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Abstract

The principles of statistical mechanics relevant to atomistic computer simulation are re-

viewed. This is followed by a review of algorithms for generating statistical ensembles.

An alternative method for statistical sampling of the isothermal-isobaric ensemble is for-
mulated, based on Langevin dynamics in non-Hamiltonian systems. This is successfully
tested on the Lennard-Jones system, and with bond-order models. The potential advan-

tages of this sampling method are discussed.

The sampling scheme is then combined with modern Monte-Carlo and other simulation
methods such as free energy calculation and meta-dynamics. The resulting suite of simu-
lation tools is validated and used to map phase diagrams for a suitably chosen sequence of
core-softened ‘shoulder’ potentials in three-dimensions. These models have possible rel-
evance to the anomalous behaviour of liquid water and the phenomenon of liquid-liquid

phase transitions in single component systems.

As the sequence evolves from the simple Lennard-Jones potential, a decrease in melting
temperature is measured, followed by the emergence of a simple-hexagonal solid phase.
This undergoes a phase transition to close-packing at high pressure. The melting tem-
perature of this simple-hexagonal phase can decrease with increasing pressure over an
appreciable portion of the phase diagram. A metastable isostructural transition is also

mapped, potentially consistent with theories of water-like anomalies.

By integrating along paths connecting different parameterisations of the model, values
are found which allow this transition to extend into the supercooled liquid. No liquid-
liquid phase transition is however present and no water-like anomalies are generated. The

limitations of the model which prevent formation of a second liquid phase are discussed.
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Chapter 1
Introduction

A major driving force in condensed matter physics is the desire to predict macroscopic
properties of materials from the microscopic behaviour of atoms and molecules. A range
of methods is available for modelling of atoms, ranging from semi-empirical to first-

principles quantum mechanical calculations.

This thesis is concerned with modelling the behaviour of systems at finite temperature and
pressure. Connection to the microscopic requires some consideration of dynamics, that is
the manner in which atoms explore configurations other than the zero-temperature ground
state. Macroscopic properties can be extracted from this information via the principles of
statistical mechanics. In chapter 2 we briefly review the relevant results in statistical
mechanics fundamental to implementing and interpreting atomistic simulations of this
kind.

The extent of data required for such calculations invariably requires that such studies are
conducted computationally. Increasing availability of high-speed computers has greatly
increased the range of models which can be studied statistically. Ensuring that correct
statistics are generated is critical. To this end, algorithms for sampling atomic data under
finite temperature and pressure have been developed in parallel to the increase in com-
putational power. A review of existing algorithms is presented in chapter 3. These fall
broadly into two categories. The first involves explicit simulation of atomic motion and
is termed ‘molecular dynamics’ or MD for obvious reasons. The second is based on gen-
erating a sequence of random configurations according to known probability laws. This
is termed Monte-Carlo (MC) after the spiritual home of similar random processes. Both

methods have merits, leading to interest in hybrid schemes.

One such method for generating finite temperature statistics is that of Langevin dynamics.
An extension of this method to sampling at a specified pressure is presented in chapter 4.

This involves theoretical complications when incorporating modern methods for pressure

14



Chapter 1. Introduction 15

control. These have not previously been addressed in the literature. Implementation issues

are also addressed, and the scheme is tested on a selection of model atomic systems.

In addition to predicting mechanical properties from model atomic systems, the state in
which a material will exist under given thermodynamic conditions is of clear importance.
Mapping of phase diagrams is a significant challenge to computer modelling, requiring
information which is not directly accessible in a simulation of feasible size. A variety
of advanced simulation methods for addressing this problem is available. These are re-
viewed in chapter 5. Implementations of these methods (in some cases involving the new

Langevin dynamics scheme) are validated against known results.

A topic of recent interest in the field of phase-transitions is the phenomenon of liquid
polymorphism in single component systems. The existence of two distinct liquid phases
for certain elements is a recent discovery, leading to many simulations and theoretical
studies. Chapter 6 reviews developments in this field. Attempts to reproduce the phenom-
ena in simulations of core-softened model systems are given particular attention. Perhaps
surprisingly, the prediction of phase behaviour for even these very simple models is a

non-trivial task.

One core-softened model in particular has been the source of some considerable interest.
This so-called ‘shoulder potential® has been proposed as a model for reproducing the
anomalous expansion of water under cooling. The mechanism by which this process
occurs has been suggested to be a liquid-liquid phase transition. Chapter 7 presents the
first detailed investigation of this model in three-dimensions. Phase behaviour is explored
as a function of the model parameters, employing many of the methods discussed in

chapter 5.

The data accumulated in chapter 7 will be employed in chapter 8 to extrapolate the phase
diagram to alternate parameterisations of the shoulder model. The presence of anomalous

liquid behaviour consistent with predictions in the literature is sought.
Conclusions which can be drawn from the work presented are given in chapter 9.

The nature of the work conducted has required considerable development of computer
code. The atomic simulation code created by the author is named GOLDILOCS (origi-
nally for Generation Of Langevin Dynamics In Liquid One-Component Systems). This
will be referred to where relevant during the thesis. The GOLDILOCS source code and
brief documentation can be found on the accompanying floppy disk. Also included are

scripts and untilties developed for this work.



Chapter 2
Atomistic Simulation

This chapter will cover the general theory of atomistic simulation methods with refer-
ence to molecular dynamics (MD) or Monte-Carlo (MC) methods. A review of specific

algorithms and implementation details will be given in chapter 3.

For the purposes of this chapter, the term particle refers to a dynamical entity, the position
of which is evolved according to our equations of motion. This will be a single atom in
the case of all work reported here, but could be a superparticle representing collective

behaviour such as that of a vortex line in a type II superconductor.

2.1 Basics

2.1.1 Notation

In statistical mechanics it is important to make the distinction between averaged values
of thermodynamic variables and their associated estimators or "instantaneous values". In
this thesis calligraphic fonts are used to represent estimators of pressure, temperature and
volume, and standard math fonts to represent time averaged quantities. Hence 7' = (7') ,
P = (P),and V = (V). The symbol H will always be used to represent the instantaneous
Hamiltonian of the simulated particles which has the time average F, the total energy. H
represents the time averaged enthalpy H = (H + PV). The symbols K and U will
represent the instantaneous kinetic and potential energy respectively. The entropy will be
denoted by S.

We will use the notation r"¥ and p" to refer to the position and momentum vectors of all
N particles simulated. Reduced temperature 5 = 1/kgT will be used for brevity where

possible.

16



Chapter 2. Atomistic Simulation 17

2.1.2 Phase Space

The principles of classical statistical mechanics are formed around the concept of phase
space. This is the space with one axis for each position and momentum coordinate of all
particles. For a system of N particles in 3 dimensions, this is a 6N dimensional space.
A single point in this 6N dimensional space describes the position and momentum of all

particles, and can be described as a phase space configuration.

The fundamental premise of classical statistical mechanics states that phase space config-
urations with an equal energy are equally likely to be visited. We shall see later that this
is only true for systems with equations of motion that can be derived from a Hamiltonian.
The probability of finding the system at a given point in phase space is defined by the

probability density distribution function,
p (xY,pY) = fens (M) /Qens, @.1)

where f.,s is some ensemble specific function of the Hamiltonian normalised by the cor-
responding partition function, €2.,,;. The dynamics particles are therefore governed by the

Hamiltonian, and the choice of ensemble.

2.1.3 Models

In order to extract meaningful data from the trajectory of our system in phase space, we
must have a model for the Hamiltonian which represents the interactions between parti-
cles. In principle, any model which allows us to calculate the configurational potential
energy of a system from its phase space coordinates will suffice. In practise, models used

in atomistic simulations meet the following criteria:

e The potential energy is differentiable with respect to particle positions. This allows
calculation of forces analytically' which is a strict requirement for MD simulations,

and can be useful in MC.

e The potential energy is a function of the 3V position coordinates only. This avoids
velocity dependent forces in MD and is essential for MC in which we generally

sample only the configurational space.

Two common classes of models that will be used in this thesis are pair-potentials and

Tersoff style bond-order potentials.

ISystems interacting via a discontinuous potential, such as hard spheres, are treated by event-based
methods somewhat different to those employed here.
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Pair Potentials

In a pair potential, the configurational energy is written as a sum over pairwise terms,
for example the familiar potential of Lennard-Jones (1924) in which the Hamiltonian

becomes

H= pr/2ml—|—U Zp?/QmZ%—Z Z ¢ (r3;) 2.2)

=1 i=1 j=i+1

oor-(2)" )]

The calculation of forces (if required) in this model is trivial when also decomposed into

with

pairwise terms.
d N

This is a good model for argon (¢ ~ 120kpT, 0 ~ 0.34nm) and other noble gases. The

r~% term can be justified as a manifestation of instantaneous dipole-dipole interaction,
however the repulsive term is chosen to be computationally convenient and more suitable
forms have been discussed at length. For the purposes of this work we will consider the

Lennard-Jones potential purely as a model system.

Bond Order Potentials

The work of Abell (1985) has demonstrated (using tight binding theory), that atomic
interactions can be approximated as a sum of positive and repulsive pair components
weighted according to the local bonding environment. This provides the basis of the
Tersoff bond-order potential (Tersoff, 1986, 1988):

N N
= Z Z (ris) [fr (ri5) + B fa (riy)] 2.5)

Here fr and f, are exponentials and Bw (Bij + Bj;) /2, where B;; is written as a sum

over all three body terms:

Bij = g(Gy)
Gj = Zfc(Tik)hz‘jk(Tijarikaeijk) (2.6)
ki,

The three body function h;jy (745, 7k, 0ijx) is usually chosen to match structures and ener-

gies measured experimentally or calculated via ab-initio techniques. This has the desired
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effect of the attractive part of the energy being lowered due to the presence of other bonds

on the attracting atoms.

The cut-off function f. (r) is chosen such that the interactions are limited to nearest neigh-
bours only, although some potentials apply energy corrections which depend on second

nearest neighbours also. This function must be smooth for reasons outlined above.

Calculation of forces is more complicated than in the pure pair potential case due to the
differentiation of the bond order term. This is described in the documentation of the
GOLDILOCS code which accompanies this thesis.

2.2 Ensembles

A microscopic ensemble can be defined as a collection of configurations, upon each of
which the same thermodynamic restrictions have been placed. The choice of constrained
thermodynamic variable specifies the ensemble, which in turn will change the phase space
probability distribution. Problems which we may wish to study are often amenable to sim-
ulation in a particular ensemble, or to combinations of simulations in different ensembles

as we shall see. Several ensembles are described below.

2.2.1 Microcanonical (NVE)

Application of Hamilton’s equations to a model Hamiltonian,

t; = OH/Op; (2.7a)

yields appropriate equations of motion which can be integrated to obtain dynamical infor-
mation about the system. Performing this simulation using NV particles within a domain
of fixed shape and volume leads to conservation of the Hamiltonian. This corresponds to
the NVE ensemble in which the total energy, particle number and system volume are con-
strained. The system is isolated from the environment with the microcanonical partition

function €2;
ko OO N3 N N N

where H is the Hamiltonian of the current configuration, £ is the (fixed) total energy
and D (V') is the domain defined by the simulation cell. The factor % is Planck’s constant.

This will always cancel when computing measureable quantities in simulations where the
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atomic degrees of freedom are treated classically. The phase space probability density

function is:
) [H (rN,pN) — Ho}
Q

The energy Ej defines a contour on the phase space energy surface to which the system

Pnve (va pN) = (2.9)

is restricted. Hence the system explores all areas of phase space that are accessible to it,
(those with the correct energy) with equal probability. This assumes ergodicity (see later)

which is not always guaranteed.

This direct applicability of Hamilton’s equations represents the most basic molecular dy-

namics simulation.

2.2.2 Canonical (NVT)

Most systems of interest are not isolated. Energy is exchanged with the environment
leading to fluctuations in thermodynamic properties. We often consider an infinite system
using periodic boundary conditions resulting in a super-lattice of image cells identical to
the simulation cell. In this case the energy is constant on the scale of the simulation cell
everywhere in our infinite system. In reality energy will pass between the cells in our

lattice, making the energy in each individual cell fluctuate.

The canonical (NVT) ensemble captures the energy fluctuations by coupling the N par-
ticle system to a heat bath of constant temperature and infinite energy. This leads to the

canonical partition function @),

1 [e.e]
= dr¥dp? —pH (£, p™M)]. 2.10
Q= v [, e e [ ()] 2.10)

The system now occupies a contour of constant Helmholtz potential 7 = U —T'S , while
points on the 6/N dimensional energy surface are visited with a probability dependent
purely on their energy. Algorithms for correctly sampling this ensemble will be reviewed

in the next chapter.

2.2.3 Isothermal-Isobaric (NPT)

Density fluctuations in our microscopic system may also be desirable. These can be
reproduced by coupling the system to an external piston. This causes the volume of

the system to change depending on the internal pressure, giving us the required density
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fluctuation. This is the isobaric-isothermal (NPT) ensemble. with partition function A;

__ - NN N
A_VON!hSN/O /oo/D(V)dr dp™dVexp [-GH (r",p") — BPV] (2.11)

where P is the external pressure applied by the piston and V' is the system volume. Note
that in the case of periodic boundary conditions it is convenient to think of the external
pressure as being due to particles in adjacent image cells rather than a macroscopic piston.
The system is specified by the Gibbs free energy F' = U — T'S + PV, visiting config-
urations of equal enthalpy with equal probability. Again algorithms for producing this

ensemble will be reviewed in the next chapter.

Isoenthalpic (NPH)

A microcanonical counterpart to this ensemble can be conceived in which the system is
coupled only to the external piston, and not to a heat bath. Such a system would conserve

enthalpy with partition function
Hy o
Onpr = —= dr™dp™s NopY)+ PV —Hy. 2.12
NPH N!hSN/—oo/D(V) r-dp [H(r P )+ V 0] (2.12)

We shall refer to this as the isoenthalpic (NPH) ensemble.

2.2.4 Grand Canonical Ensemble (1 VT)

An alternative route to reproducing density fluctuations is to couple the system to a parti-
cle reservoir at constant chemical potential ;.. Exchange of particles between the N parti-
cle system and this reservoir produce density fluctuations. The grand canonical partition

function,

1 o0
(S — drNdp? —BH (™) + BuN 2.13
N!h3N/_oo/D(V) rdp” exp [-GH (r) + fuN] (2.13)

indicates that configurations with equal H — /N will be visited with equal probability.

2.2.5 The Thermodynamic Limit

It would seem from the above that only the NPT and pPT ensembles represent truly
physical conditions for a simulation. In fact, results obtained from any ensemble are

equally valid when extrapolated to the N = oo case. This is the thermodynamic limit,
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corresponding the the bulk material in which we are interested. In this regime, averages

computed from all of the above ensembles are equivalent.

2.3 Sampling

The numerical work in this thesis will make extensive use of the two most widely used
computational methods for obtaining statistical properties of model Hamiltonians. The
goal is the same for each, to generate large numbers of sample configurations distributed

in accordance with an ensemble probability function.

2.3.1 Monte-Carlo

The use of Monte-Carlo sampling to integrate over ensemble configurations was pio-
neered by Metropolis er al. (1953). In the Metropolis method, a Markov chain of configu-
rations is linked by random moves in one or more degrees of freedom. A move from state

m to state n is accepted with probability

V2 n

Ppe = 2 = Lens, (2.14)

It is easy to show that the resulting chain of configurations is distributed according to the
specified ensemble. Typically, only position coordinates are sampled, as the momentum
space dependence of most properties can be determined analytically (see section 2.4.3).
Details of the Metropolis method for sampling the above ensembles are reviewed in chap-
ter 3.

2.3.2 Molecular Dynamics

The term Molecular Dynamics generally refers to the computational method in which
the phase space of a system is explored by numerically integrating equations of motion.
It should be stressed that the only MD method in which the resulting trajectories are in
any way ‘“real” are those which integrate Hamilton’s equations of motion. This approach
was pioneered initially in an event-based hard sphere system by Alder and Wainwright
(1957), with uniform time-step work for soft spheres first performed by Gibson er al.
(1960). Early work on modelling bulk properties of argon using the Lennard-Jones poten-
tial was conducted by Rahman (1964) and Verlet (1967) who introduced many important
algorithmic developments.



Chapter 2. Atomistic Simulation 23

These early simulations were restricted to the microcanonical ensemble. Attempts were
made to include temperature by periodically adjusting particle velocities. Such methods
are now known to generate incorrectly distributed phase space configurations. A survey of
molecular dynamics schemes for correct ensemble sampling will be reviewed in chapter
3. In each of these methods the dynamics of the particles are purely fictitious, employing
modified equations of motion. Only averaged quantities over configurations sampled from

these fictitious trajectories correspond to “real” properties.

2.3.3 Detailed Balance

To reach equilibrium, the entropy of a system must maximise to a constant value. This
has consequences for the microscopic behaviour of the system which can be expressed

through the principle of detailed balance. This can be expressed as
P(i—j)exp(—E;/kgT) =P (j —i)exp (—E;/kgT) (2.15)

where P(i — j) represents the probability of traversing the path between configurations
1 and 7. It follows that for configurations of equal energy, the forward and reverse paths
are equally probable. Two specific requirements of detailed balance are presented below,
the first applicable to molecular dynamics simulations, and the second to Monte-Carlo

methods.

Note that methods exist for non-equilibrium atomistic simulation, but these will not be
covered here. However, simulations of metastable states (such as supercooled liquids) can
be conducted using equilibrium methods provided that the timescale of the simulation is
short, i.e. shorter than the lifetime of the metastable state. In this limit p.,s will be

constant over the length of the simulation.

Liouville Theorem

The behavior of a system has so far been represented by the probability p of it visiting a
point in phase space. Consider the case where p could be a function of time as well as
phase space. This implies that either the ensemble changes at some point in time, or that
the Boltzmann factor of a given configuration depends on the time at which it is evaluated.
Neither of these two scenarios is physical (in thermal equilibrium) if all variables in the

phase space are accounted for. For a system of particles in a fixed ensemble the total time
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derivative of p is therefore zero, and hence

p
2.1

where ¢; are the generalised coordinates of all /N degrees of freedom in the entire system
and p; are the corresponding momenta. This is the Liouville theorem and holds for all
Hamiltonian systems such as the NVE ensemble described above. It will be seen later
that to produce the NVT and NPT ensembles use is often made of an extended phase
space in which the Liouville theorem may be incorrect and must be generalised. However
p in the 6N dimensional particle subspace must obey the Liouville theorem as stated in
equation 2.16 for the simulation to be physical. This is an important test of the validity of

a molecular dynamics simulation.

The stationary nature of the probability function implies time reversibility, a weaker con-
dition than adherence to the Liouville equation. A system which satisfies this stronger

requirement is often termed to be symplectic.

Markov Chain Symmetry

In the simplest Monte-Carlo method, moves are accepted between state ¢ and state j with

probability purely dependent on the initial and final energies;

exp(—E; /kgT)
" exp(—E,/kpT)

Po(t — 7) =max |1 (2.17)
which can be represented as a matrix element M;;. It is clear that equation 2.15 imposes
a certain symmetry upon this matrix, which will only be preserved if the probability of
attempting move ¢ — j is equal to that for ; — <. This requires that at each step along a
Markov chain, trail moves are made in randomly selected degrees of freedom. Any other
selection method, (e.g. sequential) will eliminate a subset of possible moves (in particular
reversal of the previous move) and lead to incorrect sampling. This requirement will be

imposed strictly on all MC simulation conducted in this thesis.

