shows the results along the xx direc-
tion, which is parallel to the film (in-plane), whereas Fig. 6.12 shows the zz
direction (out-of-plane), which is perpendicular to the film. When we look at S
in Fig. 6.11(a) we notice that there is an enormous increase in the power factor
of 1 QL for both p- and n-type with maxima of +780 and −440 µV/K, respec-
tively. We can account the increase to the wider band gap in the 1 QL thin film
than in the bulk. When we increase the thickness of our thin films the band gap
closes and the p-type S gradually becomes worse than that of the bulk. On the
n-type side S is always worse than in bulk for anything more than 1 QL. The
electrical conductivity of 1 QL of Bi2Te3 along the xx direction remains qualita-
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tively similar to the bulk on the p-type side but start to fall below it for n-type
semiconductor. This result differs from our observation on Nb1−xTaxFeSb in
Section 6.2.2 which showed that for identical electronic structures with a dif-
ferent band gap an increase in the S is compensated by a decrease in σ and
features no net gain in PF. Therefore, we can assume that in addition to the
different band gap size of 1 QL and bulk, there is a considerable difference in
the band structure, especially below the Fermi level. That is something which
is not immediately obvious when comparing the band structures in Fig. 6.10(a)
and (e). The electrical conductivity of 2-4 QLs is higher than that of the bulk
on the p-type side and up to 0.07 eV on the n-type side. Such behaviour is ex-
pected due to the formation of the Dirac cone when more QLs are added. The
structure with the highest σ is the thin film with 3 QLs.

Electronic thermal conductivity of 1 QL changes from being higher to lower
than κel of the bulk at −0.04 eV. Thicker films all have lower κel than bulk
apart from the region between −0.1 and 0.05 eV. The most interesting change
in the electronic thermoelectric properties along the xx directions is seen in
PF. The in-plane p-type PF maximum of 1 QL and 2 QLs is 10 and 2 times,
respectively, higher than the bulk PF. The maxima occur at energy levels which
correspond to doping levels, which introduce 4-6% extra holes per formula
unit. The improvement gradually decays and returns to bulk values as we
increase the thickness of the thin films to 4 QLs. On the n-side there is an
improvement only on for 1 QL, whereas 2-4 QLs exhibit worse PF than bulk.

Before drawing any conclusions regarding the performance of Bi2Te3 thin films
we will have a look at the thermoelectric properties along the zz direction. We
see in Fig. 6.12(a) that the Seebeck coefficient for 1 and 2 QLs remains higher
than the bulk S on the p-type side, while 3 and 4 QLs thin films have S which
is lower. On the n-type side all thin films exhibit S which is lower than the
Seebeck coefficient of bulk Bi2Te3. Thin films have ×105 lower σ and κel along
the zz direction when compared to the xx direction and bulk zz values. This
shows that reducing the dimensions of Bi2Te3 by tuning the number of QLs has
an enormous impact on the out-of-plane conductivity. We show the PF along
the zz direction in Fig. 6.12(d). In all cases, the PF is 4-5 orders of magnitude
lower than the bulk and in-plane results. Curiously, the worst performing thin
film contains 3 QLs. It is a rather special case, which contains the same number
of QLs as in the bulk unit cell but with a vacuum gap. It will be interesting to
see how a further increase in the thickness will affect the out-of-plane thermo-
electric properties and whether cases with 3N QLs, where N is an integer, will
exhibit odd behaviour.

Our investigation showed that Bi2Te3 thin films up to 4 QLs can only be utilised
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Figure 6.12: Bi2Te3 thin films thermoelectric properties along zz direction for S
(a), σ (b), κel (c) and PF (d). Dashed line corresponds to the Fermi level.

for their in-plane thermoelectric properties. Therefore, when talking about the
electronic thermoelectric properties of thin films we will refer to our results
along the xx direction. Results showed that when the thickness of Bi2Te3 is
reduced to 1 or 2 QLs there is a considerable gain in the p-type PF, which is
in agreement with other theoretical predictions [93, 210]. An improvement in
the thermoelectric properties of Bi2Te3 thin films has also been reported exper-
imentally even for films with thickness of 1 µm [212]. The thickness of the thin
films can be reduced mechanically down to 8 nm by using adhesive tape [213].
Despite the impressive experimental results, thickness of 8 nm corresponds
to 9 QLs which is significantly thicker than all of our test cases. Therefore, it
remains to be seen if the theoretically predicted excellent thermoelectric prop-
erties for 1 and 2 QLs (0.8 and 1.8 nm) can be observed experimentally.