2.3.4 Ergodicity

The issue of ergodicity is fundamental to any simulation from which physical data is to
be extracted. The exact definition of ergodicity varies considerably between sources. An

attempt at a comprehensive definition is given below.
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Consider the quantity A which is a function of all phase space coordinates. Obtaining
a meaningful mean and variance for this quantity requires many samples of independent
phase space configurations distributed according to the probability density function p.ys.
This defines the concept of an ensemble average. In a simulation which computes many
sequential configurations, the mean and variance of these samples are equivalent to those

computed over an ensemble if the following conditions are met.

1. The sample interval is greater than any correlation interval.

2. Our algorithm for generating configurations preserves the phase space probability

function, i.e. is symplectic.

3. The simulation is of sufficient length that the distribution of samples converges to

that specified by peps.

Failure to meet these conditions will generate incorrect statistics. Adherence to point 1 is
easily accomplished once an estimate of the correlation interval is known, e.g. from the
method of block averages (see e.g. Allen and Tildesley (1987)). Point two is dealt with
by ensuring detailed balance. Point three requires that given sufficient time, a system will
explore all areas of phase space available to it. This is the ergodic hypothesis and is yet to
be rigorously proved for a single system. However it can be demonstrated to be true for
systems with known p.,,s. For example the phase space distribution of the canonical har-
monic oscillator has become an important benchmark. If a sampling algorithm correctly

generates this distribution it is generally assumed to be ergodic for all systems.

An ergodic system therefore, is one which samples phase space configurations with the
correct probability density. It follows that for an ergodic system, there must be a single
stationary probability density function. Time averages calculated during thermodynami-
cally irreversible processes (such as glass transitions) are not equivalent to ensemble av-
erages. Such processes, often referred to as containing non-ergodic traps, must be treated

by other methods.

2.3.5 Finite Size Effects

As well as ensuring samples can be considered uncorrelated in time, it must be ensured
that the system is sufficiently large to represent the system of interest. Using periodic
boundary conditions, the simulation cell plus its image cells make up a superlattice, with
the motion in each cell being perfectly correlated with the the motion in all other cells.
Clearly this is unphysical and does not represent the thermodynamic limit. In order to

ensure that this effect does not corrupt sampling, the size of the simulation cell must be
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greater than the natural correlation length of the system. Correlations between particles in

adjacent image cells are thereby screened and so do not affect the dynamics of the system.

Such large simulations are not always tractable, requiring analysis and correction of the
finite size error in ensemble averages. The extent of this error may depend on the specific
quantity in question as well as the state point at which it is evaluated. In particular,
diverging correlations in the region of critical phenomena lead to substantial finite size

CITOr.

A strictly imposed requirement in all simulations reported here is adherence to the mini-
mum image criterion. The simulation cell is of sufficient size that each particle interacts
with only a single instance of any other particle, not with multiple images. For most sim-
ulations reported in this work, the simulation cell is orthorhombic and enforceing this is
trivial. In some cases however, the cell can distort significantly requiring careful checks

of this criterion.

2.4 Useful results

2.4.1 Fluctuations

Given the phase space probability density function for an ensemble as defined above, and

the ergodic hypothesis, the time average of a sampled quantity A can be written as:

(Aens = QL / / / ( )A(rN,pN,V) pens (£, pY, V) dr¥dpNdV  (2.18)
ens J0 —oo J D(V

where we have allowed for a dependence on volume in the phase space density function
p (NPT case) or in A itself (e.g. enthalpy.) Similarly we can write down an expression for

the variance in A.

gt [ et 0.

X pens (£, pN, V) drVdp"dV (2.19)

The variance about the mean, and therefore the magnitude of fluctuations in thermody-
namic quantities is hence ensemble dependent. In the NVT ensemble, the fluctuations in

the energy estimator H can be shown to be:

(0H? = kpT?Cy (2.20)

>NVT
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where Cyy = (0E/0T),, is the heat capacity at constant volume. These fluctuations can

be split into contributions from the kinetic and potential energies:

3N (kpT)?
<5K2>N\/T = 23 (2.21)

3
(6U?) vy = kpT? (CV— 5Nk;B) (2.22)

The distribution of H,K and U samples is dictated by the ensemble, and is easily shown
to be Gaussian for all cases of interest.

In the NPT ensemble the important fluctuations are those present in the volume and en-
thalpy.

%) = VkgTpr (2.23)

NPT
(§(H+ PV)*), pp = ksT?Cp (2.24)

where 3y = —V~1(9V/IP), is the bulk modulus and Cp = (0H/IT), is the heat
capacity at constant pressure. Hence a correctly barostatted system will undergo Gaussian
volume fluctuations with standard deviation (VkgT ﬁT)%. These results will be used to

test the fluctuation behaviour of sampling algorithms.

2.4.2 Virial Estimators
Temperature

The classical virial theorem states

i

where z; represents a single position or momentum phase space coordinate. Summing

over contributions from all 3/N momentum coordinates, we obtain the well known result

N 2
pi \_3 _3
< 1 2mi> = 21{33 (T) = 2kBT (2.26)

1=

which defines the temperature estimator 7. This has been stated here only to emphasise

that we have used the relationship

V, H=— (2.27)
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which assumes the system has a Hamiltonian. We will later deal with extended non-
Hamiltonian systems. These require the caveat that the temperature computed from this

estimator is that of the particle subsystem only, not that of the total extended system.

Pressure Estimator

We seek a pressure estimator P,

dH al drz dpZ OH
— E _ E 2.2
P =2 vt Velt " oy (2.28)

If we consider a cubic simulation cell, and introduce scaled position and momentum co-

ordinates such that

1
r, = SZ'V /3

pi = ms VY3 (2.29)

then equation 2.28 reduces to

P:

Nkg7 1 & OH
+ — E o f— — 2.
r; - f; v (2.30)

V, H=—f. (2.31)

which may be untrue in extended non-Hamiltonian systems. It should be emphasised that
in such cases the “instantaneous pressure” will include contributions from the extended
(possibly non-Hamiltonian) components which must cancel over the ensemble average if
the simulation is correct. The pressure estimator given by equation 2.30 is therefore still

appropriate.

The more general expression for the pressure tensor in a simulation cell of arbitrary shape

is

Puy — % Z <pi>;,b(ipl) +(r), (fi)g _ (¢/hT)aﬂ
¢ (v
s = 5 o
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where h is the matrix of cell vectors.

8
Sy
8

Cy
c, |. (2.33)
z BZ CZ

<

=
I
s s

In Monte-Carlo simulations, the momentum phase space coordinates are generally not
sampled, in which case the first term in equation 2.30 is replaced by its time average, i.e.

the ideal gas pressure.

2.4.3 Free Energies and the Ideal Gas

The thermodynamics of the ideal gas will be required many times when comparing free
energies calculated using various MD and MD based methods, or when calculating en-
semble averages via an appropriate estimator as we have just seen for pressure. This

warrants a brief review here to avoid inconsistency later.

Consider the following decomposition of the canonical partition function for interacting

identical particles,

1 N 52

Q= N /D(V) dr™ exp [-6U (r)] / Oode exp [—ﬁz ;m] (2.34)

- i=1

The integral over momentum space is easily evaluated as

3N/2
P = (2%”) (2.35)

which is the same for all such systems. For the ideal gas (U = 0) we now have

B VN 27m \ *N/?
Qu = wmav \ 5

VN

Qid = —v (2.36)
NIA3N

where we have identified the thermal de Broglie wavelength A. Equation 2.34 can be

written as
_ 1 N N
Q = W/D(V) dI' exp [—5(] (I' )}
Q = M (237)

NIA3N
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Z is the configurational partition function, i.e. that sampled by the most basic Monte-

Carlo methods. Equivalently in the isothermal-isobaric ensemble
Z(N,P,T) = / / drVdVexp [-pU (xV) — BPV]. (2.38)
—oo J D(V)

A quantity often computed is the residual free energy. This is the total free energy minus
that of the ideal gas under the same thermodynamic constraints. In the canonical ensemble

the fundamental free energy is the Helmholtz potential F,
BF =—-InQ=3NInA+InN!'—InZ(N,V,T) (2.39)
which for the ideal gas becomes

OFy = 3NInA+InN!'— NInV
= 3NInA+Nlnp— N (2.40)

after employing Stirling’s approximation (In N! = NIn N — N) for large N and p =
N/V. This depends only on the temperature and density, and hence the excess Helmholtz
potential is appropriate for comparing systems for which these quantities are identical. In

the isobaric-isothermal ensemble, the fundamental free energy is the Gibbs potential G,

G = —InA=3NImA+IN!'-InZ(N,P,T)
_ BF+ APV (2.41)

which for the ideal gas becomes

BGiqa = pFaq+ N
= 3NInA+InN!'— NIn[NkgT/P]+ N. (2.42)

The excess free energy is now the total, minus that of an ideal gas at the same temperature
and pressure. This is useful, for example, in comparing the free energy of two phases

along an isobar.

We will also make use of the chemical potential ., which for a single component system

is defined as either

OF .
h=oN = ]&Enoo [F(N +1)— F(N)] (2.43)
for a system at fixed volume, or
L oG = lim [G(N + 1) — G(N)] (2.44)

- a_N N—o0
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if at fixed pressure. If we introduce the specific free energies f = F/N and g = G/N
then the chemical potential (for a single component system) is identically the free energy
per particle. We will utilise this relationship when combining chemical potential and free

energy methods to locate phase transitions.



Chapter 3

Methods

In this chapter, existing techniques as surveyed for obtaining correct ensemble sampling
from either MD or MC simulations. As we will see in chapter 5, the ability to gener-
ate accurate ensemble averges on demand is key to the calculation of free energies, and
hence the study of phase behavior in model systems. Some consideration is also given
to efficient implementation of these methods. Those employed in the GOLDILOCS code
are noted where relevant. A new sampling method based on Langevin dynamics in non-

Hamiltonian systems is presented in chapter 4.

3.1 Temperature Control in Molecular Dynamics

In this section methods for performing molecular dynamics in the canonical ensemble are
discussed. Attention is focused on extended system methods which generate correctly
distributed phase space trajectories. In particular the development of the Nosé-Hoover
thermostat is explored, this being the more widely used scheme, and the standard against

which new methods are generally tested.

3.1.1 Early Methods

Early attempts to extend molecular dynamics beyond the microcanonical ensemble fall
broadly into two categories. The first involves direct control of the kinetic energy. In a
popular approach, the velocity of all particles is periodically rescaled such that the kinetic
energy instantaneously matches the desired temperature. The resulting phase space tra-
jectories are discontinuous. This is rectified in the thermostat of Berendsen et al. (1984)
in which the rescaling takes place over a specified relaxation time. These methods are

used in the GOLDILOCS code only to locate an appropriate constant energy countour in

32
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NVE simulations. They are switched off when sampling data. Rescaling methods do not

produce trajectories corresponding to the canonical ensemble.

Methods in which the kinetic energy is held constant via Gauss’ principle of least con-
straint have also been widely employed. Clearly these do not correspond to the canonical
ensemble in which the kinetic energy fluctuates. In general, the early thermostats based on
this principle are not useful for ensemble sampling. However a recent isokinetic method
which guarantees canonical sampling of the configurational subspace will be briefly dis-

cussed in section 3.1.3.

In the second category, the particles are subjected to some stochastic process which alters
their momenta. For example, in the thermostat employed by Andersen (1980), each parti-
cle undergoes a fictitious collision at a random interval. After each collision, a new veloc-
ity is assigned from the Maxwell Boltzmann distribution. As with the periodic rescaling

method, the trajectories are discontinuous and irreversible.

Stochastic thermostats based on a Langevin equation will be covered in chapter 4.

3.1.2 The Nosé-Hoover Thermostat

Andersen (1980) suggested that it may be possible to construct a Hamiltonian with an
auxilliary degree of freedom behaving as a heat bath. This led to the formulation of
several such schemes (Hoover er al., 1980; Nosé, 1984a) which were unified by Nosé
(1984b). This method controls temperature using continuous dynamics. The method is
analogous to the Andersen barostat method (see below). Instead of spatial dimensions
scaled according to the barostat variable ) the temporal dimension is scaled according to

a new variable s such that

r, = r,
pi = pi/s
bt
t = =, (3.1)

S

where primes represent ‘virtual’ (scaled) variables. Changes in s will therefore influence
velocity. The potential energy term associated with s in the Hamiltonian is then tuned
such that s fluctuates and the resulting equations of motion lead to the correct partition
function for the particle phase space, i.e. a function which reduces to equation 2.10 on

integrating out the extended variables. The Nosé Hamiltonian is

N

H:

1=

2
+U (V) + 5—52 + (3N + 1) ksTIns. (3.2)

12
b;
- 2m,;s2
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Here p, is the conjugate momentum to s and () is the fictitious mass associated with its

motion. This results in the following equations of motion in the virtual variables;

¥, = pi/m;s’ (3.3a)

p, = —V,U (") (3.3b)

$ = ps/Q (3.3¢)
N p?

)y = L — (3N + 1) kgT 3.3d

Ds 2 Smis? (BN +1)kpT| /s (3.3d)

where dots denote derivatives with respect to t’. Performing a simulation in these variables
necessitates sampling at non-uniform intervals in real time, which causes difficulties. The
equations of motion can be transformed into real variables by the use of equations 3.1

(along with p; = p’./s) leading to the following equations of motion.

r, = pi/my (3.4a)
pi = —Vi,U(r") —sppi/Q (3.4b)
§ = s°ps/Q (3.4¢)

N
ps = [Z p2/m; — 3NkgT| /s — s°p,/Q. (3.4d)
=1

Dots now denote derivatives with respect to ¢. Although these conserve the equivalent
transformation of equation 3.2 they cannot be derived from it. The transformation is
therefore non-canonical, leading to a non-Hamiltonian system of equations. The conse-

quences of this are explored in the next chapter.

An alternative form of these equations in real variables was introduced by Hoover (1985).
By taking equations 3.3a and rescaling the time such that d¢,;,; = sdt,., the variable s
can be eliminated. The only influence of the thermostat on the equations of motion is the
thermostat velocity ps/@ which Hoover termed the friction coefficient (. The resulting

NVT equations of motion are

I, = Ppi/m; (3.5a)
pi = =V, U (") — (o (3.5b)

N

i=1

/Q. (3.5¢)

Hoover tested these equations on the one-dimensional harmonic oscillator and showed
that phase space was not explored according to the appropriate phase space density func-

tion, (which can of course be calculated exactly). He attributed his results to the system
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not being sufficiently chaotic, and hence it is generally assumed that this lack of ergodicity

is not a problem in large /N simulations.

A simple idea to introduce increased chaotic behavior in the Hoover scheme was intro-
duced by Martyna ef al. (1992). In this scheme a chain of M thermostats is used. The
first thermostat is coupled to the particle degrees of freedom. The second thermostat is
coupled to the first and so on. The following modifications to the particle equations of

motion are made.
pi=—-V,;,U (I'N) — (1pi

For the 1st thermostat (z = 1):

G = [i p;/m; — 3NkgT | /Q1 — (261 (3.6)
Py
Fori=2toi=M — 1:
G = Qi1 — kBT /Qi — Giain (3.7)
For i = M:
Cn = [Qu1Ciry — ksT] /Qur. (3.8)

This extension overcomes the lack of ergodicity in the Nosé-Hoover scheme and produces
the correct phase space density function for a single harmonic oscillator. However, as was
observed by Smargiassi and Madden (1995), the correct phase space distribution is not
obtained when an ensemble of independent harmonic oscillators is connected to a single
Nosé-Hoover chain. The problem can be surmounted by coupling each degree of freedom
degree to a separate chain of thermostats in a so called “massive thermostatting” scheme.
It has also been noted, in contrast to the single thermostat case, that chains of Nosé-Hoover
thermostats do not correctly sample away from equilibrium. A simple modification of the

chain scheme has been proposed by Branca (2000) to correct this defficiency.

Both the Nosé-Hoover chain (NHC) and its massively thermostatting counterpart (MNHC)
have been implemented in the GOLDILOCS code both with and without coupling to an
extended system barostat (see below). This provides a suitable benchmark against which

to compare the constant pressure Langevin dynamics methods developed in chapter 4.

3.1.3 Newer Methods

In this section, recently developed alternatives to the Nosé-Hoover chain approach are

reviewed. Importance is placed on schemes for generating equilibrium dynamics. For a
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review of thermostats for non-equilibrium simulations see (Hoover ez al., 2004).

Generalised Gaussian Moment Thermostatting

The probability of a given configuration in momentum space follows from the canonical

phase space probability function after integrating out the configurational coordinates.

ﬁZ m] (3.9)

This is a Gaussian function of the 3N momentum variables with zero mean (first moment)

p(p") =—eXp

and variance 3NkgT > m; (second moment). The Nosé-Hoover equations (3.5a) can
hence be seen as a feedback mechanism which forces the second moment to fluctuate
about the canonical value. In this picture, a generalised scheme can be conceived in

which other non-vanishing (i.e. even) moments of this distribution are controlled.

Precisely such a scheme has been developed by Liu and Tuckerman (2000), building on
earlier work by Hoover and Holian (1996). The equations of motion for controlling the

first M non-vanishing moments are

r; = pi/m; (3.10a)
it o= -V, U(@¥)=> Puo (BBT) "~y (3.10b)
o @n Crn

. _ = k:BT)n_k P

n o= | (ksT)" '+ ( ekt (3.10c)
! TV 2 58e Qn

. K .
b = G — 3N (kgT) (3.10d)

where Cy = 1and C,, = [[,_, (3N +2k). These reduce to the Nosé-Hoover equations for
M = 1. These have been rigorously shown to generate the canonical distribution using
the non-Hamiltonian statistical mechanics of Tuckerman et al. (2001). Ergodicity has
been demonstrated in the harmonic oscillator and several other one-dimensional model

systems.

Generalised Nosé-Hoover

An alternative generalisation of the Nosé-Hoover method has been presented by Bulgac
and Kusnezov (1990) who show that an infinite number of Nosé-like schemes exist which

simulate coupling to a heat bath with either one or two auxiliary variables. The special
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case of Branka er al. (2003) is of particular interest. In this scheme the kinetic energy

term associated with the variable s is altered to give the following Hamiltonian.

N
H =

1=

2n
Dy

2n@)

2
P;

2m,; s2
1

+U (rV) + + (BN + 1) kT Ins. (3.11)
The resulting equations of motion have been shown to correctly sample the 1D harmonic
oscillator phase space for values of n in the range 2-3. This choice of n results in increased
chaotic behavior in a similar fashion to NHC dynamics. This work still suffers from either
a non-uniform time sampling in the imaginary variables, or a non-canonical transform to

real variables.

Nosé-Poincaré Thermostat

Bond er al. (1999) have presented a scheme based on the original Nosé Hamiltonian
subjected to a Poincaré time transform. The resulting Hamiltonian is identical to that of
Dettmann and Morriss (1997), although this is not acknowledged.

N 2 2
p; N m
H= (-1 P +U (V) + 20 + 3NkgTIns —H0> 5. (3.12)

In contrast to the Nosé-Hoover method, the resulting equations are Hamiltonian, remov-
ing many theoretical complications. However the method still suffers from ergodicity
problems, requiring a chain of thermostats to ensure correct sampling (L.eimkuhler and
Sweet, 2004). Sturgeon and Laird (2000) have coupled the Nosé-Poincaré thermostat to

an Andersen barostat (see section 3.2.2) for sampling the NPT ensemble.

An intriguing development in deterministic thermostats has been presented by Laird and
Leimkuhler (2003), who show that the Nosé-Poincaré/Dettmann thermostat is in fact the
simplest case of a much more general scheme in which any Hamiltonian system can be
used as a thermostat for any other. As an example, the canonical distribution function for
a single harmonic oscillator is obtained by using both a system of many non-interacting

oscillators, and a soft sphere system as the thermostat.

Isokinetic Methods

Simulations in which the kinetic energy of the particles is held absolutely constant via a
constraint have long been employed in non-equilibrium molecular dynamics simulations
(Evans et al., 1983; Hoover et al., 1982). More recently it has been formally shown by
Minary et al. (2003a) that a general scheme for simulations in the “isokinetic” ensemble
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is generally useful. The equilibrium partition function for the isokinetic ensemble is

Ko /oo/ deNaip? ST
I‘ —_— — —
N'h,SN —oo J D(V) P i1 277”1,Z 2 B

Simulations in this ensemble will clearly not produce canonically distributed momenta,

Q=

exp [-0U (r™)].  (3.13)

but will sample configuration space with the correct probability. As with Monte-Carlo
simulations, only configurational samples are used when computing quantities of interest.
The dependence on momentum space averages can generally be calculated analytically.
Minary et al. produce equations of motion to generate the isokinetic ensemble which

possesses superior sampling efficiency to a Nosé-Hoover chain based integrator.

This method is of particular use when adiabatic separation between subsystems is re-
quired, such as in Car-Parrinello molecular dynamics simulations Minary et al. (2003b).
The electronic and nuclear degrees of freedom can be coupled to separate isokinetic ther-
mostats preventing unwanted exchange of energy. Another example is the free energy
mapping method of Rosso er al. (2001) which requires adiabatic separation between a

reaction coordinate and the remainder of the system.

3.2 Pressure Control in Molecular Dynamics

A mechanism for simulating the coupling of the particle system to a pressure bath is
desirable for many reasons. For example, sampling of the NPT ensemble is required for
methods which will be met in chapter 5. In addition the ability to simulate at a specified
pressure rather than density is useful, e.g. to compute the temperature dependence of a
quantity along an isobar. In contrast to heat bath coupling, few methods are available to

accomplish this.

3.2.1 Early Methods

Analogous to early methods in temperature control, early attempts to regulate pressure
in MD simulations involved periodic or gradual rescaling of the system volume by an
amount proportional to the difference between the current and desired pressure. During
the rescaling the fractional coordinates of each particle are kept constant, preventing cavi-
tation. These methods do not generate trajectories consistent with the isobaric-isothermal

ensemble.
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3.2.2 Andersen-Hoover Method

The use of extended systems for generating ensemble trajectories was pioneered by An-
dersen (1980). In the original Andersen method, the volume V is introduced as an extra
dynamical coordinate with fictitious mass 1% and momentum p,, = WV. Fractional posi-
tions and velocities, s; and s; are used. Andersen postulated the following Lagrangian for

regulating pressure in a cubic cell of side L,

L= Z —msTL* +

Here U represents the particle configurational energy, and F.,; is the external pressure.

P..V. (3.14)

S~ U (i) v) -

Note that the absolute velocity of a particle r; is written as s; L and not s; L + SiL as would

be expected. This omission decouples the motion of the particles from that of the volume.

Andersen’s Lagrangian leads to the following equations of motion after transformation

into unscaled coordinates.

. Pi 1d
= L 4r,~——1In 1
r; m,+ iz % (3.15a)
. 1p; d
;= =V, U@V, V)—=-="—In 3.15b
p Ve (e,V) = g g Y (3.15b)
Vv = p, /W (3.15¢)
b, P— P (3.15d)
after using the relationships
d sy ez, LV pi,1d
e T T
3 -t 3.16
5% T Zma "V (5-16)

and identifying P as the virial pressure estimator. A glance at equations 3.15a to 3.15d

suggests using the strain rate

(3.17)

in place of the volume expansion rate. The momentum associated with the changing

volume is now p. = We. This substitution was first made by Hoover (1985) leading to
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the following equations of motion.

io= %ﬁ%’ (3.18)
p; = —VriU(rN,V)—%pi (3.18b)
V = 3Vp/W (3.18¢)
pe = 3V(P— Pn). (3.18d)

These equations conserve the quantity
H =H (2N, p") + PV + p?/2W. (3.19)

This is however not a Hamiltonian. The transformation from Andersen’s equations of
motion is non-canonical due to omitting the s; L term when representing r; in the original
Lagrangian. Equations 3.18a to 3.18b cannot be obtained from any Hamiltonian. Non-

Hamiltonian statistical mechanics will be covered in section 4.3.

In this particular case, non-Hamiltonian effects lead to an extra probability weighting of
1/V for phase-space configurations with equal values of equation 3.19. When coupled to a

thermostat the Hoover equations will therefore fail to correctly sample the NPT ensemble.

Two suggestions have been made to correct this deficiency. The first of these was pro-
posed by Melchionna er al. (1993) and has not been widely adopted due to failure when a
constrained center of mass is used. The second was proposed by Martyna et al. (1994) in

the form of the following equations of motion.

. Pi  De

.= Py P 3.20
r mZ+W ( a)
: 3\ Pe

i = =V U—(14— | =pi 3.20b
p \£ ( + Nf) P ( )
V = 3Vp/W (3.20¢)
. p;

. = P..) —§ =, 3.20d
D 3V<7D t + ml ( )

Here Ny is the number of degrees of freedom, accounting for any constraints (e.g. on the
centre of mass). We shall see in section 4.3 that these equations correctly sample phase-
space. When coupled to an appropriate thermostat, they sample the NPT ensemble and
obey both the pressure

(P)npr = Feat (3.21)
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and work virial theorems
(PV)npr = Peat (V) npr — kBT (3.22)

The uncorrected Hoover system does not obey these theorems. The corrected Andersen-
Hoover barostat has been implemented in the GOLDILOCS code, both with Nosé-Hoover
chain thermostats and in the context of constant pressure Langevin dynamics (see chapter
4).

3.2.3 The Parrinello-Rahman Method

The barostatic method developed above implicitly includes the constraint that the re-
sponse of the simulation cell to applied pressure is isotropic. Furthermore, fluctuations
about equilibrium are also restricted to be isotropic. This restriction is clearly physical

only for simple fluids. In solids;

e The response to hydrostatic pressure may be anisotropic.

e We may wish to apply non-hydrostatic stress, i.e. shear, for which the response of

the cell is very likely to be anisotropic.

This requires a simulation cell of deformable shape as well as varying size. The Andersen
method was adapted to this criteria by Parrinello and Rahman (1980), who proposed a

matrix Lagrangian in which the three cell vectors A,B and C are arranged into a matrix
h,

h=| 4, B, C, (3.23)
A, B. C.

The metric tensor g is h”h, and the volume V = det[h]. The Langrangian reads

N
c-3
i=1

for a system under hydrostatic pressure, where IV, is the fictitious mass associated with

1 T
o Tr [h"h] — U ({s;L},V) — P.y; det[h] (3.24)

| —

the matrix h. In an analogous way to the Andersen method, these can be written in abso-
lute coordinates with p, = Wé (the strain-rate matrix multiplied by the fictitious mass)
as the cell momentum variable. Again, when coupled to a thermostat, these equations do

not correctly sample the NPT ensemble for a fully flexible cell. As with equations 3.18a
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the transformation into unscaled variables has created a non-Hamiltonian system of equa-
tions with the incorrect probability weighting for points in phase space. Furthermore, the
Parrinello-Rahman equations suffer from a lack of modular invariance, i.e. the dynamics

of a given structure are dependent on the choice of unit cell.

The method can also suffer from spurious rotations of the supercell in cases where the

internal pressure can result in a net torque.

As with the Hoover equations above, a corrected method has been developed and justified

by Martyna et al. (1994). The resulting equations of motion are

. | 877 pg
;= L4y 3.25
r mi+Wgr ( a)
. P 1\ Tr[py]
i = =VoU(@V h) - ZLp,— [ — “p; 3.25b
p U (r",h) WP (Nf) WP (3.25b)
. pgh
h = —/ 3.25
W, (3.25¢)
)
b = V(P—Pu)+ | =S P (3.25d)
pg ext Nf - m; .
which conserve the quantity
1
H =H (N, p") + S I (PP, ] + Peay det [h] (3.26)
g

These are non-Hamiltonian, but generate phase-space configurations with the correct
probability for the NPT ensemble when coupled to a thermostat. The dynamics are also
modularly invariant, building on the earlier work of Wentzcovitch (1991). At each step the
matrix p, is symmetrised to eliminate rotations, hence the dynamics explore a 6NV + 12
dimensional phase space. In this form the Parrinello-Rahman method obeys the tenso-
rial virial theorems equivalent to equations 3.21 and 3.22. As with the Andersen-Hoover
barostat, this scheme has been implemented in the GOLDILOCS code coupled to both

Nosé-Hoover chains and in the context of constant pressure Langevin Dynamics.

Note that two earlier reformulations of the Parrinello-Rahman scheme which obey modu-
lar invariance were presented by Wentzcovitch (1991), the second of which is equivalent
to a scheme by Cleveland (1988). It is unclear if these methods stand up to rigorous anal-
ysis using the subsequently developed non-Hamiltonian statistics of (Tuckerman et al.,
2001).
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3.2.4 Anisotropic Stress

The above scheme is only formally correct in the case of hydrostatic external pressure.
Parrinello and Rahman (1981) attempted to extend the orignal Lagrangian of equation
3.24 to anisotropic external stress. This was subsequently shown to be correct only in
the limit of small anisotropy by Ray and Rahman (1984) who proposed an alternative
method in which the strain rather than the stress is held constant. The resulting “isostrain

ensemble” is not useful for the work reported in this thesis.

A rigorous method for applying anisotropic pressure has been developed by Souza and
Martins (1997). Here the dynamical variable is the metric tensor g, rather than the cell
matrix h. This formulation both eliminates rotations and satisfies modular invariance. The
method is somewhat more complex than that implemented in the GOLDILOCS code, but
is the clear method of choice if anisotropic stress is required. The Nosé-Poincaré method

has been successfully combined with this metric tensor barostat by Hernandez (2001).

3.2.5 Alternatives

Two new formulations for NPT dynamics in which the volume is written as a function
of the particle co-ordinates have recently been developed by Landau (2002) and Sun and
Gong (2002). Here the potential energy term for the external pressure in the Hamiltonian
leads to modified particle equations of motion which control pressure. Both of these
methods can only be applied to systems in which the cell walls represent an impenetrable
barrier. They cannot be combined with periodic boundary conditions and are therefore of

no use here.

3.3 Integration Algorithms

As already indicated, in addition to possessing numerical stability, an integration algo-
rithm must be symplectic. A necessary (but not complete) condition for this is time-
reversibility which eliminates predictor-corrector methods (which have been widely used

historically) if strictly correct ensemble averages are required.

A general method for obtaining a ‘correct’ algorithm has been presented by Tuckerman

et al. (1992) using the Liouvillian formulation of classical mechanics.

Consider some quantity f which depends on the positions and momenta of each degree

of freedom in our system, with no explicit time dependence. The total time derivative of
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f can then be written as

Ny
3oy of . of .
f 7=1 QJ 8q-7 pj ap] f

where the index j runs over all degrees of freedom represented by the generalised co-
ordinates ¢;, and p; are the corresponding conjugate momenta. This defines the Liouville

operator L. The solution to equation 3.27 is obviously
F(t) = exp (iﬁt) £(0). (3.28)

Hence the application of the time evolution operator exp <zf)t) to f at time ¢t = 0 will
return the value of f at time ¢. This is completely general and applies to extended systems
also. For example in the NPT ensemble the coordinates would run over the 3N degrees of
freedom associated with the particles plus the thermostat and barostat variables. For this
discussion we will restrict ourselves to the NVE case where we have the particle degrees

of freedom only. In this case equation 3.28 can be written as

7Y @), (0] = exp (iLt) £ [ (0),p" (0)] (3.29)
with
o 0
iL = I‘a—f‘p%
= L, +iL, (3.30)

Consider the case where f depends only on a single coordinate r with no momentum
dependence. Now iL = iL,. If the time evolution operator exp (if)rt) is applied to f at
time? = 0

exp (zﬁﬂf)f [r (0)] = exp <r%t) flr(0)]. (3.31)

Expanding the exponential as a series

5 :
L+ (0)t -+ ——55 -

exp (Zf/r)f [r(0)] = or 2 Or?

results in the Taylor expansion for f [r (0)] + k] where h = 1 (0) ¢.

The application of the the operator exp (ili,i) has evolved the coordinate r through a time
t, which is true for any number of coordinate dependencies. Similarly the application of

exp (if/pt> will evolve the momenta.
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This leads to the conclusion that the application of the operators exp (ifmﬁ) and exp (iﬁpt>
to the phase space vector I' defining the position and momentum of each degree of free-

dom, will evolve each component through time.

For non-commuting operators .4 and B,
exp (A + B) # exp (A) exp (B). (3.33)
Therefore
exp <z[:t> # exp (i[:,i) exp (iﬁpt>. (3.34)
Instead the Trotter identity is used,

o A+B) _ i (63/2P€A/P€B/2P)P , (3.35)

P—oo

Time evolution operator is discretised by making the connection At = t/ P, the time-step
used in integrating our equations of motion. For a small time-step this will give large P
making the Trotter expansion a good approximation. This leads to the following form for

the total time evolution operator.

CXp <Z[A’t> = [exp (iigAt> exp (i[A/rAt> exp (iigAt>

where the order of operation is from right to left in the usual way. Application of the

_t
At

(3.36)

operator in the square brackets once per time-step evolves the system of particles. Fol-
lowing through the operations for a single time-step, using only the first-order term in the

expansion, the following sequence is obtained.

o p(t+iAt)=p(t)+4p(t)
e r(t+At)=r1(t)+Ep (t+1A) =1 (t) + &p (1) + 5= AP (1)

o p(t+At)=p (t+ 1At) + 5tp (t + At)

assuming that the forces are calculated after the full step in particle positions. This is in
fact the velocity form of the much employed Verlet algorithm (Verlet, 1967) which is used
in the GOLDILOCS code to evolve NVE trajectories. Each application of a part of the
evolution operator causes a simple shift in phase space coordinates. This corresponds to

a transformation with a Jacobian of unity and hence the algorithm is symplectic.

The Trotter identity can easily be generalised to include further terms in the Liouville
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operator due to extended thermostat and barostat degrees of freedom. For example:

p(ATB+C) _ th (66/2P68/2P6A/P€B/2Pec/2p) P (3.37)
An important property of algorithms obtained in this way is that they can be shown to
exactly conserve a pseudo-Hamiltonian which differs from the exact Hamiltonian by a
constant which depends only on the calculation time-step. This property results in zero

long term drift in any conserved quantity, despite integration errors on small timescales.

These ideas have been applied to generate explicit reversible integrators for Nosé-Hoover
based NVT and NPT ensembles (Martyna et al., 1996), in which the full evolution oper-
ators (rather than the first order term only) are applied to phase space coordinates. These
integrators have been implemented in the GOLDILOCS code for the canonical ensemble,
as well as both isotropic and fully flexible isothermal-isobaric ensembles. Similar more

Verlet-like algorithms have been obtained by Sergi er al. (1999).

3.4 Ensemble Monte-Carlo

As seen in section 2.4.3, the partition function (and hence any quantity of interest) can be
separated into a known momentum space contribution and the configurational partition
function. As momentum space need not be sampled, dynamics are not required provided
samples are generated to the appropriate configuration space probability distribution. This
can be accomplished using the Metropolis Monte-Carlo method briefly discussed in sec-
tion 2.3.1. Provided with an initial configuration, subsequent configurations are gener-
ated by random displacements in one of more degrees of freedom. These displacements
are accepted with probability given by equation 2.14. Specific details for the canonical,
isothermal-isobaric and grand-canonical ensemble as implemented in the GOLDILOCS

code are given below. Note that single particle moves only are implemented.

Discussion of advanced MC methods for studying phase transitions is deferred until chap-
ter 5.

3.4.1 Canonical Ensemble (NVT)

In the canonical ensemble, configurations of N particles are generated in a cell of fixed

volume with probability

p (rN) = exp [—U (rN) /k‘BT} /ZNvT (3.38)
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MC simulations in this ensemble proceed by making trial moves of a single particle in
which each component of the position vector is displaced by a uniformly random amount
dr in the interval —Ar/2 — +Ar/2.

The relative statistical weights of the configurations before and after the move determine
the acceptance criteria.
P,.c = min {1, exp [—FAU|} (3.39)

with AU = U, — Ugg. A uniform random number £ on [0,1] is compared to P,... If
¢ < P, the move is accepted. Otherwise the particle is returned to its original posi-
tion. Displacements which lower the configurational energy are hence more likely to be
accepted. The effect of temperature is to increase acceptance of higher energy configu-
rations. Note that in order to preserve the symmetry of the Markov chain, the particle
for which a trial move is performed must be selected randomly and not sequentially. It is
common to refer to /N such trial displacements as a single MC cycle. The computational

cost of one such cycle is broadly equivalent to a molecular dynamics step.

The choice of parameter Ar is a compromise. Larger trial moves will have a faster decor-
relating effect, but will be accepted less often. Shorter moves will in general have a higher
acceptance rate, but lead to larger correlation between steps. Simple tuning of Ar such

that the acceptance rate is approximately 50% is common, but not necessarily optimal.

Force Biasing

Increased acceptance of larger moves can be achieved by employing the force biasing
method of Pangali and Rao (1978). Trial moves for particle 7 are generated to the distri-
bution

P, (6r;) = exp [A\Gf; - ;] /C) (3.40)

where )\ is the biasing parameter which varies from 0 to 1, and C'y is a normalisation
constant. Random moves to this distribution are easily generated with a simple rejection
method. Moves in a direction close to that in which the force acts are favored. The

modified acceptance criteria for moving particle ¢ from m to n is
P,cc = min {1, exp [-SAU + A (" — £") - or; + In (CY/CY)]}. (3.41)

Use of the force biasing method allows a larger maximum displacement to be employed
for a similar acceptance rate. This leads to faster exploration of configuration space and
hence higher statistical efficiency.
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3.4.2 Isobaric-Isothermal Ensemble (NPT)

The probability density distribution for the NPT ensemble in configuration space is
p (rV,V) = exp [-BU (rV,V) — BP.utV] /Znpr (3.42)

In NPT simulations, particle displacement moves are complemented by uniformly random
displacements of the volume coordinate J) in the range —A)Y — +A). The fractional
coordinates of the particles are kept constant during this move. A trial volume move
results in a change of configurational enthalpy AH = AU + P.,;A), which is accepted
with probability

P = min {1, exp [-0AH + NIn (Vyew/Veoia)] } (3.43)

where the second term in the exponent accounts for the change in normalisation constant
for the statistical weighting of configurations before and after the volume change. As with

temperature, pressure is now a parameter in the acceptance probability.