6.5 Conclusions

In this chapter we tested three different optimisation techniques and showed in
a qualitative way how they change the electronic thermoelectric properties of
Fe2VAl, NbFeSb, TaFeSb and Bi2Te3. The first optimisation technique showed
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how doping affects the electronic thermoelectric properties with and without
changing the number of charge carriers. In Fe2VAl, we explicitly n-type doped
the structure with Si, Ge or Sn. Results show that the change in the thermo-
electric properties agrees well with the expectations if we were to chemically
dope the bulk material in BoltzTraP. We also see that the explicit doping of
Fe2VAl does not make S asymmetric around the Fermi level, as predicted by
experiments. In Nb1−xTaxFeSb, we do not change the number of valence elec-
trons but rather introduce scattering centres by mixing NbFeSb and TaFeSb.
Results show that all mixed compounds exhibit identical p-type thermoelec-
tric properties to the parent compounds and that mixing has no negative ef-
fect. On the n-type side we notice that PF increases with the concentration
of Ta. Considering that the lattice thermal conductivity is reduced in more
complex structures due to the presence of more scattering centres, we suspect
that Nb0.25Ta0.75FeSb might exhibit the best n-type ZT among the investigated
half-Heusler alloys.

With the second optimisation mechanism we have added anti-phase bound-
aries to Fe2VAl and Bi2Te3 bulk structures. Our results for Heusler alloy show
that APBs are not responsible for the experimentally observed asymmetry in
S. We note that APBs in Fe2VAl lead to an n-type semiconductor behaviour
and have a relatively small negative effect on the thermoelectric performance.
In Bi2Te3 anti-phase boundaries affect negatively the electronic thermoelectric
properties of the material, which contradicts the experimental measurements.
Nevertheless, it must be noted that the separation between the boundaries in
our models is much shorter than the experimentally reported values.

The last optimisation technique which have tried is to reduce the size of Bi2Te3.
We have investigated the band structure and tested the electronic thermoelec-
tric properties of Bi2Te3 thin films up to 4 QLs. Our results show that 1 QL
and 2 QLs exhibit an in-plane p-type PF which is 10 and 2 times, respectively,
higher than bulk. These predictions agree well with other theoretical results
and present an exciting opportunity for experimental realisation.

In summary, we have shown that heavy doping with elements which have
the same number of valence electrons as the host atom can be successfully
employed to retain the electronic thermoelectric properties of the compound
and thus potentially improve its ZT. We have also seen that adding anti-phase
boundaries with very high density has an overall negative effect on the ther-
moelectric performance. Finally, we have obtained our best improvement of
the thermoelectric properties by reducing the thickness of Bi2Te3 down to 1 or
2 QLs. Both cases suggest an impressive increase in PF for p-type semiconduc-
tor.
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Conclusions

In this thesis, we have used first principle calculations to investigate the prop-
erties of thermoelectric materials. We started by giving an overview of the
thermoelectric field. This included looking at the different thermoelectric de-
vices, applications, materials and optimisation techniques. Then we proceeded
to the theoretical background and the methodology needed to repeat the ex-
periments.

Our first set of results was presented in Chapter 4. We investigated the Seebeck
coefficient of Fe2VAl and analysed the reasons for the discrepancy between the
theoretical predictions and experimental measurements on the symmetry of S
around the Fermi level. Our pragmatic modelling approach suggested that the
Hubbard U model can resolve the problem by applying a larger U value on V
than Fe d-orbitals.

In Chapter 5, we focused on half-Heusler alloys. We computed all thermo-
electric properties of NbFeSb and showed that experimental ZT values can
be obtained by considering the effects of grain boundaries, point defects and
electron-phonon interactions on the lattice thermal conductivity. Furthermore,
we substituted Nb with Ta, a heavier element which has the same number of
valence electrons. The proposed TaFeSb alloy proved to be stable and exhibit
a higher ZT than NbFeSb due to its lower lattice thermal conductivity after
doping.