Symmetry of the Markov chain is preserved by performing a volume move in preference
to a particle displacement move with a fixed probability. The usual choice of 1/ is used
in GOLDILOCS. The acceptance probability for particle moves is unchanged from the
canonical case. Optimal choice of the parameter AV is determined by similar arguments

to the single particle case.

An anisotropic equivalent of this scheme is also available. Random displacements in
the elements of the cell matrix h (equation 3.23), are accepted/rejected with probability

appropriate to a fully flexible NPT ensemble.

Viral Biasing

An analogous method to force biasing is available for volume moves. This is the virial

biasing method of Mezei (1980). Volume moves are chosen from the distribution
P (0V) = exp [BAfvdV]/ Dy (3.44)

which can be generated using the transformation method. The “force” on the volume f)
is computed as the difference between the desired pressure and the current virial estimator

(equation 2.30) . D, is the appropriate normalisation constant. The modified acceptance
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criteria for virial-biased volume moves from state m to n is

P = min {1, exp [—0AH + NIn (Vyew/Void)]
x exp [=BA(f," + £)0V) +In DY/ DX} (3.45)

Use of this biasing volume allows larger trial volume steps without sarificing acceptance
rate. This method is used in conjunction with force biasing in the GOLDILOCS code. An
anisotropic virial biasing scheme is also available (Jedlovszky and Mezei, 1999).

3.4.3 Grand Canonical Ensemble (1VT)

Unlike the NVT and NPT ensembles, the grand canonical ensemble (GCE) is not tradi-
tionally accessible by molecular dynamics methods'. It corresponds to a variable number
of particles in a fixed volume held in contact with a heat bath at temperature 7', and a

particle reservoir at chemical potential .

p(r) =exp [-BU (v") + BuN] /2 (3.46)

where Z is the configurational grand-canonical partition function. Two types of trial
moves are used in exchanging particles with the reservoir. Particle insertion moves involve
the addition of particles at a random position in the simulation cell. The probability of
accepting an insertion is

Pie(N - N+1) = exp [—BAU + Bp] . (3.47)

(N +1)

Removal of a randomly selected particle is accepted with probability
N
Pe(N—-N-1)= 7 eXP [—BAU — Bl . (3.48)

Note that the chemical potential in the above equations is that related to the configura-
tional free energy only. The total chemical potential is recovered by a temperature depen-
dent shift in this value, or employing the full partition function (2.13) when deriving the

acceptance probabilities. In the later case this yields

V
Pacc (N — N + ].) = m exp [—ﬁAU + ﬁ/,t] (349)

' A number of extended system and hybrid MD-MC schemes do however exist, see Boinepalli and Attard
(2003) for a discussion.
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n
and 5

A
exp [—BAU — Gu] . (3.50)

P (N—-N-1)=

Equations 3.47 and 3.48 will be used when performing multi-canonical sampling as de-
scribed in section 5.6.1. Equations 3.49 and 3.50 will be used when employing grand

canonical MC simulations as a reference point for computing absolute free energies.

It is common in GCE simulations to omit particle displacement moves. Sampling of
points in configuration space is hence obtained purely by insertion of particles at random
positions. In this case, simulations in the GCE ensemble are parameterless. Markov chain

symmetry is ensured by attempting insertion and removal moves with equal probability.

3.5 Computational Considerations

3.5.1 Initial Conditions

Both the molecular dynamics and Monte-Carlo methods require an initial condition from
which to generate samples. A brief description of how this is handled within GOLDILOCS

is given below.

Positions

It is often useful to generate initial positions according to a known crystal structure, partic-
ularly when studying solids. The GOLDILOCS code can automatically generate simple-
cubic (sc), face-centered cubic (fcc) and diamond structures as the initial condition in a
cubic cell. For other structures, initial positions can be read from an external file. This

allows a structure located in an earlier simulation to be re-used.

For simulating fluids, it is possible to heat a crystal configuration beyond the point of
mechanical instability to create a disordered sample. This is however time consuming.
Alternatively, the GOLDILOCS code can generate initial positions for a fluid by randomly
positioning atoms within the simulation cell (subject to a user specified overlap constraint)

in a similar vein to a grand canonical Monte-Carlo simulation.

Momenta

For molecular dynamics simulations, initial momenta are assigned randomly in the in-

terval [—1, 1]. These are then rescaled such that the virial estimator matches the desired
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Figure 3.1: lllustration of a truncated Lennard-Jones potential.

temperature. The momenta are only adjusted to remove center of mass motion if this is to

be formally constrained throughout the simulation.

Equilibration

Regardless of how the initial conditions are generated, it is vital that any resulting bias is
removed before sampling of the equilibrium conditions can take place. This is generally
performed by simulating an equilibration period many times longer than the correlation
time of the system. In the case of NVT and NPT simulations, the system will also take a
finite time (or number of MC cycles) to reach the specified temperature and/or pressure.

Details of equilibration times used will be given for all simulations reported in this thesis.

3.5.2 Efficient Calculations of Forces

The performance bottleneck in any atomistic simulation is the calculation of energy and
forces from the model Hamiltonian. This scales as O (N?) for pair-potentials and O (N?)
for Tersoff-style bond-order potentials. Optimising this procedure is clearly highly desir-
able.The large quantity of data required to obtain detailed information of a model system
can be extremely expensive to generate computationally. For even very simple models,
computational efficiency becomes a major issue when many thousands of simulations are

required.

Truncation of Pair Potentials

A simple speed efficiency gain for pair-potentials is gained by truncating the range of the
interaction. Beyond some distance r;; > I?. the potential is never computed and is set to

Z€ro.
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Clearly the truncated potential is only a good approximation to the real potential for large
.. The truncation has two consequences. First the potential and its derivative (the force)
are both discontinuous at r;; = R.. Second, long range contributions to the total energy
and pressure are neglected, which although small for each pair interaction, will accumu-
late to a significant total over the entire system. Three schemes for dealing with these

issues are as follows:

1. Truncate the potential at large 7. such that the energy and force discontinuities are
small, and apply long range corrections to the total energy and pressure based on
the average radial density at large 7;;. The large R, leads to little reduction in cost,

but corresponds closely to the “full” pair-potential.

2. Apply a positive shift in the pair potential of ¢ (R.). This ensures that the energy
tends exactly to zero at 12, but leaves a discontinuity in the force. However for large

R, this can be neglected. This is the “cut and shifted” pair potential method.

3. Shift the force by — % |z, The force now varies continuously to zero at the cut-off.
ij

The resulting difference in force between the original and force- shifted potential is

then integrated to correct the energy. This “cut and force-shifted” method requires

no long range corrections and produces self-consistent energies and forces.

The size of the simulation cell must be larger than twice IR, in any dimension to elimi-
nate interaction of a particle with its own periodic images. In method 1, the long range

corrections to the energy and pressure are given by

16 % 3 3

Uwre = Nrmp'e <§> (%) —§<%) 3.51)
16\ |2 9 3

Prrc = o'mp™ (5) 5(%) —<%> (3.52)

for the Lennard-Jones potential.

Methods 2 and 3 modify the interaction and hence resulting simulations obey different
equations of state to the full pair-potential. Work reported in this thesis makes extensive
use of molecular dynamics simulation, requiring the third method for continuous forces.
This is used in all work unless otherwise stated, such as when making comparisons with

results in the Literature for the “full” Lennard-Jones potential.
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Figure 3.2: (a) The Verlet neighbour list. Neighbours within R, are added to the list for the
central particle. Other particles are not considered in subsequent energy computations. (b) The
domain decomposition method. Each CPU evolves only its own particles, but considers particles
in a halo of width w when computing interactions. The halo for CPU 1 is shown, employing
periodic boundary conditions. The halo width w must be > R..

The Verlet Neighbour List

For simple potentials, a significant part of the cost involved in computing a pair inter-
action can be determination of the interparticle distance. This is particularly true when
employing non-orthogonal simulation cells. A simple solution is to maintain a periodi-
cally updated list of neighbours for each particle. When computing energies/forces, only
the listed neighbours of each particle are considered. The distance R,,, within which parti-
cles are added to the neighbour list, must therefore be greater than the interaction distance
R.. An illustration is given in figure 3.2(a).

For small R,, the list must be updated frequently to prevent interactions with new neigh-
bours being neglected. This increases the overhead cost of using these lists. For large
R, less updates are required, but the list may contain more information than is useful,
reducing the benefit of their use. The minimum cell dimension must be increased to twice
R,, or larger when using these lists. Typically, the use of neighbour lists becomes bene-
ficial for system sizes of 300-400 atoms or greater, leading to substantial speed benefits.
The method is particularly useful in solids, where the neighbours of a given atom rarely
change.

3.5.3 Parallel Computation

Much of the work reported in this thesis has made use of parallel computer hardware,

warranting a brief discussion here.
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Recall that our reason for performing atomistic simulation is to obtain a series of indepen-
dent samples from which we can compute an ensemble average. Many simulations of the
same system, employing different randomly generated initial conditions will clearly gen-
erate samples faster than a single simulation. This rather obvious form of parallelisation
requires no communication between processors and hence scales perfectly to an arbitrary
number of compute nodes. Furthermore, we will often require an ensemble average to be
computed for a variety of thermodynamic conditions and model parameters, introducing
a second natural level of parallelisation. This task parallelism paradigm has been em-
ployed extensively for the calculations reported in this thesis. In its most simple form
the method consists of running multiple copies of the GOLDILOCS code over several
nodes of a computational cluster. Task parallelism has also been implemented within the
GOLDILOCS code for performing free energy calculations (see section 5.4) using MPI

message passing.

For some applications such as the method described in section 5.3.1, a single simulation
of a large system is required. In these cases task parallism is less useful and methods of
parallelisation of a single simulation become important. Two such methods are briefly

described below.

Domain Decomposition

In the domain decomposition method, the simulation is divided into real space segments,
each of which is assigned to a CPU. Each CPU evolves the trajectory of its own atoms
only, but must compute forces involving atoms in other cells using a ‘halo’ of information
regarding atoms assigned to other processors. Halo-swaps in which segments exchange

information occur on a regular timescale. An illustration is given in figure 3.2(b).

In order for this method to be efficient, the size of each segment must be substantially
larger than the effective range at which atoms interact. If not, then far more time is
spent communicating information between segments than on computation. This method
is therefore useful only for simulations with many tens of thousands of atoms. This regime

lies well beyond any simulation that will be conducted in this work.

Functional Decomposition

An alternative approach to parallelisation of atomistic simulation has been implemented
in the GOLDILOCS code. Consider the N x N matrix F. The element F}; is the force
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on atom ¢ due to atom j according to a simple pair-potential,

0 fip fi3 fiy
for 0 fy3 foy
f31 f30 0 f3y
fi f2 fi3 0

Only the upper triangular portion need be considered, exploiting the symmetry f;; = —f;;,
and the obvious f;; = 0. The columns of this matrix can be computed independently, and
hence divided over the available processors. The total force on a particle is recovered by

summing over each row at the end of the force computation.

This is simple to implement, and can easily be extended to bond-order potentials con-
taining three-body terms. The method does not scale well beyond six or eight CPUs for
the size of simulation typically employed in the this thesis, but provides a useful speedup

nonetheless.



Chapter 4
Constant Pressure Langevin Dynamics

This chapter will discuss the benefits of, and justification for, performing Langevin dy-
namics in extended non-Hamiltonian systems as a method for sampling the isothermal-
isobaric ensemble. Specifically the Andersen-Hoover and Parrinello-Rahman systems
introduced in the previous chapter. Much of the following is reproduced from Quigley
and Probert (2004).

4.1 Motivation

The Nosé-Hoover thermostat was introduced in section 3.1.2. This has become the widely
adopted standard for molecular dynamics simulations in the canonical ensemble, despite
difficulties in coping with the harmonic oscillator. These problems are illustrated in fig-
ure 4.1. Three simulations of a harmonic crystal containing eight atoms are presented.
The duration of each simulation is approximately two thousand oscillation periods. The
fictitious mass of the heat bath variable was chosen for optimal coupling at the oscillator
frequency. As can be seen, the single Nosé-Hoover thermostat fails completely to gen-
erate the correct distribution. This occurs regardless of simulation length and therefore
violates the ergodicity assumption. A single chain of ten thermostats also fails to con-
verge the distribution within a reasonable simulation length as was stated in section 3.1.2.
Only when a separate chain of thermostats is coupled to each degree of freedom is the

canonical distribution of position samples recovered.

The extra computational expense of massive thermostatting over a single chain is negli-
gible for most simulations. Despite this, many codes still employ single chain or even
single thermostat Nosé-Hoover schemes. Simulations of solids at low temperature where

the interaction is near-harmonic, or other situations in which harmonic interactions are

56
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Figure 4.1: The behaviour of Nosé-Hoover thermostats coupled to a harmonic crystal. The upper
plots show Poincaré sections through the phase space of the crystal. The lower plots show the
measured distribution of position samples for the corresponding oscillator compared to the known
canonical function. In the left hand case a single Nosé-Hoover thermostat is used. In the centre,
a single chain of Nosé-Hoover thermostats, and in the right hand case a separate Nosé-Hoover
chain is coupled to each degree of freedom.

employed, such as in path-integral molecular dynamics or free energy calculations are

likely to be disastrously inefficient or simply wrong if massive thermostatting is not used.

Several other methods have been proposed, employing various generalisations of the
Nosé-Hoover scheme. These thermostats all share the common property that their equa-
tions of motion are purely deterministic, although often chaotic. The mathematics em-
ployed in their justification (covered in this chapter) always assume no conservation laws
are obeyed by the dynamics, other than those due to energy and momentum considera-
tions, or explicitly imposed by constraints. It has been suggested by Tuckerman ez al.
(2001) that the pathology of the single thermostat or single chain Nosé-Hoover methods
in harmonic potentials is due to creation of unexpected conservation laws through the cou-
pling of the thermostat to the particle subsystem. These restrict the the system to paths in

phase-space which satisty these constraints, preventing ergodicity.

Here lies a potentially worrying issue. It is possible that other systems may exist in which
unexpected conservation laws are generated when coupled to a deterministic thermostat.
These may not occur globally, but could be a consequence of the local phase-space topol-
ogy. As it is not possible to check the ergodicity of a general system, it can only be
assumed that such problems do not occur. The purely stochastic Monte-Carlo method
clearly does not suffer from these problems and is the method of choice for sampling

configuration space. If however representative dynamics ' are required then a thermostat

Tt should be re-iterated at this point that in all thermostat methods the dynamics are purely fictitious
and can therefore be only considered representative at best.
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Figure 4.2: Convergence of the canonical distribution of position samples for an oscillator in a
harmonic crystal. The total squared residual from the exact function is plotted as a function of the
run length for several methods. The Monte-Carlo sampling is clearly many times more efficient.

employing a stochastic component in desirable.

Methods such as those based on the Langevin equation are often overlooked. As can be
seen in figure 4.2 Langevin dynamics has a similar rate of convergence to the optimised
multiple chain thermostat for the above harmonic crystal problem. The method includes
stochastic forces to model the interaction of the particle subsystem with a heat bath, and

hence can be guaranteed to generate no unexpected conservation laws.

4.2 Langevin Dynamics

A simple but effective method of performing Langevin dynamics simulations in the canon-

ical ensemble uses the following equations of motion in the usual notation

pi = Li—pi+Ry, (4.1b)
with f; = =V,,U (rN ) Equation 4.1b is a special case of the Langevin equation. Our

Hamiltonian system is now embedded in a Brownian medium. The friction coefficient
represents viscous damping due to fictitious ‘heat bath’ particles. The stochastic force R;

represents the effect of collisions with these particles, leading to diffusion.

An appropriate distribution for R; which will lead to thermal equilibrium is needed. Fol-

lowing Chandrasekhar (1943) it is assumed that the timescale of the collisional heat bath
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process is very much smaller than the atomic motions of interest, and hence
(Re (1) R} (#)) = Go (t = ¢) bus, 4.2)

where G is a constant to be determined, and the indices o and 3 run over the three com-
ponents of R;. The stochastic force must represent the combined effect on particle ¢ over
a great many random collisions and can be expected to obey the central limit theorem.
The distribution from which it is drawn should therefore be Gaussian. Conservation of

momentum implies that this distribution should be centred on zero.

To quantify the diffusion introduced by the R; term, consider an ensemble of identical
single particle systems, each obeying equations 4.1a and 4.1b. The density of particles
in phase space is hence given by an ensemble probability distribution function p. The
fictitious heat bath particles belong to other members of the ensemble, and interact with

the current system only via the friction and stochastic terms.

Fick’s law of diffusion states that the probability current due to diffusion in configuration
space is
j(r) =—=DV,p, 4.3)

where D is the diffusion coefficient. The diffusion coefficient is closely related to the

mean square displacement.

o1 2
D= tlirgo 6 < [r(t) —r(0)]" >, (4.4)

which can be transformed in terms of the particle momentum (Kubo, 1966) to read

1

" 3m?

| <pt i+ > 4.5)
0

relating the friction coefficient to fluctuations in p at equilibrium. Equation 4.5 is a mani-
festation of the fluctuation-dissipation theorem. Similarly, diffusion in momentum space

leads to a probability current
i) (p) = =DyVyp, (4.6)

where D, is the diffusion coefficient in momentum space. By analogy with equation 4.5,

this can be related to the components of the stochastic force.
D, = / < R® (o) R® (to + 1) > dt., @7)
0

which identifies G = D,. The friction term introduces a drift of probability in momentum
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space with current

1(2)

iy (p) = —7pp. (4.8)

A suitable value for D, will maintain thermal equilibrium. To identify this, the total
rate of change of the probability density p due to equations 4.1a and 4.1b is constructed,

including only the linear response to the stochastic force via equations 4.6 and 4.8.

dp dp P

= T V£ V=Y, [ () +i ()]
B
_ a_i n % Vep+£-Vop+V, - [ypp+ DV, (4.9)

This is a Fokker-Planck equation, a deterministic equation for the behaviour of the prob-
ability density, equivalent to the stochastic equations 4.1a and 4.1b. It is simple to show

that the canonical probability distribution is a solution of 4.9 only if
D, = ymkgT. (4.10)

This is the Einstein relation for diffusion in momentum space. Assuming ergodicity, the
canonical distribution must be the only solution and hence equations 4.1a and 4.1b can be
used to sample the canonical ensemble (Allen and Tildesley, 1987). Generalising to an

ensemble of N particle systems,

0 Y Pi
510+ 2 [ Vet Vg
NZ

=1

Note the similarity of this equation to equation 2.16, i.e. the above Fokker-Planck equa-
tion is analogous to Liouville’s equation for the case where the particles obey equations
4.1a and 4.1b rather than Hamilton’s equations. It is a conservation law for phase space
probability with the Liouvillian contribution balanced by the divergence of the diffusion
and drift terms. If the diffusion coefficient is given by 4.10 the total time derivative is zero

as required for detailed balance.

Equation 4.7 implies that the r.m.s. effect of R; is an impulse of magnitude /m~ykgT
and duration dt. It is assumed that these collisions continually occur and hence R; also
changes continually (but not smoothly). For the purposes of an MD simulation, this im-

pulse is approximated as constant over a time step. The peak value of the force to select
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from a Gaussian distribution is therefore

2kgT~vym
=4/ ——. 4.12
Rpnaw =1/ A7 (4.12)

The canonical ensemble will hence be obtained by selecting a random deviate from a

Gaussian distribution of zero mean and unit variance, scaled by (R) for each compo-

max’
nent of R,; at each time-step.

The choice of the friction parameter ~y is a compromise between statistical sampling effi-
ciency and preservation of accuracy in short-term dynamics. In the case where the process
approximated by the stochastic components can be simulated by another method, it is pos-
sible to determine an optimal value of v numerically. Guidelines for the choice of v will

be discussed in detail later.

An integration algorithm for equations 4.1a and 4.1b can be obtained by applying the
time-evolution operator formulation of Tuckerman ef al. (1992) in the limit v — 0. The
lack of a Liouville operator for the stochastic components of the dynamics requires that

these are then included into the particle forces via the following substitutions:

fi(t) — fi(t)—pi(t) +Ri (1)
f,(t+At) — £ (t+ At) —qp; (t + At) + Ry (t + At)

In the NVT case described here, this leads to standard Velocity-Verlet, modified with the
above substitutions.

4.2.1 Langevin Equations for NPT Dynamics

The above Langevin dynamics method is a useful tool for sampling the canonical ensem-
ble. Sampling the isothermal-isobaric ensemble is also useful. A Langevin Dynamics

method to accomplish this is therefore desirable.

A general scheme for Langevin Dynamics in any Hamiltonian system has been presented
by Kolb and Dunweg (1999). This was applied to the original extended system of An-
dersen, which is Hamiltonian when operated in fractional coordinates. The equations of
motion for the volume, and the scaled momenta are converted to Langevin Equations.
The resulting dynamics are shown to sample the isothermal-isobaric ensemble with supe-
rior efficiency to the “Langevin Piston” method of Feller ez al. (1995), in which only the

equation of motion for the volume is converted to a Langevin equation.

The most commonly employed extended systems are non-Hamiltonian. The Andersen-

Hoover barostat (equations 3.20a to 3.20d) employs the strain rate as the auxiliary mo-



Chapter 4. Constant Pressure Langevin Dynamics 62

mentum. The response of the volume to pressure fluctuations is now logarithmic, making
the method considerably more robust than the original Andersen scheme. The Parrinello-
Rahman style scheme of equations 3.25a to 3.25d, which is desirable for solids, is also
non-Hamiltonian. The remainder of this chapter is concerned with the theory, implemen-
tation and testing of Langevin dynamics in these two systems as a method for sampling

the isothermal-isobaric ensemble.

4.3 The Statistical Mechanics of Extended Systems

The theory of non-Hamiltonian statistical mechanics must first be covered. The formalism
introduced by Tuckerman et al. (1999, 2001) is employed here. The essential results
are presented below. An alternative formalism employing algebraic brackets has been
introduced by Sergi (2003).

For brevity, the entire phase-space vector is denoted by the the quantity x. The volume
dx is an element of the total phase-space of our system which includes position and
momentum coordinates for all particles, plus auxiliary degrees of freedom. If the system

is subject to n, conservation laws of the form
Az) = (4.13)

then partition function for the system can be immediately written as

Q- /dx T16 (A (@) = M) (4.14)
k=1

only if dz is constant everywhere in the phase space. This is easily shown to be true for all
Hamiltonian systems in which the time evolution of the phase space vector corresponds
to a transformation with a Jacobian of unity. In contrast, it is simple to construct non-
Hamiltonian equations of motion for which dz is not constant. To generalise equation
4.14 to non-Hamiltonian systems, consider evolution by the equations of motion from
some initial time ¢ = 0 to time ¢. The Jacobian of this transformation J (z; : ) is the
missing factor in equation 4.14 which will account for the changing volume of the phase

space element. This Jacobian can be obtained from the following relationship

t
J(xp:mg) = exp [/ K (2, t") dt’}
0
_ ew(:ct,t)—w(a:o,O)’ (4.15)
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where « is the phase space compressibility V. -z. The statement that the phase space com-
pressibility is zero everywhere at all times for Hamiltonian systems is exactly equivalent

to the Liouville theorem. This will clearly give a unitary Jacobian.

For non-zero compressibility

w(xe,t)

e zp = eV @0y, (4.16)

and e” () g, is therefore the invariant phase space measure for non-Hamiltonian systems.
The factor ) can be considered a metric determinant factor /g (x;, t) where g is the
determinant of the phase space metric tensor G. This factor is unity for Hamiltonian
systems and hence phase space is flat. For non-Hamiltonian systems the extended phase
space is in general curved. Phase-space configurations of equal energy may not be equally
probable in non-Hamiltonian systems. This violates the fundamental assumption under-
lying statistical mechanics. The probability density p for a given ensemble is weighted
by the factor /g, and the Liouville theorem (2.3.3) no longer holds. A generalised Li-
ouville theorem for non-Hamiltonian systems is required. This must state that the total
time derivative of the ensemble probability density, weighted by this metric determinant

factor, must be zero. In the present notation this is stated as

0 .
@\/Ep + - Vyy/gp=0. 4.17)

Tuckerman et al. (2001) have used this formalism to prove that Nosé-Hoover chains cor-
rectly sample the canonical ensemble. The probability density in the extended phase space
is microcanonical due to conservation of the extended system energy. When weighted by
the appropriate metric determinant factor, the microcanonical ensemble for the particle
sub-space is recovered after integration over the auxiliary variables. This assumes er-
godicity in the extended phase space, and that all conservation laws present have been
accounted for. As has already been discussed, this cannot be guaranteed and may explain
the pathology of the Nosé-Hoover method when applied to the harmonic oscillator. Sim-
ilarly the isothermal-isobaric ensemble is shown to be reproduced when using the equa-
tions of Martyna er al. (1994). This is subject to equivalent assumptions for the pressure

regulating auxiliary variables.

4.4 Langevin Dynamics in Non-Hamiltonian Systems

Complications with performing Langevin dynamics in non-Hamiltonian systems have not

previously been addressed in the literature. The Einstein relation 4.10 was earlier used to
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balance diffusion and drift away from a constant energy contour, resulting in the canonical
ensemble. It did not account for any additional drift due to gradients in a non-Euclidean
phase-space.” As these gradients vary across the phase-space manifold, the accessible
portion of which will depend on the imposed thermodynamic constraints, constructing a

generalised Einstein relation is clearly non-trivial.
4.4.1 The Andersen-Hoover System

Equations of Motion

The equations of motion proposed are shown below. These incorporate the corrected
Andersen-Hoover equations 3.20a to 3.20d. The deterministic equations for the evolution
of both the particle and barostat momenta have been converted to Langevin equations

with different friction constants.

ho= Py for, (4.18a)

P = —vr.U—<1+i) e b —pi + R, (4.18b)
i N, )W

V = 3Vp/W (4.18¢)

. 3 <~ P

pe = 3V(P—P)+E;E—%pg+1%p. (4.18d)

R, is a stochastic ‘force’ which acts on the barostat. The use of a Langevin equation for
the barostat as well as the particles may have possible equilibration benefits, but is shown

by the analysis that follows to be non-critical in generating the desired ensemble.

‘P is the pressure estimator given in equation 2.30. It is worth re-emphasising that in
the non-Hamiltonian case this is not equivalent to an “instantaneous pressure.” The re-
sponse of the volume depends only on the difference between the Hamiltonian part of the

pressure, and the external pressure.

The values of R; are drawn from the same distribution as the NVT case above. Values of

R, are drawn from a Gaussian distribution of zero mean and unit variance scaled by

2kBTW’7p
_— 4.1
VA (4.19)

In the uncoupled limit (y — 0,7, — 0) equations 4.18a to 4.18b obey the Liouville

2In fact, equations 4.1a and 4.1b are themselves non-Hamiltonian. The Einstein relation can be consid-
ered a construction for time-averaged compensation of the drift gradient by a stochastic force.
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theorem

dp

dp
+ZFVr1P+ZPz p1p+pea + Vb =0 (4.20)
i=1

and conserve the quantity
= H+ PV +p?/2W, @.21)

where H is the Hamiltonian of the particle sub-system.

Justification

To show that equations 4.18a to 4.18d correctly sample the isobaric-isothermal ensemble,
the microcanonical (7 = 0) phase-space probability density for the extended system is

identified as, .
pemt (I'N, pN7 Des V) = et

The corresponding canonical probability density (in the extended phase space) should

S[H'(t) — H'(0))]. (4.22)

therefore be

pt (2N, PN, pe, V) = exp [—B (H+ PV +p2/2W)] (4.23)

1
Qe:vt
when employing finite friction coefficients. Following the earlier procedure, the Fokker-
Planck equation for the extended phase space density p resulting from equations 4.18a
to 4.18d is constructed. As with the generalised Liouville equation, this Fokker-Planck
equation must include the probability weighting due to non-zero phase space compress-

ibility. The compressibility of equations 3.20a to 3.20d is

N
. ZV rﬁZsz - oV ape
i=1

v 8p6
pre 3 pre 3pe
= Py 2 ) AP P
W ( +Nf) W tw T
=0 (4.24)

The metric determinant factor is therefore unity and need not be included in the anal-

ysis. Thus theoretical complications associated with the diffusion drift balance are not
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manifested in the Andersen-Hoover system. The Fokker-Planck equation is hence

dp al Pi  De 3\ Pe
i PP ) o f = (14 =) Eepy| -V,
5 + ; { (mi + T Vi,p+ + N, P Ve, p

N o

VP -P) oS R

_|_
Ny =1 U

a N
p] +9 Y Vo, - [Pip+mkpTVy,p],
=1

0
= ’Yp% [pep + WkBTap

(4.25)

where p = p*! (rN PV, pe, V). Equation 4.23 will be a solution if equations 4.18a to
4.18d correctly simulate coupling of the extended phase-space to a heat bath. This is
easily confirmed. Upon substituting 4.23 into 4.25 the LHS represents the total time
derivative of p and is zero. The RHS is also zero, a result guaranteed by using the Einstein
relation in constructing the Langevin Equations, and employing an incompressible phase
space. Again assuming ergodicity this must be the single stationary solution for a given
particle Hamiltonian. Integration of this p over all barostat momentum p, yields a constant

which is absorbed into the normalisation, and hence

p(xN,p", V) = % exp [—3 (H + PV)]. (4.26)

This is the correct probability density function for the isobaric-isothermal particle sub-
system. Performing Langevin Dynamics in the Andersen-Hoover extended system will
therefore correctly sample the isothermal-isobaric ensemble in the particle sub-space. In
justifying this, only ergodicity has been assumed. In addition the effect of the stochastic
force has been included only at the level of linear response. In contrast, deterministic
NPT schemes require the additional assumption that no unexpected conservation laws
are generated. However no approximations are required within this assumption. Both

approaches clearly have merits.

The condition that a suitable canonical probability density for the extended phase space
be a solution of the Fokker-Planck equations is not in itself a complete condition for
correct sampling. In fact, we could simply set both ~y and ~, to zero and 4.23 would still
satisfy 4.25. The equations of motion must also guarantee that the thermal equilibrium
represented by the Fokker-Planck equation can be reached from the initial conditions.
This is clearly not the case in the limit of zero friction where no heat can be “exchanged”
in or out of the system. It will only be the case if the one or more Langevin equations

employ finite friction leading to the required linear response term.
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4.4.2 The Parrinello-Rahman System
Equations of Motion

An implementation of Langevin Dynamics in a fully flexible simulation cell follows from
the Nosé-Hoover thermostatted Parrinello-Rahman scheme of Martyna et al. (1994) after

removing the Nosé-Hoover chains and converting to Langevin equations in the momenta:

. | 85 pg
. = P Py 427
r mi—l—Wgr ( a)
. p 1\ Tr[pg]
; = —V.® (Y, h) — =Lp, — | — 2p; —vp; + R; 4.27b
p @ (r",h) P (Nf> W P Ypi + (4.27b)
. pgh
h = 2ot 427
W, (4.27¢)
N p2
Py = V(P— Pyl + |— —mZ]I—ypnger (4.27d)
=y

The tensor P is that specified in equation 2.32. As before, the random forces R,; are drawn
from the same distribution as in the NVT case. Each component of the barostat buffeting

tensor R,, is drawn from a Gaussian distribution of unit mean and zero variance scaled by

QkaTWg’}/p
_— 4.28
VA (4.28)

In the case where v = «y,, = 0, equations 4.27a to 4.27d conserve the quantity

H =H (N, p") + ——Tr [pyp,]| + Pdet [h]. (4.29)

1
2W,
Justification

The justification that equations 4.27a to 4.27d correctly sample the fully flexible NPT
ensemble is somewhat more complex than the isotropic case above. The partition function

for the NPT ensemble can be written as
A= / Q(V)e PPV qy (4.30)
0

where () is the canonical partition function

QYY) = /00 /( e PR ar™ dp™. (4.31)
—oo J D(V
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We must express the isothermal-isobaric partition function in terms of the matrix h, not

the volume, to analyse equations 4.27a to 4.27d. The expression
A= / Q(h)e AP detih] g (4.32)

is not the correct NPT partition function. Each volume V = det [h] will be counted
multiple times in the integral as the matrix h for a given volume is not uniquely defined.
A set of cells with the same volume exists, which if the dynamics are modularly invariant,
share a common canonical partition function Q(V). Martyna et al. (1994) have shown
that the correct NPT partition function is reproduced if the contribution from each h is
weighted by the inverse of its volume squared. The isothermal-isobaric partition function

expressed in terms of h is therefore
A= / h Q(h)e~ APt det 0] dh (4.33)
and the probability density is
p— %exp (=3 (H + Pdet [h])} det [h] 2. 434)

This must be produced by equations 4.27a to 4.27d in the sub-space of the particle plus
cell degrees of freedom. To determine if this is the case, the extended phase space in the
v =7, = 0 case is examined. Here the quantity A’ (4.29) is conserved and the probability

density is microcanonical.

1
- Qext

Pt (e, ", py, h) o [H'(t) — H'(0))]. (4.35)

The corresponding canonical probability density (in the extended phase space) should

therefore be

P (¥, pY Py, h) = —— exp {—f (H + Pdet [b] + Tr [pypg | /2W,) }

(4.36)

1
Qext

when the damping and stochastic components are used. This should be a solution of the
Fokker-Planck equation equivalent to equations 4.27a to 4.27d if these are to correctly

sample phase-space. In constructing this equation, any non-zero compressibility of the
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extended phase space must again be accounted for. This is calculated as

3 3 0 5. L0 (py) )
DI By W, DD g » (4.37)
which can be simplified to

k= 2Tr[py] /Wy — 3Tr [py] /W, + 3Tr [py] /W, + 0
= 2Tr[p,] /W,. (4.38)

The scalar strain rate ¢ is identified as Tr [p,| /2W,. The Jacobian of the coordinate

transform which takes the system from ¢ =" 0 to ¢’ = t is therefore

t
J (£;0) = exp ( / Gédt’) : (4.39)
0

and hence the phase space metric determinant factor is

V;”ef 1
V2% et [h]*’

g9(t;0) = (4.40)

where V,..s is the volume of the cell to which the strain is referenced. This is non-zero
and hence the Einstein relation is invalid in the extended phase space. The Fokker-Planck

equation is,
dp Y /pi P
v Ll —grl -V Pw

N -
' 7 Wg 7 Nf W 7 pi Fw

i N
Pi | Opuw
+ (P P(sa,g det =
azﬂ i Zl my ] Py aﬁ
psh dp =
" g ) “— =7 > Vp, - [Pipw + mkpTVp,pu]
a8 ( W af 8(h)aﬂ 12:1: i i

Dpuw
+ vpz o) [pg asPw + W, k-BTa(p )OA : (4.41)
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where p,, is the weighted probability p (r™, p", py, h) / det [h]*. If p from equation 4.36
is substituted, the left hand side of this equation becomes zero. This is the total time
derivative of p,, which is zero in accordance with the generalised Liouville theorem. The
background system in which the Langevin dynamics simulation is conducted therefore has
a constant, but non-uniform weighted microcanonical probability density which conserves
equation 4.29. The right hand side is however not zero. The non-Hamiltonian probability
gradients have invalidated the balance of diffusion and friction for the Langevin equation
in the cell momentum as anticipated. In the case where symmetric pressure and cell
buffetting tensors have been used to eliminate cell rotations, the imbalance is proportional
to V.

If ~, is set to zero while retaining a finite particle friction coefficient v, thermal equi-
librium 1is still guaranteed for the cell degrees of freedom via thermalisation with the
particles. This may require longer equilibration times than the isotropic case where we
can couple the cell directly to the Langevin heat bath, but avoids the need to construct a
generalised Einstein relation for the non-Euclidean phase-space. The diffusion drift bal-
ance is only maintained in directions perpendicular to probability gradients, where the

Einstein relation holds.

In this case 4.36 is indeed a solution of the Fokker-Planck equation, and the corresponding

weighted density is

exp {—3 (H + Pdet [h] + Tr [p,p!])}

V. pV.p,, h) = . 4.42)
Assuming ergodicity in pg, the distribution in the particle plus cell phase space is
Vop (v, p" h) = / Vap (v, pY, py, h) dp,
1
= R eXP {—B3 (H + Pdet [h])} det [h] 2. (4.43)

where the constant resulting from the integration is absorbed into the new normalisation.
This is exactly the correct function for the fully flexible NPT ensemble as identified in
equation 4.34. Again assuming ergodicity, this must be the only solution of 4.41 and
hence the equations 4.27a to 4.27d correctly sample the NPT ensemble provided -, is set

to zero.
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4.5 Numerical Integration

In this section, numerical algorithms for the two methods introduced in the previous sec-
tion are obtained following the same strategy employed by Kolb and Dunweg (1999) for
Hamiltonian system. This involves applying the formalism introduced in section 3.3 to
the equations in the zero friction limit. Integrators for the finite friction case are then re-
covered by adding the dissipative friction and diffusive stochastic forces to the interaction
force wherever it appears. The integrator for the Andersen-Hoover based scheme only is
derived here. The analysis for the Parrinello-Rahman style scheme proceeds in an almost

identical fashion.

The Liouville operator for equations 4.18a to 4.18d in the limit of zero friction is

SR B R )
~ Tor " Pap "B TPy,

= L, +iL,+1L.+ 1L, _. (4.44)

The following Trotter factorisation of the resulting time-step evolution operators was

found to be the most convenient:

ezLAt _ ezLEAt/Qesz€ At/2eszAt/ZeerAteszAt/QeleE At/2€zL6At/2’ (445)

which leads to the following integration algorithm if the application of each time-evolution

operator is interpreted as a Verlet-like step.

1 YHRAt = Py SEP [V ]

t+1AL . 1
2. pe? =p3+%&[mpaw+ﬁﬂm]
t+1iAt . 1At
3.p; ° =m+%mFM$M2}

1 1
t+AL ot . + t+=At t+=At
4. r;77" =1, + Atr; [ri,pi 2T pe ?