In Chapter 6, we focused on testing various optimisation techniques. We com-
puted explicitly the effects of dopants, anti-phase boundaries and size reduc-
tion. The systems of interest included Fe2VAl, Nb1−xTaxFeSb and Bi2Te3. We
gave a qualitative comparison between the electronic thermoelectric properties
of the bulk structures and the modified ones. Results showed that doping and
anti-phase boundaries are not responsible for the asymmetry in the Seebeck co-
efficient of Fe2VAl. In addition, anti-phase boundaries had a negative impact
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on the electronic thermoelectric properties of the full-Heusler alloy. Similar
results were obtained for anti-phase boundaries in Bi2Te3. We must note that
for both structures the modelled boundary density was much higher than in
experiments. In contrast, two other thermoelectric optimisation approaches
proved very successful. We saw that mixing NbFeSb with TaFeSb does not
affect the p-type thermoelectric properties, which is beneficial for obtaining a
higher ZT in the mixed compounds. Additionally, the n-type thermoelectric
properties were gradually improved by increasing the concentration of Ta in
Nb1−xTaxFeSb. The best improvement in this chapter was observed when we
reduced the thickness of Bi2Te3 thin films to 1 QL. We saw how reducing the
dimensionality of a structure can benefit its thermoelectric properties and that
the p-type power factor of 1 QL of Bi2Te3 is 10 times higher than in bulk.

One of the background goals of this project was to develop a set of tools which
can be used by the CASTEP community to calculate the thermoelectric prop-
erties of any material. Although we did not focus on the coding and develop-
ment process, the wide variety of results on different structures and properties
showed that the task has been completed successfully. Hence, the computa-
tional workflow and the interfaces between CASTEP and the other programs
can be used to perform a full-scale computation of the thermoelectric proper-
ties of other interesting materials too.

7.1 Future work

The current stage of this project presents many possible directions for future
improvements and research. One of the most difficult parameters to calculate
is the electron relaxation time τ . The level of theory used in this thesis does
not consider how τ depends on the chemical potential and how grain bound-
aries and point defects affect charge carriers scattering frequency. A possible
solution to these problems is the electron-phonon coupling (EPC) approach
discussed in Section 2.6.3, which can be used to obtain a more accurate es-
timate of τ with respect to the chemical potential. The effects of boundaries
and defects can be estimated using superstructures. Adding CASTEP support
to the BoltzTraP2 program was the first step towards using the more realistic
EPC model. The second version of the transport programs accepts τ values ob-
tained via the electron-phonon coupling as an input. Once the EPC calculation
of τ becomes fully implemented into CASTEP, thermoelectric calculation will
become a lot more realistic.

The overall computational workflow for calculating the thermoelectric prop-
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erties can also be simplified. As of now, the user needs to interfere at almost
every stage of the calculation, especially when there is more than one program
involved. Building a framework which automates the process can prove ex-
tremely useful. It will reduce the down time between different computational
stages and will make thermoelectric calculation more user friendly.

In terms of materials and optimisation techniques, we have seen that mixed
half-Heusler alloys like Nb0.25Ta0.75FeSb have the potential to exhibit not only
excellent p-type but also n-type thermoelectric properties. Recent studies also
suggested that anti-phase boundaries have a positive impact on the n-type
NbFeSb properties [197]. Testing how boundaries affect the electronic prop-
erties of our mixed half-Heusler alloys presents an excellent opportunity for
further research. It will also be very interesting to compute the lattice thermal
conductivity of these potential superstructures.

Thin films made of Bi2Te3 are another option for research. Some of the optimi-
sation mechanisms which we have not explored in this project involve strain-
ing the structure or introducing vacancies. Such modifications will affect the
relaxation time of the charge carries. In such a case, it will be essential to em-
ploy the more accurate EPC method for calculating τ . Thin films, especially
with 1 or 2 QLs, are excellent candidates for such investigation since they are
relatively easy to model and more importantly have the potential to exhibit
amazing thermoelectric properties.
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Appendix A

Preferential sites in the van der
Waals gaps of Mn-doped Bi2Te3

The space in the van der Waals (vdW) gaps could be used to utilise Bi2Te3.
Therefore, doping it with manganese (Mn) is one possibility which gives inter-
esting but controversial results [214–216]. The aim of this study was to support
experimental results and determine where Mn prefers to sit in the vdW gaps.
In this case, we are not interested in the electronic structure and spin-orbit cou-
pling (SOC) is not included. The initial tests showed that SOC does not play
an important role with respect to relative energy differences between different
configurations.

Figure A.1: Simulation models of Bi2Te3 with 1 (a) and (b) Mn atom (4%), and
2 (c)-(h) Mn atoms (7.7%) placed in the vdW gaps. Tetrahedral and octahedral
sites in the vdW gaps are labelled as (A) and (B), respectively. Their alterna-
tives which gives different bond lengths between Mn atoms are denoted with
(A’) and (B’).

Calculations from first principles were performed with CASTEP. A 2× 2× 1
supercell with fixed lattice parameters was fully relaxed for two different dop-
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ing concentrations of 4 and 7.7%. Internal atomic positions were fully opti-
mised until the force on each atom is less than 0.05 eV/Å and the total energy
converges within 0.02 meV/atom. The Brillouin zone was sampled using a k-
points grid with spacing of 0.04 2πÅ−1. On-the-fly ultrasoft pseudopotentials
(C9 set) were used with a plane-wave cut-off energy of 500 eV. In Figure A.1(a)
and (b) a single Mn atom (4%) is present at the interstitial sites and occupies the
tetrahedral (A) and octahedral (B) sites, respectively. The configuration with
Mn adsorption on the B site for 4% was found to be more favourable in energy
by 0.19 eV than that on the A site. This is consistent with other experimental
and theoretical studies [214, 215]. The total magnetic moments are −4.38 and
+4.20 µB for the A and B cases, respectively.

For the higher concentration of 7.7%, multiple configurations needed to be con-
sidered as the two Mn atoms can occupy the A or B sites either in the same, or
in different van der Waals gaps, as shown in Figure A.1(c)–(h). In the 2×2×1
supercell there are two pairs of inequivalent A and B sites, and the second sites
were denoted as A’ and B’. Mn remained preferable to the B sites regardless of
the gap which was occupied. On the other hand, it was noted that the config-
uration with the lowest energy was obtained when two Mn atoms were in the
same gap occupying the B and B’ sites.

Mn arrangement Magnetic moment (µB) Energy difference (eV)
Same
gap
(c) B–B’ +4.10 +4.10 Lowest energy
(d) B–A −3.60 −4.19 +0.056
(e) B–A’ +4.45 −4.19 +0.363
Different
gap
(f) B–A −2.17 −2.17 +0.328
(g) B–B +4.12 +4.12 +0.146
(h) B–B’ −4.12 +4.12 +0.141

Table A.1: Energy and magnetic moments for different arrangements of Mn
in the van der Waals gaps. Subsections (c) - (h) correspond to the illustrations
given in Figure A.1.

The results, as shown in Table A.1, suggest that when the doping concentra-
tion is increased, Mn prefers to stay in the same van der Waals gap on the
available octahedral sites rather than move to the next gap. In terms of mag-
netic moment, the two most favourable configurations (B–B’ and B–A in the
same gap) were found to be ferromagnetic with values of +4.10 +4.10 µB and
−3.60 −4.19 µB for each Mn atom, respectively.
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Code snippets from developed
software

CASTEP to BoltzTraP interface snippet

1 #=================================================================#
2 # Create the <seedname>. s t r u c t f i l e #
3 #=================================================================#
4 # F i r s t l i n e i s a comment , name of the s t r u c t u r e in t h i s case .
5 f s t r u c t = p r e f i x + ’ \n ’
6

7 # Crys ta l l a t t i c e from <seedname>.bands f i l e
8 f o r i in range ( 3 ) :
9 f o r j in range ( 3 ) :

10 f s t r u c t += s t r ( u n i t c e l l [ i ] [ j ] ) + ’ ’
11 f s t r u c t += ’ \n ’
12

13 # Check i f symmetry operat ions and s p g l i b are present
14 i f symmetry i s True and h a s s p g l i b :
15 f s t r u c t += s t r ( len ( symm ops spglib ) ) + ’ \n ’
16 f o r i in range ( i n t ( len ( symm ops spglib ) ) ) :
17 f o r j in range ( 3 ) :
18 f o r k in range ( 3 ) :
19 f s t r u c t += s t r ( symm ops spglib [ i ] [ j ] [ k ] ) + ’ ’
20 f s t r u c t += ’ \n ’
21

22

23 # I f there are no symmetry operat ions , append an i d e n t i t y matrix
24 # to the . s t r u c t f i l e . BoltzTraP doesn ’ t run otherwise .
25 e l i f symmetry i s Fa l se or not h a s s p g l i b :
26 f s t r u c t += ’ 1 ’ + ’ \n ’
27 f s t r u c t += ’ 1 0 0 0 1 0 0 0 1 ’
28
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29

30 f = open ( s t r u c t f i l e , ’w’ )
31 f . wri te ( f s t r u c t )
32 f . c l o s e ( )

Listing B.1: Part of the castep2boltz.py interface, which shows how the structure
file is created.