1 1 1
t+At t+§At At - t+At t+§At t+§At
5. p; =DP; + 5 Pi |T; L ) V€

1 1
jrAL _ EEEAL AL | AL AL Yt lag | AL
6' € = Pe +Tpe I'Z- 7pz‘ 7V 2 » Pe

7JWN=W+%VP%N%MT

Making the appropriate substitution for the particle forces at each time-step, the Langevin
buffeting and damping terms are included and denoted as extra dependences of the time

derivatives.
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Figure 4.3: Long term stability of the fully flexible Langevin NPT algorithm. The figure shows
the total and potential energy in a simulation of 216 silicon atoms in the diamond structure at
298K, 1 atm. The total run length at equilibrium corresponds to 12 million MD steps, with no
discernable drift in the energies. The potential of Tersoff (1989) is used in the GOLDILOCS code
to model silicon.
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This and the equivalent fully-flexible algorithm are implemented within the GOLDILOCS
code. The integrators have been found to be suitably stable. The formal energy conser-
vation properties of algorithms derived in the Liouvillian formalism has however been
lost due to the introduction of velocity dependent and stochastic forces. In thermal equi-
librium, and provided that a correctly distributed set of pseudo-random numbers is em-
ployed, the net effect of these forces is zero for times longer than the timescale (1/7)
of the stochastic process. It is therefore expected that the total energy will fluctuate, but
with zero long term drift. This is demonstrated for the fully-flexible algorithm in figure
4.3. The inclusion of velocity dependent and stochastic forces has also sacrificed time
reversibility. Despite this, it is shown in the above Fokker-Planck equations that the total
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time derivative of the weighted probability density is zero for both systems. The method
is therefore still symplectic to within the assumptions implicit in the Fokker-Planck for-

malism.

4.6 Parameters

Performing Langevin dynamics in the above non-Hamiltonian systems has been shown
to sample the NPT ensemble. The dynamics must also remain representative of the sys-
tem in question by careful choice of the friction coefficient -y, ensuring that the stochastic
component does not dominate over that generated from the model Hamiltonian. In addi-
tion, careful choice of barostat ‘mass’ parameter W or W, is also required to ensure the

effect of density fluctuations is realistic.

4.6.1 Particle Friction Coefficient using Memory Functions

This section explores the utility of the memory function for calculating an estimate for

the parameter -y, as discussed by Kneller and Hinsen (2001).

Definition

The memory function £ for a correlation function v is defined as

d t
d—lf _ /0 E(t— )0 (r)dr (4.46)

The rate at which a system decorrelates is the cumulative sum of the correlation function at
all previous times, weighted by the memory function. For atomistic simulation, a suitable

correlation function to work with is the velocity autocorrelation function. This is defined

(vi(t)-vi(0))
(vi (0) - v; (0))

where the average runs over all particles ¢ = 1... /N at time . This is easily calculated

as

W (t) = (4.47)

from a molecular dynamics trajectory. It describes the average decorrelating effect on the

trajectory of an individual particle, due to all other particles in the system.
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Calculation

In principle, a memory function can be calculated directly from the Laplace transform
of the corresponding correlation function. In practice, such calculations are prone to
severe numerical problems. An alternative method has been proposed by Kneller and
Hinsen (2001) and adopted here. This is based on an autoregressive model of the process
responsible for the temporal decorrelation of our single particle motion. Although in
principle deterministic, the process is the result of the combined influence of a great many
degrees of freedom (the other particles in the system) and can be treated as stochastic. The
memory function is hence recovered by employing signal processing techniques used to

quantity the effect of this ‘noise.’

The autoregressive model is implemented in the freely available code NMOLDYN (Rog
et al., 2003). An interface to the code has been created by the author, allowing memory
functions to be calculated from GOLDILOCS trajectories.

Application to Langevin Dynamics

The generalised Langevin equation employs a time-dependent friction kernel and is writ-

ten as .
b= / £(t—7)pi (1) dr + R, (4.48)
0

which in the extended phase space of the Andersen-Hoover system becomes

. 3\ pe '

for the particle degrees of freedom. In the Parrinello-Rahman phase space, the equivalent

is

o — v P _ (3 Itlp 4_/t M, .
pi=—V® (Nf> W, P i E(t—71)pi (T)dT + R, (4.50)

Comparing to equations 4.18b and 4.27b, it can be seen that the stochastic component of

the dynamics is generated within the approximation
)y =~o(t —1t). 4.51)

To retain consistency with this approximation, the value of gamma should be equal to

Y= 50 = / gact(T)dT7 (452)
0



Chapter 4. Constant Pressure Langevin Dynamics 75

Given the memory function for the ‘real’ system, it is hence possible to determine the
effective friction coefficient experienced by a particle. This value, denoted here as 7,
marks the watershed between two ways in which the Langevin equation can be employed
in a simulation. If v < 7,4, the particle dynamics will dominate effectively generating a
‘Langevin thermostat’. Alternatively, with v > 7,,,¢, true Langevin dynamics simulations
are obtained, in which some short term accuracy in short-term dynamics is sacrificed in

favour of increased statistical efficiency.

Of course if a true bulk simulation from which to compute a memory function was avail-
able, there would be little utility in performing a smaller Langevin dynamics simulation
from which to obtain thermodynamic averages. However computing a memory function
from a large simulation with a cheap classical potential may provide a useful starting
point in identifying optimal parameters for a much smaller ab-initio simulation. In ad-
dition, a friction coefficient calculated from a memory function will give a starting point

from which values at other state points can be estimated.

4.6.2 Choice of Cell Mass

Martyna et al. (1996) state that the fictitious mass associated with the Andersen-Hoover

barostat should be chosen according to
W = 3Nk, /w3, (4.53)

where wj, is a frequency associated with the volume oscillation. This relationship can
be recovered in the ideal gas limit of equations 4.18a to 4.18d. In this case the volume
oscillates harmonically at w;. Similarly the Parrinello-Rahman cell mass should be chosen
according to

W, = (N; + 3)kgT/3w;. (4.54)

The choice of fictitious mass therefore reduces to the determination of an appropriate fre-
quency. If this is very small, the motion of the cell becomes effectively decoupled from
that of the particles. If this is too large, the barostat may dominate over the interaction
forces. For simple liquids, choosing the barostat frequency to be approximately ten times
smaller than 277 (the frequency associated with the diffusion-drift process) is generally
suitable. For solids however, care must be taken that w, does not interfere with the vibra-
tional frequencies of the crystal. A method for identifying a suitable w; for solids is given
in example 4.7.1. This is based on ensuring that the effect of the Langevin dynamics in

frequency space is not disrupted by wy,.

It should be noted that the choice of wj for these Langevin dynamics schemes can be
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considerably more difficult than in the Nosé-Hoover case. The latter method operates
at a well defined single frequency wyy which can be related to the fictitious mass ()
of the heat bath variable. It is therefore trivial to choose wj to be well separated from
this, avoiding disruption of the thermostatic process. Langevin dynamics methods for
temperature control operate over a wide frequency range (Allen and Tildesley, 1987).
Avoiding this may therefore sometimes require wy, to be smaller than in the Nosé-Hoover
case. Experience has shown that failure to do so can lead to poor temperature control. This
requirement of a smaller w;, could negatively impact statistical efficiency. No problems
of this nature have been encountered in the examples below. However, the simulations
reported in chapter 7 have manifested these issues when simulating extreme pressures
at low temperature. In this regime the stochastic forces are weak in comparison to the

applied compressive stress, and are hence easily disrupted by a poor choice of wy,.

4.6.3 Choice of Cell Friction Coefficient

For Langevin dynamics in the Andersen-Hoover system, a value of the cell friction coef-
ficient -y, should also be specified. It is possible to perform a simulation employing zero
friction for the cell, and hence to compute a memory function for its motion. This is not
useful in practise. An optimised choice of -, has little effect on the particle dynamics and
hence offers little improvement in overall sampling efficiency. In the GOLDILOCS code
7p is set to 0.1w, /27, i.e. the timescale associated with the diffusion drift process along

the volume axis is ten times slower than the expected volume oscillation period.

4.7 Examples

Example simulations of three systems are presented below. These are intended to be

illustrative of the methodology rather than a complete listing of all cases tested.

4.7.1 Lennard-Jonesium

The Lennard-Jones pair potential has become the standard benchmark for the testing of
algorithms. Much development work was conducted with this model. Two examples
are given here. The potential is truncated at r;; = 2.50. The force-shifting method is
employed as described in section 3.5.2. Measured quantities are presented here in the
usual dimensionless reduced units. Energies are quoted as multiples of the well depth e,
lengths as multiples of 0. Reduced temperature 7 is calculated as kp7'/¢e, with pressure

P* = Po?/e. Time is measured in units t* = (m/¢)'/?c where m is the atomic mass.
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Figure 4.4: Memory function for the Lennard-Jones liquid at T* = 1, P* = 0.5 (left). Increasing
the system size provides no useful increase in accuracy. The distribution of temperature and den-
sity samples during the subsequent Langevin dynamics simulation are shown on the left compared
to the expected function for the NPT ensemble (solid lines).

Bulk Liquid

At a temperature 7™ = 1 and pressure P* = (.5 the truncated and force-shifted Lennard-
Jones potential lies firmly in the liquid region with a density of approximately p* = 0.63.
The memory function computed from a large NVE simulation at this density and temper-
ature is shown in figure 4.4. A natural friction coefficient of ,,; = 0.50 is obtained by
numerical integration. Simulations were conducted using a value 10 times larger than this
for increased sampling efficiency. As this is a simple liquid with no well defined natu-
ral frequencies, wj, for the Andersen-Hoover barostat can be chosen with some freedom.
This was set to one tenth 27y, avoiding possible resonance of the volume with the particle

thermostat.

A time-step of 0.0045 is employed in a cubic cell of 500 atoms. The system was equili-
brated for 10, 000 steps and then sampled every 10 steps for a further 500, 000. The result-
ing distributions of temperature and density samples are shown in figure 4.4. The mean
and variance of the density distribution yield an average density of p* = 0.6337 £ 0.0003
and bulk modulus 3;. = 2.90 £ 0.02. These compare to p* = 0.6335 = 0.0003 and
B = 2.90 £ 0.02 from a simulation of the same length using multiple Nosé-Hoover
chains. Errors are corrected for correlation between samples by using both the block av-
eraging method (see Allen and Tildesley (1987)) and by explicit calculation of the volume
autocorrelation function. The volume correlation times for both simulations is approxi-

mately 85 samples.
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Figure 4.5: Fourier Transformed temperature (top) and corresponding distribution of density
samples compared to the correct function (bottom). In the left hand case the cell frequency has
been chosen to be smaller than the lowest characteristic frequency of the solid. The natural mo-
tions of the crystal are not disturbed and correct sampling of density is achieved. In the right hand
case the choice of wy, has disrupted the crystal vibrations, leading to incorrect sampling.

Bulk Solid

At a temperature 7™ = (0.167 and pressure P* = 1.18, the density of the solid is approx-
imately p* = 1.05. A memory function computed from a 4,000 atom NVE simulation
suggests a friction coefficient of v = (.23 as suitable. An appropriate choice for the fre-
quency wy, must now be located. The strategy adopted is to examine the Fourier transform
of some dynamical quantity in our simulation. This will exhibit a feature at wj, which is

required to be well separated from the characteristic frequencies of the crystal.

The cell motion interacts with the particles in two ways. The first is through the additional
force which acts on each particle proportional to the cell momentum (equations 4.18b and
4.27b). This is a single particle effect. The second is through the rescaling of all particle
coordinates as the cell moves. This effects all N particles simultaneously. Choosing to
Fourier transform a single particle property, such as the velocity autocorrelation function
is not useful. To gain reasonable statistics this is generally computed by averaging over
all particles, during which the single particle influence of the cell motion will vanish.
We should therefore compute the Fourier transform of a property dependent on all N

particles, such as the total kinetic energy or temperature estimator.

A suitable w;, can hence be found by performing an NV'I" Langevin dynamics simula-
tion and computing the Fourier transform of the temperature. A series of short NPT

simulations with varying w; can then be conducted, and the effect on the temperature
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Figure 4.6: NVE memory function (left) and NPT temperature and volume sample distributions
(right) for silicon at 295K, 1 atm. The NPT runs were conducted at atmospheric pressure. The
solid lines shown are the theoretical distributions, calculated assuming B = 95.6 GPa in the
volume case. Experimentally p = 2330 kg m™3, fr = 100 GPa.

spectrum determined. The spectrum for two values of w;, and the resulting distribution of
density samples is shown in figure 4.5. Simulations were conducted with the fully flexible

Langevin NPT algorithm.

Clearly this procedure is time consuming. However once a suitable value for w;, has been
identified, it can be expected to be suitable for simulations at a range of temperatures
and pressures. The information can therefore be re-used, provided the distribution of
temperature and density samples is checked for each simulation, computing a new wy if

necessary.

Data from the simulation on the left of figure 4.5 have been compared to the Nosé-Hoover

case with similar accuracy to that for the liquid simulations above.

4.7.2 Silicon

The silicon model implemented in the GOLDILOCS code is the bond-order potential of
Tersoff (1989). This is known to reproduce the solid phases of silicon with reasonable
accuracy. In this section a simulation of the bulk diamond structure is performed at room

temperature and pressure. Results are compared to experiment.

A silicon memory function was computed from NV E simulations at the experimental
density using both 216 and 1000 atoms. Temperatures were rescaled during equilibration
to a temperature of 295 K. A time-step of 1.8 fs was determined to maintain suitable con-

servation of the energy. The resulting memory functions are shown in figure 4.6. It would
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Figure 4.7: Illustration of the nanotube supercell. The isotropic cell dynamics constrain the shape
of the cell such that interaction (and hence pressure) is removed in directions perpendicular to the
tube.

seem that the memory function has not yet converged to that of the bulk, however we can

expect the calculated friction coefficient to be representative.

The resulting transport coefficients indicate optimal thermostat relaxation times of 14.3
and 20.0 ps from the 216 and 1000 atom cell respectively. An NPT Langevin dynamics
run is then conducted based on this information. A relaxation time of 5 ps was chosen
for the thermostat, sacrificing some accuracy in short-term dynamics. A suitable value
of wy = 2.1 x 1079 rad fs~! was identified from a Fourier transformed NVT temperature
profile as for the Lennard-Jones case above.

Using these parameters, a Langevin Dynamics simulation of 216 atoms in a fully flexible
cell was conducted for 4,000,000 time-steps using a larger time-step of 2.4 fs. Tempera-
ture and volume were sampled every 10 steps. The resulting distributions of temperature
and volume are plotted in figure 4.6. The bulk modulus calculated from the fluctuations in
volume is Oy = 95.6 + 0.2 GPa. Both this and the average density are in good agreement

with experiment.

4.7.3 Carbon Nanotubes

In this section we shall use the constant pressure Langevin Dynamics methodology to
study the effect of axial stress on the length on a (8,8) single-walled carbon nanotube.
Interactions between carbon atoms are modelled using the potential of Brenner (1990);
Brenner et al. (1991). This is a simple modification of the Tersoff potential employed in

the previous section.
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Figure 4.8: Nanotube length against applied pressure. Error bars become visible only at magni-
fication (inset).

Boundary Conditions

In order to apply pressure in one direction only (i.e. along the tube,) interactions between
nanotubes in adjacent image cells must be eliminated. This is achieved by ensuring that
the distance between the tube and its images is much larger than the cut-off range of the
Brenner potential. The use of isotropic cell dynamics ensures that this condition remains
satisfied as illustrated in figure 4.7. The cell vectors perpendicular to the tube direction
do change, but not sufficiently that forces appear between tubes. The effective pressure
is therefore applied along the tube only, the other diagonal components of the applied
pressure tensor having no effect.

Simulations and Results

For a range of applied pressures, ranging from 3 GPa of tension to 1 GPa of compression,
a series of Langevin dynamics simulations were conducted at a temperature of 100 K.
A time-step of At =2.4fs is used. An equilibration period of 5, 000At is employed
before evolving for a further 100, 000 time-steps. The tube length is sampled every 10At.
Thermostat and barostat relaxation times are set at 100 fs and 15 ps respectively. These
are taken from earlier simulations of graphite (Quigley and Probert, 2005). The resulting

plot of tube length against applied pressure is shown in figure 4.8.

The Young’s modulus computed from the linear portion of this plot is 36.2 GPa. This does
not compare well with the calculations of Ogata and Shibutani (2003), who measure the
modulus for (8,8) tubes as 979 GPa with tight-binding calculations, and 1008 GPa when
employing density functional theory within the LDA. Ogata and Shibutani employed a

stress range of 0 to 100 GPa at zero temperature to compute these values, which agree
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well with experimental measurements in the range 900 — 1000 GPa, and the in-plane bulk
modulus of graphite (= 1000 GPa).

No finite temperature simulation studies have been reported in the literature.

Using the Brenner potential at zero temperature within the GOLDILOCS code, a Young’s
modulus of 37.8 GPa is measured for tensions between range 0-3 GPa. This indicates that
the discrepency is a fault of the Brenner potential and not of the sampling scheme. It
should be noted that an improved version of the Brenner potential is available (Brenner
et al., 2002) which gives significant improvements in energies and forces. Simulations
with this potential may give improved elastic properties. It is clear that the original Bren-

ner potential is not suitable for simulations of nanotubes under stress.



Chapter 5
Phase Transitions

In this chapter the physics of phase transitions is discussed with particular focus on tem-
perature/pressure driven transitions in single component atomic systems. The issues asso-
ciated with locating phase transitions by simulation of a model system will be discussed.
The work presented in this thesis is concerned with equilibrium phase transitions only.
The systems of interest obey classical statistics. Intrinsically quantum phase transitions
such those involved in superconductivity and Bose-Einstein condensation are not relevent

to this discussion.

5.1 Phase Transitions

It is useful to consider each phase of a substance as corresponding to a minimum on the
free energy landscape defined by the Hamiltonian and thermodynamic conditions. Ele-
mentary statistical mechanics states that a system will preferentially occupy the minimum
with the lowest free energy, providing a means for determining which phase will be man-

ifested under given conditions.

For all phase transitions there is a change in some order parameter. In the case of melting
this is easily identified as a crystalline long-range order parameter which varies from one
(perfect order) to zero (disordered) across the transition. For the liquid-gas transition the
order parameter is related to the density difference between the two phases. It is common
to divide phase transitions into those in which the order parameter varies discontinuously
across the transition (first order) and those in which the change is continuous. This classi-
fication of either first-order or continuous behaviour has widely replaced the classification
of Ehrenfest'.

'Tn the Ehrenfest classification, the order of a phase transition is that of the lowest derivative of the
Gibbs free energy which exhibits a discontinuity at the transition.

83
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5.1.1 Stability

It is important to distinguish between thermodynamic and mechanical stability. Any phase
which corresponds to a minimum on the free energy landscape will be mechanically sta-
ble. The lowest free energy state is thermodynamically stable and will be obtained pref-
erentially in equilibrium. Other mechanically stable states are termed metastable states.
If the system is ergodic, a system initially in a metastable state will eventually locate the
thermodynamically stable minimum. Hence a metastable state has a finite lifetime. A
relevant example is a supercooled liquid, i.e. a liquid which has been cooled below its
thermodynamic melting temperature without freezing to a solid. A system initially in a
thermodynamically stable state will remain so indefinitely. The lifetime in a metastable
minimum is related to its height above that of the thermodynamically stable state, and to
any free energy barrier which separates them. This can be very short on thermodynamic
timescales, e.g. a superheated solid. The lifetime can also be very long, for example in
the diamond phase of carbon which is metastable with respect to graphite under ambient
conditions. The lifetime in this case is extremely long due to the small energy difference

between the two forms and a large energy barrier between them.