CASTEP to ShengBTE interface snippet

1 #=================================================================#
2 # Gather i n f o from <seedname>. cas tep f i l e #
3 #=================================================================#
4 # Get uni t c e l l from <seedname>. cas tep .
5 l a t v e c t o r s = [ ]
6 f o r index , l i n e in enumerate ( c a s t e p d a t a ) :
7 i f ’ Real L a t t i c e (A) ’ in l i n e :
8 s t a r t = index + 1
9 f o r j in range ( 3 ) :

10 l a t v e c t o r s . append (
11 [ f l o a t ( c a s t e p d a t a [ s t a r t ] . s p l i t ( ) [ 0 ] ) ,
12 f l o a t ( c a s t e p d a t a [ s t a r t ] . s p l i t ( ) [ 1 ] ) ,
13 f l o a t ( c a s t e p d a t a [ s t a r t ] . s p l i t ( ) [ 2 ] ) ] )
14 s t a r t += 1
15 break # avoid double counting
16

17 # Spec ies names
18 species names = [ ]
19 f o r index , l i n e in enumerate ( c a s t e p d a t a ) :
20 i f ’ Mass of s p e c i e s in AMU’ in l i n e :
21 s t a r t 1 = index + 1
22 f o r j 1 in range ( i n t ( s p e c i e s ) ) :
23 species names . append ( s t r ( c a s t e p d a t a [ s t a r t 1 ] . s p l i t ( )

[ 0 ] ) )
24 s t a r t 1 += 1
25 break # avoid double counting
26

27 # Spec ies coordinates
28 p o s i t i o n s = [ ]
29 f o r index , l i n e in enumerate ( c a s t e p d a t a ) :
30 i f ’ C e l l Contents ’ in l i n e :
31 f o r i in range ( 0 , ions ) :
32 p o s i t i o n s . append ( [ s t r ( c a s t e p d a t a [ index+10+ i ] .

s p l i t ( ) [ 1 ] ) ,
33 f l o a t ( c a s t e p d a t a [ index+10+ i ] . s p l i t ( ) [ 3 ] ) ,
34 f l o a t ( c a s t e p d a t a [ index+10+ i ] . s p l i t ( ) [ 4 ] ) ,
35 f l o a t ( c a s t e p d a t a [ index+10+ i ] . s p l i t ( ) [ 5 ] ) ] )
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36 break # avoid double counting

Listing B.2: Part of the castep2shengbte.py interface, which shows how the script
gathers information about the lattice vectors of the unit cell, species names and
their coordinates.

CASTEP to almaBTE interface snippet

1 #=================================================================#
2 # Create input f o r almaBTE #
3 #=================================================================#
4 # metadata
5 f = open ( ’ metadata ’ , ’w’ )
6 f meta = ’Compound : %s ’ %s t r ( p r e f i x ) + ’ \n ’
7 f meta += ’ 2nd IFC s u p e r c e l l : ( n1 , n2 , n3 ) = %s ’%s t r ( nx ) + ’%s ’%

s t r ( ny ) + ’%s ’ %s t r ( nz ) + ’ \n ’
8 f meta += ”3rd IFC s u p e r c e l l : ( n1 ’ , n2 ’ , n3 ’ , c u t o f f ) = {} {} {}

{}” . format ( args . s u p e r c e l l [ 0 ] , args . s u p e r c e l l [ 1 ] , args . s u p e r c e l l
[ 2 ] , args . c u t o f f )

9 f . wri te ( f meta )
10 f . c l o s e ( )
11

12 # FORCE CONSTANTS
13 f = open ( ’FORCE CONSTANTS ’ , ’w’ )
14 f s t r u c t = ’%6s ’ %s t r ( nx * ny * nz * ions ) + ’ \n ’
15 f o r key1 in sor ted ( i f c f o r s h e n g ) :
16 f s t r u c t += s t r ( key1 ) + ’ \n ’
17 f o r m in range ( 3 ) :
18 f o r l in range ( 3 ) :
19 f s t r u c t += ’%22s ’ %s t r ( ” { 0 : . 1 5 f }” . format ( i f c f o r s h e n g [

key1 ] [ 0 ] [m] [ l ] ) )
20 f s t r u c t += ’ \n ’
21 f . wri te ( f s t r u c t )
22 f . c l o s e ( )

Listing B.3: Snippet from the castep2almabte.py interface which shows how the
metadata and FORCE CONSTANTS files are created. This interface is identical

to castep2shengbte.py with the only difference being the format of the output.

thirdorder castep.py code snippet

1 #=================================================================#
2 # Generate s u p e r c e l l s #
3 #=================================================================#
4 def gen CASTEP supercell ( CASTEP cell , na , nb , nc ) :
5 ”””
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6 Create a d i c t i o n a r y s i m i l a r to the f i r s t argument but descr ib ing
a

7 s u p e r c e l l .
8 ”””
9 nruter = d i c t ( )

10 nruter [ ”na” ] = na
11 nruter [ ”nb” ] = nb
12 nruter [ ”nc” ] = nc
13 nruter [ ” l a t t v e c ” ] = np . array ( CASTEP cell [ ” l a t t v e c ” ] )
14 nruter [ ” l a t t v e c ” ] [ : , 0 ] *= na
15 nruter [ ” l a t t v e c ” ] [ : , 1 ] *= nb
16 nruter [ ” l a t t v e c ” ] [ : , 2 ] *= nc
17 nruter [ ” elements ” ] = copy . copy ( CASTEP cell [ ” elements ” ] )
18 nruter [ ”numbers” ] = na * nb * nc * CASTEP cell [ ”numbers” ]
19 nruter [ ” p o s i t i o n s ” ] = np . empty (
20 ( 3 , CASTEP cell [ ” p o s i t i o n s ” ] . shape [ 1 ] * na * nb * nc ) )
21 pos = 0
22 f o r pos , ( k , j , i , i a t ) in enumerate (
23 i t e r t o o l s . product (
24 xrange ( nc ) ,
25 xrange ( nb ) ,
26 xrange ( na ) , xrange ( CASTEP cell [ ” p o s i t i o n s ” ] . shape

[ 1 ] ) ) ) :
27 nruter [ ” p o s i t i o n s ” ] [ : , pos ] = (
28 CASTEP cell [ ” p o s i t i o n s ” ] [ : , i a t ] + [ i , j , k ] ) / [ na , nb ,

nc ]
29 nruter [ ” types ” ] = [ ]
30 f o r i in xrange ( na * nb * nc ) :
31 nruter [ ” types ” ] . extend ( CASTEP cell [ ” types ” ] )
32 re turn nruter

Listing B.4: Part of the thirdorder castep.py script, which shows the function
which generates the supercells needed for the computation of the third-order
force constants.

Program which computes the reduction in the lattice

thermal conductivty due to grain boundaries

1 import numpy as np
2 import sys
3 import os
4

5 L gb = f l o a t ( sys . argv [ 1 ] ) # in [m]
6 l i s t o f f o l d e r s =[ x [ 0 ] f o r x in os . walk ( ” . ” ) ]
7 f i n a l d a t a ={}
8
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9 f o r f o l d e r in range ( 1 , len ( l i s t o f f o l d e r s ) ) :
10 f i l e p a t h = s t r ( l i s t o f f o l d e r s [ f o l d e r ] ) + ’/BTE .

cumulat ive kappa sca lar ’
11 L mfp , k i n t = np . l o a d t x t ( fname= f i l e p a t h , unpack=True )
12 temperature = ’ ’
13 f o r i in range ( 3 , ( len ( l i s t o f f o l d e r s [ f o l d e r ] ) −1) ) :
14 temperature += s t r ( l i s t o f f o l d e r s [ f o l d e r ] [ i ] )
15 # c o n t r i b u t i o n of each data point to k i n t
16 k i n t c o n t = np . empty ( [ len ( k i n t ) ] )
17 f o r i in range ( 0 , len ( k i n t ) ) :
18 i f i == 0 :
19 k i n t c o n t [ i ] = k i n t [ i ] − 0 . 0
20 e l s e :
21 k i n t c o n t [ i ] = k i n t [ i ] − k i n t [ i −1]
22 # apply gb formula to each data point
23 k gb = np . empty ( [ len ( k i n t c o n t ) ] )
24 f o r i in range ( 0 , len ( k i n t c o n t ) ) :
25 k gb [ i ] = k i n t c o n t [ i ] / ( 1 + ( L mfp [ i ] * 1 e−9)/L gb ) # convert