If more than one metastable phase exists, it is possible for a transition to exist between
them without proceding via the thermodynamically stable state. This is referred to as a
metastable phase transition. For example Crain ef al. (1994) have presented evidence of a
transition between two metastable high density phases of silicon which does not involve

the thermodynamically stable diamond structure.

5.1.2 Phase Coexistence

Well away from a phase boundary, a single phase has much lower free energy than any
other. In this limit the Boltzmann probability of this single phase will dominate. Close
to a phase boundary the free energy minima of two phases are of similar depth. The
associated Boltzmann factors are no longer separated by orders of magnitude. It becomes
possible for the second phase to be explored with appreciable probability. In this situation
a sample of a substance will begin to nucleate a second phase, existing in a mixed state
subject to the increase in energy associated with forming an interface. At exactly the
transition temperature and pressure the two minima are of equal free energy and coexist
with equal chemical potential x. An illustration of free energy progression during a first-

order transition is shown in figure 5.1.

For transitions in which the order parameter varies discontinuously, a mixed phase state

can sometimes be enforced by applying a constraint. Suppose that in figure 5.1, the value



Chapter 5. Phase Transitions 85

G

phése 1 phase 2

Figure 5.1: Evolution of the free energy G with temperature during a phase transition between
two states with different values of the parameter X (sketch). At T only phase 1 is stable. At Ts the
second phase has become metastable. T3 is the transition temperature at which the free energies
of both phases phases are equal. At Ty phase 2 is thermodynamically stable, with phase 1 existing
as a metastable state. At T only phase 2 is accessible.

of A at T5 was constrained to lie between the values at the two minima. This configuration
lies on an energy barrier, i.e. is not favourable. The system can lower its free energy
by separating into fractions of phase 1 and phase 2 such that constraint on A is satisfied,
again subject to the cost of creating an interface. For values of ) in the tail of the energy
barrier, the cost of creating an interface is too great and the system remains in a single
phase metastable state. Phase separation will occur only in situations were the mixed

phase region is highly unfavourable. It is hence an indication of first order behaviour.

5.1.3 Ciritical Phenomena

It is logical to ask where a line of phase transitions (a phase boundary) comes to an end.
In some cases two lines intersect at a triple point where three phases can coexist in stable
equilibrium. Metastable transitions can end in a spinodal line, i.e. that which marks the
boundary between metastable and mechanically unstable behaviour. A third possibility
exists. The line of phase transitions can end in a critical point at which the distinction
between the two phases disappears. The best known examples are the liquid-gas transition
and the magnetisation transition in ferromagnets and spin lattices such as the Ising model.
The former is of relevance here. Multiple critical points may exist for some systems. This

is a point of much interest as will be seen in the next chapter.

In the region of a critical point the behaviour of a system is singular. The details of the
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singularity are specific to a universality class rather than being related to the microscopic
details of the system. The behaviour of the Lennard-Jones liquid-gas critical point is for
example analogous to that of the Ising model. The application of scaling theory (which is
not covered here - see Stanley (1971) for an introduction) leads to power law descriptions

of critical behaviour. When applied to critical points in fluids the following results are

obtained.
kp ~ |t|77 (5.1b)
Cp ~ |t|7, (5.1¢)

where the reduced temperature t = (7' — T..) /7T, and T, is the temperature at the critical
point. kp is the isothermal compressibility, which is the inverse of the bulk modulus.
Estimates of the critical temperature can be made by fitting measured data to these forms.

The critical exponents «, § and ~y are related by the Griffiths inequality
a+v+26=2. (5.2)

With the critical temperature known, the density p} at the critical point can be obtained

from the law of rectilinear diamters

*' + *as
@%#L:£+MW—ﬂy (5.3)
From equation 2.24 and 2.23, if Cp and xp diverge, then fluctuations in enthalpy and
density become unbounded. The correlation length £ measures the spatial range over

which the system exists in a single phase. At criticality this behaves as
E~ |t (5.4)

diverging to distances much larger than any simulation cell. This makes precise location

of the critical point difficult by simulation.

5.1.4 Computer Simulation

In fact, phase transitions in general present a real challenge for computer simulation.
For a given model Hamiltonian, can the preferred phase at a given temperature, pressure
and density be identified? Can boundaries between phases on a pressure-temperature,
temperature-density or density-pressure phase diagram be located? Fundamental differ-

ences exist between the behaviour of a model system with a small number or particles
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(10? — 10%), and the thermodynamic limit in which the number of particles in extremely
large (~ 10%). The timescale accessible to simulation (~ 100 ps) is also very small on
the thermodynamic timescale. Despite these issues, the location of phase transitions via

computer simulation has become feasible for increasingly complex model systems.

Discussion of methods available to computer simulation for the location of phase transi-
tions follows. Attention is concentrated on methods which have been implemented for the
work in this thesis. For a wider discussion see the recent review by Bruce and Wilding
(2003).

5.2 Single-Phase Methods

Naively, location of phase transitions in a computer simulated model system is a trivial
matter. As an example, consider melting from a crystalline solid at a specific pressure. In
three dimensions this is a 1st order phase transition. A simple procedure would seem to
be:

1. Beginning from a perfect solid, conduct a series of NPT simulations at increas-
ing temperature. Measure a crystal order parameter for each simulation and locate
the first temperature at which this decays to zero. This will be accompanied by a

discontinuous volume change.

2. Refine the result by sampling at smaller temperature intervals. Measure the average
length scales over which the system exists in each phase. Locate the temperature

where the length scales are equal, and hence the phase boundary.

This strategy is doomed to failure due to finite size effects in both the spatial and temporal
limitations of a real simulation. Consider the situation at 75 in figure 5.1. Consider
the case where the solid is phase 1 and the liquid is phase 2. If the system is heated
from the solid to temperature 73, nucleation of the liquid phase would be expected. On
the ergodic timescale, all areas of phase space are explored with the correct weight, the
barrier crossing required for nucleation should therefore occur. However, due to the height
of the barrier, such events are extremely rare on the picosecond timescales accessible to
simulation. In addition, with a small system size, the cost of creating an interface between
two phases is large on the energy scale of the simulation. Configurations from which
nucleation can occur are therefore also rare. Nucleation of the liquid phase is suppressed
until significantly higher temperatures, at which the barrier crossing probability is much

higher and the energy cost of the interface is comparable to the free energy recovered in
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Figure 5.2: Isotherm in the liquid-gas region (left). In true bulk the system will proceed directly
along the line A-C on increasing volume. This line marks the coexistence pressure. In a finite size
system, suppression of nucleation leads to the hysteresis shown. Liquid-vapour coexistence in a
system of 5,000 Lennard-Jones particles created by simulating at constant density and temperature
inside the co-existence region in shown on the right.

the transition. In fact melting may not be observed until temperature 75 when the solid

phase has become mechanically unstable.

For these reasons, a single phase simulation will not give the correct transition tempera-
tures with achievable system sizes. For example, McBride ef al. (2005) have shown that
a single phase simulation of ice will superheat to temperatures of 90° C before melting is
observed!

5.2.1 Hysteresis and the Maxwell Construction

It is however possible to locate a first-order phase transition to within useful accuracy
with single phase simulations. Consider the liquid-gas transition. Beginning from a lig-
uid state, an isotherm can be traced by sampling the pressure over a series of NVT sim-
ulations. As the volume is increased the sampled pressure decreases. This continues as
the volume increases into the metastable region, and eventually reaches a minimum be-
fore the onset of phase separation. Decreasing the volume from a gas state will lead to a
pressure maximum in the supercooled regime. An example of the resulting hysteresis is
shown in figure 5.2. This is often referred to as a van der Waals loop as the effect can be
reproduced from the well known van der Waals equation of state. Loops of this kind are
often taken as a definitive indication of a first-order phase transition. The hysteresis is a

manifestation of finite size effects and will not occur in the thermodynamic limit.

The transition pressure can be computed from an isotherm of this kind. At fixed volume,



Chapter 5. Phase Transitions 89

the relevent free energy is the Helmholtz potential, the derivative of which with respect to

volume is
oF

S| =~ Pl 65

T
At the coexistence pressure P, the difference in free energy between the two phases is
zero. This must be equal to the integral of the above equation between the two equilibrium

volumes at the coexistence pressure.

Vii

Fitg — Fyao = / " pav (56)
Vgas

P, e, 1s therefore the pressure at which the van der Waals loop is divided into two seg-

ments of equal area. This is the Maxwell construction illustrated in 5.2. At the critical

temperature the volume difference vanishes and there is no metastable region. The crit-

ical isotherm exhibits an inflection at the critical volume. Isotherms above the critical

temperature exhibit positive gradient only.

Single phase methods are employed in chapter 7 to locate an approximate liquid-gas crit-
ical temperature as a starting point for more accurate methods. The liquid portion of
the van Der Waals loop is plotted for a range of temperatures. The critical temperature
is estimated as the lowest temperature for which the isotherm has no region of positive

gradient.

Other Transitions

The Maxwell construction is only useful for transitions in which phase separation can
occur within a simulation. The cost of forming a solid-liquid or solid-solid interface is
prohibitive. In these cases a simulation constrained at a forbidden density will prefer to

cavitate, forming regions of a single phase and of vacuum.

5.3 Two-Phase Methods

While nucleation of a second phase is unlikely to occur spontaneously in a simulation of
tractable size, the problem can be bypassed by specifying initial conditions in which two
phases are already present. Such simulations can yield information about the thermody-
namics of a phase transition. This approach is most useful for studies of melting where a

realistic interface between solid and liquid is easily constructed.
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Figure 5.3: Snapshot of equilibrium in a two-phase melting simulation of 2048 Lennard-Jones
particles. The interface was initially constructed along the (100) direction in the centre of the cell.

5.3.1 Melting transition

To construct such an interface, a supercell of the solid structure is first created. The
atoms which are to remain in the solid phase are constrained at their initial positions
by either excluding them from Monte-Carlo moves, or employing Lagrange multipliers
in the molecular dynamics case. The remaining atoms are simulated at a temperature
beyond the point of mechanical instability. This creates a solid-liquid interface along any
crystal plane of interest. The direction along which the lowest free energy interface can

be formed is typically the (100) for cubic crystals and the (1010) in hexagonal systems.

If this construction is performed in a fixed cell, both phases will have the same density.
As the melting transition is generally first order such a constraint is unphysical. Result-
ing simulations will exhibit anisotropic pressure as the liquid attempts to expand at the
expense of the solid, perpendicular to the interface. Alternatively, the construction can be
performed in a variable cell (NPT) simulation with the solid atoms held constrained with
respect to the cell vectors. However this leads to to anisotropic expansion of the solid
portion, again leading to non hydrostatic internal pressure. Morris and Song (2002) have
attempted to overcome this problem by adjusting the dimensions of the cell on one side

of the interface cell until the pressure is hydrostatic.

Two phase solid-liquid simulations with initial conditions such as these have been em-

ployed in two ways.

NVE Method

Simulations are conducted in the NVE ensemble. If the conserved energy results in a
temperature above melting, part of the solid will melt. This process absorbs latent heat,
and hence the temperature will lower. Similarly if the temperature is too low part of the
system will solidify, releasing latent heat and causing the temperature to rise. Provided
that the system does not entirely melt or entirely solidify, an equilibrium will be reached
at which the average temperature is exactly the melting temperature. Combined with the
average pressure at equilibrium, this gives a single point on the melting curve. Further

points can be obtained by repeating at different densities. This method has been employed
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to study the high pressure melting of Aluminium by Morris and Song (2002) using an
embedded atom potential, and by Alfe (2003) using ab-initio methods.

The range of initial temperatures which will result in location of the melting temperature
is clearly dependent on the size of the simulated system. As the interface will prefer
to remain along the same crystal direction, the system should have larger extent in the
direction normal to it. An snaphot of a simulation using this methodology is shown in

figure 5.3.

NPT Method

The cell is simulated in the NPT ensemble. The particle Hamiltonian H is not conserved.
If the specified temperature is above the melting temperature at this pressure then the en-
tire system will melt. Similarly if the temperature is too low the entire system will freeze.
A series of such simulations will bracket the actual melting temperature. The ultimate
accuracy of this method is limited by the slow timescale of melting/freezing at tempera-
tures very close to the phase boundary, these being beyond that accessible to simulation.
This method has the advantage of locating the melting temperature at a specific pressure.
Although requiring multiple simulations, the system size can be somewhat smaller. Sim-
ulations employing Langevin dynamics in the Parrinello-Rahman style system are ideally
suited to this purpose. Specification of a hydrostatic pressure will lead to the correct solid

and liquid densities without needed to manually adjust the cells to correct anisotropy.

NPH Method

A third possibility will be investigated in this work. Hypothetically, if a system could
be simulated in the constant enthalpy NPH ensemble, the benefits of methods 1 and 2
would both be present. Provided the initial enthalpy resulted in a temperature close to the
melting line, the system would locate the transition accurately as in method 1. The NPH
ensemble in a fully flexible cell would also have the benefits of method 2, operating as a

specified pressure, and eliminating concerns regarding non-hydrostatic pressure.

Currently no simulation scheme is available which correctly samples the NPH ensemble.
The closest available method being equations 3.18a to 3.18d which reproduce the NPH
ensemble to within fluctuations in the barostat momentum. If these fluctuations can be
made sufficiently small, i.e. smaller than the specific latent heat of the melting transition,
then a pseudo-NPH ensemble which seeks the melting transition in a coexisting simula-

tion is feasible. This possibility will be investigated in chapter 7.
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For solid-solid transitions the interfacial region may possess complex structure which
cannot be reproduced d-priori, and may be substantial in spatial extent. The two phase

approach is therefore not useful in these cases.

5.4 Free Energy Calculations

A phase coexistence curve is simply the locus of state points for which the chemical
potentials of two phases are equal. For a pure system boundaries can be located by sam-
pling the Gibbs free energy surface for both phases, and interpolating to locate the line of

intersection.

Unfortunately, free energy is not a quantity which can be sampled directly in a computer
simulation. Derivatives of free energy can be sampled, allowing the free energy difference
between state points to be computed as an integral over a reversible path which connects
them. Hence if the free energy is known at a given state point it can be calculated at
all others for which such a path exists. Hysteresis effects ensure that paths which cross

first-order phase transitions are irreversible and cannot be employed for these purposes.

5.4.1 Fluids

The relevant free energy derivatives are those with respect to volume

oF

oV - == (P)yvr (5.7
and inverse temperature

oF

—| =(E . (5.8)

aﬂ , < >NVT

The integration is a two stage process. Beginning from a temperature and density at which
the free energy is known, the density is varied along an isotherm to that at which the free
energy is required. The temperature of the system is then varied along an isochore to give
the final free energy. The two stages are independent and can be computed in parallel.
In practice the integrals are evaluated by sampling the free energy derivative at a discrete
number of points along each path. The simulations at each point are independent and can
again be performed in parallel. The GOLDILOCS implementation of these free energy
calculations is a simple shell-script running on an parallel computer. An initial NPT
ensemble simulation is launched to determine the density at the required temperature
and pressure. When this is complete, two further calculations are launched to sample

the above integrals. Parallelism over sample points is handled within the GOLDILOCS
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Figure 5.4: Thermodynamic integration around a closed loop in the temperature-density plane.
The change in free energy along each line is computed from separate integrations along one
isotherm and one isochore. The change in free energy for each two stage process is shown.

code using MPI message passing. Integration over sampled points is performed using the
trapezoidal rule. To estimate the integration error in this process, a closed loop in the
T — p plane can be constructed. Integration around this loop should give zero total change
in the Helmholtz potential. A three-step example using the Lennard-Jones potential is
shown in figure 5.4. Each integration over density or temperature employed 10 sample
points. The free energy derivative at each point was computed as an ensemble average
over 50,000 MD steps after equilibrating for 10, 000. A time-step of At* = 0.0015 was

used. The quantity

S |AF)
> AF;

is less than 0.1%, indicating a suitably small integration error.

(5.9)

Any sufficiently dilute fluid will behave as an ideal gas. As the Helmholtz free energy of
a (classical) ideal gas is known to be

N
=0V (27T—m> , (5.10)

this provides a point of known free energy if no other is available. In order for this path to
be reversible, it must avoid the first order liquid-gas transition, requiring that liquid state
points are reached by integration around the liquid-gas critical point. Obtaining liquid
free energies therefore requires a prior estimate of this critical point. It is numerically
convenient to integrate with respect to density rather than volume in this case, as the

variation of pressure with volume is extremely slow close to the ideal gas limit. The free
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energy [ after integrating along an isotherm can then be written

P{P) yvr — ksTp'

/2

dp'. (5.11)
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5.4.2 The Einstein Crystal Method for Solids

A method for calculating the free energy of crystalline solids has been proposed by
Frenkel and Ladd (1984). Rather than employing a thermodynamic path, a fictitious path
is used which connects the solid of interest to an Einstein crystal at the same temperature

and density. The Helmholtz free energy of an Einstein crystal is easily shown to be

FPr — U (1) — % In (2-2) - % In (%Tm) (5.12)

Here r° represents the configuration at which all particles occupy their equilibrium lattice
sites with potential energy U (r°). The spring constant « is the same for each lattice site.
A path between this system and the model solid of interest is constructed by employing a
mixed Hamiltonian

Hy = AHE™ + (1 — X) Hmode! (5.13)

such that the potential energy
N
0 1 0|2 N 0
U =U (") + 1) saln -l + 1= N [U (") -U(")]. (5.14)
i=1
By constructing the partition function () for the mixed system, and hence the Helmholtz

free energy F' = —kgT'In(), it is easy to show that the required derivative takes the

following convenient form,

_ <Z Sale -+ [U (V) —U(ro)]> (5.15)

=1 ANNVT

oF
O\

which is easily computed from a simulation.

Implementation

For optimal accuracy, the free energy difference between the model solid and the reference

Einstein crystal should be as small as possible. This can be achieved by choosing the



Chapter 5. Phase Transitions 95

0 T T T | T 0 T T T | T
I T=075 | I T=075
5T =TT ‘=058 | ST =TT T=058
T IO T R A
N I e ] I o ]
A
10| . - 10 . .
T =0.40 T =040
.15 | 1 | 1 | 1 -15 L | 1 | 1 | 1
1 1.1 1.2 1.3 1 1.1 1.2 1.3
O O
P P

Figure 5.5: Comparison of excess free energy calculated using the GOLDILOCS implementation
of the Frenkel-Ladd Einstein crystal method (symbols) with the equation of state by van der Hoef
(2000) (lines). In both figures the free energy derivative is sampled at 12 values of \. The left
hand figure employs NVT Langevin dynamics simulations of 3,000 sampled time-steps per \-point,
compared to 30,000 in the right hand figure. No useful increase in accuracy is obtained.

spring constant « such that the mean squared displacement from lattice positions is similar
for both systems. This quantity is known exactly as a function of « for the reference

crystal, and can be obtained for the model solid using a brief simulation.