L mfp from [nm] to [m]
26 k gb cumul = np . sum( k gb )
27 f i n a l d a t a [ i n t ( temperature ) ] = k gb cumul
28 f i n a l d a t a = sor ted ( f i n a l d a t a . i tems ( ) )
29 p r i n t ’ # L gb = ’ + ’%s ’ %s t r ( L gb ) + ’ m’
30 p r i n t ’ # Temp[K] kappa with gb [W/m*K] ’
31 f o r key in f i n a l d a t a :
32 p r i n t key [ 0 ] , key [ 1 ]

Listing B.5: A short program which computes the reduction in the lattice
thermal conductivty as computed by ShengBTE due to grain boundaries.

Snippet from the Effective mass calculator showing

the CASTEP loader

1 #=================================================================#
2 # Parse <seedname>.bands #
3 #=================================================================#
4 def parse bands CASTEP ( e igenval fh , band , d i f f 2 s i z e , debug=Fa lse ) :
5

6 # Number of k−points X
7 nkpt = i n t ( e i g e n v a l f h . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( ) [ 3 ] )
8 # Number of spin components X
9 spin components = f l o a t ( e i g e n v a l f h . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( )

[ 4 ] )
10 # Number of e l e c t r o n s X. 0 0 Y. 0 0
11 tmp = e i g e n v a l f h . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( )
12 i f spin components == 1 :
13 nelec = i n t ( f l o a t ( tmp [ 3 ] ) )
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14 n electrons down = None
15 e l i f spin components == 2 :
16 nelec = [ f l o a t ( tmp [ 3 ] ) ]
17 n electrons down = i n t ( f l o a t ( tmp [ 4 ] ) )
18 # Number of e igenvalues X
19 nband = i n t ( e i g e n v a l f h . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( ) [ 3 ] )
20 energ ies = [ ]
21 # Get e igenenerg ies and uni t c e l l from . bands f i l e
22 while True :
23 l i n e = e i g e n v a l f h . r e a d l i n e ( )
24 i f not l i n e :
25 break
26 #
27 i f ’ Spin component 1 ’ in l i n e :
28 f o r i in range ( 1 , nband + 1) :
29 energy = f l o a t ( e i g e n v a l f h . r e a d l i n e ( ) . s t r i p ( ) )
30 i f band == i :
31 energ ies . append ( energy )
32 re turn energ ies

Listing B.6: The function from the emc.py program, which parses the CASTEP
seedname.bands file.

Snippet from the CASTEP Loader for BoltzTraP2

1 #=================================================================#
2 # CASTEP Loader f o r BoltzTraP2 #
3 #=================================================================#
4 c l a s s CASTEPLoader :
5 ””” Loader f o r CASTEP c a l c u l a t i o n s . ”””
6

7 def i n i t ( s e l f , d i r e c t o r y ) :
8 i f not i s i n s t a n c e ( d i rec tory , s t r ) :
9 r a i s e LoaderError ( ” t h i s loader only works with

d i r e c t o r i e s ” )
10 castepname = get CASTEPsystemname ( d i r e c t o r y )
11 i f castepname i s None :
12 r a i s e LoaderError ( ” cannot determine a CASTEP system name

” )
13 s t r u c t f n = castepname + ” . cas tep ”
14 energyfn = castepname + ” . bands”
15 with BoltzTraP2 . misc . d i r c o n t e x t ( d i r e c t o r y ) :
16 BoltzTraP2 . misc . i n f o ( ”CASTEP system name : ” , castepname )
17 i f not os . path . i s f i l e ( energyfn ) :
18 r a i s e ValueError ( ” energy f i l e not found” )
19 ( s e l f . atoms , magmom,
20 fict magmom ) = BoltzTraP2 . io . read CASTEP output (

s t r u c t f n )
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21 BoltzTraP2 . misc . i n f o ( ” l a t t i c e : ” , s e l f . atoms . g e t c e l l ( ) . T
)

22 ( s e l f . fermi , s e l f . castep fermi mismatch , s e l f . dosweight ,
23 s e l f . kpoints , s e l f . ebands , s e l f . ne lec t ,
24 mommat) = BoltzTraP2 . io . read CASTEP bands ( energyfn )
25

26 # Non−c o l l i n e a r spin−p o l a r i s e d runs don ’ t use symmetry
in CASTEP .

27 # Hubbard U c a l c u l a t i o n s with symmetry are not
compatible with

28 # BoltzTraP2 at the moment .
29 # In both cases , use f i c t i t i o u s magmom ins tead to break

the symmetry .
30 i f fict magmom i s not None :
31 s e l f .magmom = fict magmom
32 e l s e :
33 s e l f .magmom = magmom
34 # mommat i s not implemented at the moment
35 i f mommat i s not None :
36 s e l f .mommat = mommat
37 s e l f . sysname = castepname
38

39 r e g i s t e r l o a d e r ( ”CASTEP” , CASTEPLoader )
40

41 def get CASTEPsystemname ( dirname ) :
42 ””” Try to guess the CASTEP system name corresponding to a

d i r e c t o r y . ”””
43 with BoltzTraP2 . misc . d i r c o n t e x t ( dirname ) :
44 f i lenames = sorted (
45 [ i f o r i in glob . glob ( ” * . cas tep ” ) i f os . path . i s f i l e ( i ) ] )
46 i f not f i lenames :
47 re turn None
48 i f len ( f i lenames ) > 1 :
49 logging . warning (
50 ” there i s more than one . cas tep f i l e in the

d i r e c t o r y ”
51 ” − using the f i r s t one” )
52 re turn os . path . s p l i t e x t ( os . path . basename ( f i lenames [ 0 ] ) ) [ 0 ]

Listing B.7: Snippet from the Python3 BoltzTraP2 module, which shows the
CASTEP loader.

156



Bibliography

[1] R. He, G. Schierning, and K. Nielsch, “Thermoelectric Devices: A Review
of Devices, Architectures, and Contact Optimization,” Advanced Materi-
als Technologies, vol. 3, p. 1700256, Apr. 2018. 18, 19, 20

[2] M. Hodes, “Optimal Pellet Geometries for Thermoelectric Power Gen-
eration,” IEEE Transactions on Components and Packaging Technologies,
vol. 33, pp. 307–318, June 2010. 18

[3] X. C. Xuan, K. C. Ng, C. Yap, and H. T. Chua, “Optimization of two-stage
thermoelectric coolers with two design configurations,” Energy Conver-
sion & Management, vol. 43, pp. 2041–2052, Oct. 2002. 18

[4] S. Oki and R. O. Suzuki, “Performance Simulation of a Flat-Plate Ther-
moelectric Module Consisting of Square Truncated Pyramid Elements,”
Journal of Electronic Materials, vol. 46, pp. 2691–2696, May 2017. 18

[5] H. Ali, A. Z. Sahin, and B. S. Yilbas, “Thermodynamic analysis of a ther-
moelectric power generator in relation to geometric configuration device
pins,” Energy Conversion & Management, vol. 78, pp. 634–640, Feb. 2014.
18

[6] B. S. Yilbas and H. Ali, “Thermoelectric generator performance analysis:
Influence of pin tapering on the first and second law efficiencies,” Energy
Conversion & Management, vol. 100, pp. 138–146, Aug. 2015. 18

[7] Y. Shi, D. Mei, Z. Yao, Y. Wang, H. Liu, and Z. Chen, “Nominal power
density analysis of thermoelectric pins with non-constant cross sec-
tions,” Energy Conversion & Management, vol. 97, pp. 1–6, June 2015. 18

[8] A. Fabián-Mijangos, G. Min, and J. Alvarez-Quintana, “Enhanced per-
formance thermoelectric module having asymmetrical legs,” Energy
Conversion & Management, vol. 148, pp. 1372–1381, Sept. 2017. 18

[9] X. F. Zheng, C. X. Liu, Y. Y. Yan, and Q. Wang, “A review of thermo-
electrics research – Recent developments and potentials for sustainable

157



BIBLIOGRAPHY

and renewable energy applications,” Renewable and Sustainable Energy
Reviews, vol. 32, pp. 486–503, Apr. 2014. 19, 21, 23, 25, 26

[10] J. Garcia, D. A. L. Ramos, M. Mohn, H. Schlörb, N. P. Rodriguez,
L. Akinsinde, K. Nielsch, G. Schierning, and H. Reith, “Fabrication
and Modeling of Integrated Micro-Thermoelectric Cooler by Template-
Assisted Electrochemical Deposition,” ECS Journal of Solid State Science
and Technology, vol. 6, pp. N3022–N3028, Jan. 2017. 19
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