During a simulation at a given )\, the centre of mass of the simulated solid may drift.
Atoms may therefore become separated from their original lattice site by a considerable
distance, resulting in large values of the harmonic potential energy. This causes the inte-
gral of 5.15 to diverge, introducing numerical difficulties. For this reason it is preferable
to implement a centre of mass constraint when computing solid free energies in this way.
This is easily achievable in a Langevin dynamics simulation with the use of a Langrange
multiplier. The free energy of a constrained crystal differs from that which the quantity
of interest. This difference can be calculated, leading to the result (see e.g. Frenkel and

Smit (1996)) that the free energy of the model solid is given by

pe3 {Wm} - /OldA<aU(A>>CM ~ 3l (ap/2n)

20 32 o\ v 28
3 1
— —InN+—=1In 5.16)
23 Gmr (

where the superscript C'M denotes that the free energy derivative in equation 5.15 is
evaluated with a fixed centre of mass. The Einstein crystal method in this form has been
implemented in the GOLDILOCS code. A task parallel approach has been adopted. The

optimal spring constant for a given calculation is automatically calculated as the average
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Figure 5.6: Finite size corrections to the Frenkel-Ladd method. The quantity BF** /N + In N/N
is plotted vs 1 /N for the fcc Lennard-Jones solid using a range of system sizes. Three temperatures
are shown at P* = 0.047. The potential is truncated at 2.50 and force-shifted.

of a number of short simulations in parallel with A = 0. This is then used to launch a
series of independent simulations for a range of A values between 0 and 1. MPI message

passing is employed in a similar fashion to the liquid case described above.

This implementation has been validated against the equation of state for the Lennard-
Jones FCC solid given by van der Hoef (2000). This equation has been computed by
thermodynamic integration from the Lennard-Jones triple point, at which the free energy
is known from the Johnson ef al. (1993) fluid equation of state. For consistency with this
work, the GOLDILOCS tests have been computed using the full Lennard-Jones potential,
truncated (but not shifted) at 60 with long range corrections applied. This large cut-off
requires a simulation cell of 2048 atoms to avoid self interactions at the densities studied.
Nine free energies computed as above are shown in figure 5.5. In each case the optimal
spring constant was identified over 12 parallel simulations of 5,000 At duration before
sampling the free energy derivative at 12 A-points. The time-step used was t* = 0.0045.

Agreement with the equation of state is extremely good.

Finite Size Corrections

The effect of finite system size on the free energies computed by this method has been
analysed by Polson et al. (2000). It is shown that the leading correction term to the excess
free energy per atom is equal to In N/N . A plot of 1/N against F'** /N + In N/ N for
various system sizes N can be extrapolated to the N = oo limit to obtain an estimate of

the corrected F'**. An example is shown in figure 5.6.

These corrections have been computed from simulations of three system sizes for solid
free energies reported in chapter 7. These have made little difference to phase behaviour,

the correction being much less than 1% in all cases.
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5.4.3 Chemical Potential Methods

For single component systems, the chemical potential is exactly the Gibbs free energy per
particle. Here two methods are discussed for computing the chemical potential. These
will be used in combination in the next chapter to compute a starting point for thermody-

namic integration of liquids.

Grand Canonical Monte-Carlo

This method has been covered in section 3.4.3. Here the chemical potential is specified
for a fixed volume. The average particle number and pressure are sampled, allowing the

Helmbholtz potential to be computed from
F=p <N>MVT - <P>MVTV' (5.17)

Finite size errors in the density and pressure for a given chemical potential can be esti-
mated by repeating the simulation with a range of system volumes. Free-energies cal-
culated in this way are sufficiently accurate to use as starting points for thermodynamic
integration. A starting point at a temperature and density close to the region of interest is
preferable in order to minimise integration error. A method for obtaining an approximate

chemical potential at a specified temperature and pressure/density is therefore required.

The Widom Method

A commonly used method is the test particle insertion method of Widom (1963). From

equation 2.43 it is clear that

= —kpTI(Qns1/Qn), (5.18)

which reduces to

N+1 _ N+1
,u:—kBTln(v/Ag) —k:BTln{fdr e [T )}}. (5.19)

N +1 [ deN exp [—4U (xN)]

The first term is simply the chemical potential of the ideal gas. The second term must

therefore be the excess chemical potential, and can be re-written as

few = —kpTln / dry g (exp (=PAU)) yyr [V
= —kzTlhA (5.20)
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The quantity A is the canonical ensemble average (over the N particle system) of the
Boltzmann factor associated with the insertion of a particle, further averaged over all
possible insertion positions. Computation of the chemical potential using this result is
algorithmically trivial. In a NVT simulation (using any correct sampling method) the
energy AU of a test particle inserted into a random position is computed at regular inter-
vals. This ‘ghost’ particle is not included in the dynamics, but provides a mechanism for
computing AU without actual increase of the particle number, which remains constant.
The average of exp (—FAU) over the ensemble and all possible insertion positions is
hence obtained by combined ensemble averaging and stochastic sampling of the integral
over insertion positions. A similar expression can be obtained for computing the excess
chemical potential in the isothermal-isobaric ensemble, requiring averages over an NPT

simulation.

In obtaining equation 5.20, 2.43 has been employed which assumes the limit of large
N. Excess chemical potentials computed from the Widom method are therefore heavily
influenced by finite-size effects. A procedure for applying corrections has been proposed
by Siepmann et al. (1992).

Validation

Validation of the grand-canonical MC and Widom implementations in the GOLDILOCS
code has been performed against the equation of state parameterised by Johnson ez al.
(1993). This requires implementation of the full Lennard-Jones potential truncated but
not shifted at 40 to make a valid comparison. Long range corrections to the energy and
pressure are applied during the simulation. Both NVT and NPT particle insertion methods
have been implemented. In each case simulations using 864 particles were conducted
at a temperature of 7* = 2.0 over 60,000 At after equilibrating over 10,000 At. A
time-step of At* = 0.0045 is employed with test particle insertions performed every
10At. NVT simulations were performed initially at densities in the range p* = 0.2 —
0.8. Pressures identified from these were used in a subsequent set of NPT simulations.
Langevin dynamics sampling methods were used in both cases. A thermostat relaxation
time suitable for the full range of densities was found to be 0.44 reduced time units. For

the NPT simulations a barostat relaxation time of 2.76 was used.

Grand-canonical Monte-Carlo simulations were conducted using chemical potentials for
each density identified from the equation of state. The size of the simulation cell was
chosen such that expected average number of atoms was close to 864 in each case. 60, 000
Monte-Carlo cycles were averaged over, after equilibrating for 10,000. The results for

both the Grand-canonical Monte-Carlo and Widom tests are shown in figure 5.7.



Chapter 5. Phase Transitions 99

5 I — —
4+~ |— MBWREOS — |— MBWR EOS —
B e GCE B e GCE T
37 | o NVTWidom ~ | o NPT Widom ]
* 2 B B ]
2l o ]
i . i R i
0 —
- - _|
2+ - —
3 I T TR R I T R R N

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 5.7: Chemical potential as a function of density at T* = 2.0 computed with the Widom
method and using grand-canonical Monte-Carlo simulations, both within the GOLDILOCS code.
The equation of state of Johnson et al. (1993) is shown for comparison.

A procedure for obtaining a fluid state of known free energy energy is therefore as fol-
lows. At a pressure P, and temperature 7 in the region of interest, conduct a NPT
simulation (using the Langevin dynamics method or otherwise). Perform test particle
insertions during this simulation and compute the resulting chemical potential .. This
will be approximate due to the large finite-size dependence of the Widom method. Using
this approximate chemical potential, conduct a well-converged grand-canonical Monte-
Carlo simulation at 7, measuring the pressure P (similar but not equal to F) and density.
The free energy is then computed from equation 5.17 providing a starting point 7, P for

thermodynamic integration.

Note that all grand-canonical Monte-Carlo simulations in figure 5.7 are of the same
length. Hence a lower number of successful insertions are averaged over at higher den-
sity, leading to the visible decrease in accuracy above p* = 0.5. Reference points for
thermodynamic integration will be chosen at lower densities to ensure high accuracy with

achievable simulation lengths.

5.4.4 Error Estimates

Using combinations of the methods presented in this section it is possible to compute as a
function of either pressure or temperature the free energy of two phases. Solid-solid and
solid-liquid phase boundaries can then be located as discussed. Some thought must be
given to the accuracy of this approach. As has been noted by Bruce and Wilding (2003)
there is no "reliable and comprehensive" method of computing an uncertainty on phase
boundaries computed in this fashion. Each phase involved may have both finite-size and

statistical errors in the reference free energy, as well as in each free energy derivative
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sampled along a path. Errors in numerical integration may also be significant.

As will be described in chapter 7, attempts have been made to locate the dominant source
of error for the work presented therein. Error bars on liquid free energies are in general
dominated by statistical uncertainty in the reference free energy. This is a controllable and
quantifiable source of error in the case where grand-canonical Monte-Carlo simulations
are used to compute the reference point. Integration errors are estimated (using loops of
the kind used in 5.4.1) to be an order of magnitude smaller than this. For solids, the error
bar is dominated by finite-size effects. These are larger than in the liquid, and are largely
corrected for by the methodology outlined in section 5.4.2. An error bar equal to the

largest deviation from linear behaviour in F* /N 4 In N/BN is taken as representative.

5.5 Gibbs-Duhem Integration

Performing extensive free energy calculations to locate a complete phase boundary is an
extremely slow and laborious process, requiring a series of free energy calculations for
each point on the coexistence curve. The Gibbs-Duhem integration method of Kofke
(1993) provides an alternative. Provided with a single accurately located point on a phase
boundary, this method will automatically trace the remaining points with little or no user

input.

The Gibbs-Duhem equation relates a change in chemical potential to a step in the P-T
plane.
ndp = SdT — VdP (5.21)

Applying this equation to phases « and (3 separately and taking the difference of the

resulting two equations,

(Sa — Sg)dT — (Va — Vg)dp = nad,ua — n[gduﬁ
= dG, — dG, (5.22)

for a single component system. The condition that this step occurs along a phase boundary
is now imposed. The LHS of equation 5.22 must vanish as G must be equal for both phases

at every point along the coexistence curve. This leaves

dP  S.—Ss AS
Al Va—Vz AV’

(5.23)

As AG = 0 the difference in enthalpy between the two phases AH (or the latent heat L)
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must equal T'AS giving
dP AH
IT = TAV (5.24)
. P AH
— = 5.25
g BAV (5:25)

This is the Clausius-Clapeyron equation. Tracing the coexistence curve P = f(7') can
be accomplished by numerically integrating the derivative f’(/3) given by equation 5.25,
from an initial point identified by free energy calculations or otherwise. This is the Gibbs-

Duhem method in its most basic form.

In addition to tracing a phase boundary in the P — 7" plane, the method calculates the
density of both phases and the latent heat of the transition at every point as a by-product.

All latent heats referred to in subsequent chapters have been obtained in this fashion.

5.5.1 Calculation of f’

The derivative f’ is evaluated by sampling both phases separately at the current tempera-
ture and pressure and computing their enthalpy and volume as an average over NPT en-
semble trajectories (Vega, 2005) such as those produced by the constant pressure Langevin

dynamics method developed in chapter 4.

Note that if the free energy barrier between the two phases is small, a simulation of phase
« may spontaneously transform to phase [ or vice-versa. Methods are available for pre-
venting such transformations, however these have not been required in the current work.
Other methods have been employed in situations where this could occur, i.e. close to the

liquid-gas critical temperature.

5.5.2 Implementation and Validation

The Gibbs-Duhem methodology has been automated with the GOLDILOCS code by
employing a simple wrapper script. This script employs the fourth order Runge-Kutta

scheme (see e.g. Press ef al. (1986)) to integrate the Clausius Clapeyron equation. The
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Figure 5.8: The Lennard-Jones melting curve with r. = 3.50 calculated using both constant
pressure Langevin Dynamics (left) and NPT Monte-Carlo (right). Both calculations employed
the Gibbs-Duhem integration script described in section 5.5.2 and the GOLDILOCS code. The
dashed line is a plot of equation 5.27 as parameterised by Agrawal and Kofke.

procedure takes the form

K1 = f(Bu P (5.26a)
Ky = [ (Bu+h/2,Pot K,)2) (5.26b)
Ks = f'(Bo+h/2, P+ K2/2) (5.26¢)
Ki = f'(Bu+h, P+ Ks) (5.26d)
Poii = Ki/6+ Ky/3+ K3/3+ K,/6 (5.26¢)

requiring four pairs of simulations at each step in inverse temperature. For each pair, the
script generates appropriate input files and launches two NPT calculations in parallel. The

required averages are then extracted from the output and employed in the above equations.

This implementation has been validated against the Lennard-Jones melting curve data
obtained by Agrawal and Kofke (1995). These authors used Gibbs-Duhem integration to

parameterise the equation
P* = 3 exp [—0.4759%} (16.89 + A + BS?), (5.27)

for the coexistence pressure, obtaining values of A = —7.19 and B = —3.028. As with
this work, the GOLDILOCS tests employed a cut-off of . = 3.50 (with long-range cor-
rections) and 500 atoms per simulation. Reproducing this curve constitutes a further test
of the efficient ensemble sampling provided by the constant pressure Langevin Dynam-
ics scheme. For each simulation, 10, 000 equilibration steps were employed with 50, 000

sampling steps. A time-step of At* = 0.0045 was employed with conservative relaxation
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times for the thermostatic and barostatic processes of 0.44 and 11.7 respectively.

For comparison, the same Gibbs-Duhem series was computed using NPT Monte-Carlo
simulations. These employed maximum atomic and volume displacements of Ar,,., =
0.20 and AV}, = 8.303 for the liquid. For the fcc solid values of Ar,,., = 0.160
and AV, = 3.80° were used. With equal equilibration and sampling lengths of 5000
cycles, this produces similar accuracy to the Langevin dynamics. Total execution time for
both sampling methods was comparable. For both series a step in inverse temperature of

—0.038 was employed.

Both simulations agree extremely well with the data of Agrawal and Kofke. This validates
both the Gibbs-Duhem implementation and the NPT ensemble sampling of the constant

pressure Langevin dynamics scheme.

5.5.3 Error Estimates

Errors in Gibbs-Duhem integration arise from statistical and finite-size errors in the sam-
pled enthalpy and volume of both phases at each point. These can be reduced to an
acceptable level by using large system sizes and long simulation times at each point. The
acceptable level is taken to be that arising in the free energy calculations used to locate the
starting point for the series. Integration error must also be accounted for. A simple error
estimate of this is obtained by explicit free energy calculations of both phases at the last
point in the series. An alternative method is to re-run the integration in reverse. An error
estimate is obtained from the difference between the starting point of the forward series
and the end point of the reverse series. These methods will be employed as appropriate in

chapter 7.

5.6 Monte-Carlo Methods

Each of the methods discussed so far requires sampling from standard ensembles us-
ing a model Hamiltonian. The method used to perform the sampling can be Molecu-
lar/Langevin dynamics or Monte-Carlo. A second set of methods exist which require
sampling of other ensembles which are not accessible to dynamical methods. Although it
may be possible in principle to generate equations of motion which sample any ensemble
of interest, their construction is non-trivial. Within the Monte-Carlo methodology it is
simple to calculate Metropolis acceptance criteria for an arbitrary ensemble. This leads
to the possibility of methods which sample from a specially modified distribution with

properties beneficial to the study of phase transitions.
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5.6.1 Histogram Reweighting/Multi-canonical Sampling

One such method is based on the reweighting of histograms combined with multi-canonical
sampling. The latter has been introduced by Berg and Neuhaus (1991), owing its origins
to the umbrella sampling method of Torrie and Valleau (1974). The combined scheme will
be employed in chapter 7 to locate liquid-vapour coexistence curves. The implementation
used with the GOLDILOCS code follows a tutorial by Wilding (2001). The methodology

is described below.

A Starting Point

The particle number histogram P(N) is easily constructed from a grand canonical Monte-
Carlo simulation at a given temperature and chemical potential. This is simply the dis-
tribution function for samples of the particle number N, computed from the equilibrated
portion of the simulation. To begin tracing the phase transition line, a particle number
histogram at an initial point at or near the liquid-vapour coexistence line is required.
For temperatures close to the critical temperature 7., the energy barrier between the two
phases is small. This allows a single unmodified GCE simulation to visit both phases,

crossing the small barrier many times during a simulation.

Given an initial estimate at temperature 7; slightly lower than 7., the chemical potential y
can be fine tuned until the number density histogram is bimodal with approximately equal
area under each peak. This provides an estimate of a point 7g, ;4o near the coexistence

curve.

Histogram Reweighting

Histogram reweighting (Ferrenberg and Swendsen, 1988) can be employed to improve
this estimate without the need for further simulation. At the simulated inverse temperature
Bo = 1/kpTy, and chemical potential 1, the probability associated with the j* sampled
configuration of NN; particles with potential energy U, is

P (Nj, ®;| 50, po) o< exp [—53 (U; — o)), (5.28)

Each sample has a weight of unity. At some other temperature (3; and chemical potential

{41, the probability of the same sample is now

P (N;, @51, 1) o exp [—51 (U; — i N;)] (5.29)
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The ratio of these two probabilities is

P<Nj’ ijl”LLl) — ¢~ (B1=Po)Ej+(Bru1—Bopo) N; (5.30)
P(Njaq)j’ﬁm,u[))

which gives us a statistical weight which can be assigned to each sample at 3,1, to obtain
the particle number histogram at /3;,4;. This is exact in principle. However regions which
are poorly sampled at [y,1,p may become important at (1,4; limiting the range of the
method to small changes in 7" and p. As 3,140 represents a point near a coexistence curve,
441 can be fine tuned until the re-weighted bimodal histogram has exactly equal areas under

each peak. This gives an improved estimate of an initial point on the coexistence curve.

Multi-canonical sampling

At some lower temperature on the phase boundary, the energy barrier is not sufficiently
low that it will be traversed in a normal GCE simulation. Consider sampling of a modified

probability distribution
pocexp (=B (U —puN +n(N))J, (5.31)
In which the preweighting function
n(N;) = puN; — U;. (5.32)

This corresponds to an extended sampling distribution which will give /5 uniform” over
the entire range of N, including the energy barrier. This is simply the logarithm of the

unmodified particle number distribution (equation 5.29),
In[P(N)| =B (uN; — ;). (5.33)

Hence if the particle number histogram P (V) at the current 7" and y is known, or can be
approximated, a preweighting function can be constructed which will flatten the probabil-
ity distribution over the entire range of /N. The modified acceptance criteria for insertion

and removal moves within this modified ensemble are

Vv P(N)
(N+1)P(N+1)

Pye (N — N +1) =min |1, exp{—0 (AU — u)} (5.34)

*Note that a flat distribution is not necessarily the most efficient choice of histogram to sample. A
procedure for multi-canonical simulations using an iteratively tuned optimal ensemble has recently been
presented by Trebst ef al. (2004).
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and

P(N) N
Pacc (N—> N — ]_) = min ].,ﬁveXp{—ﬁ(AU—f—ﬂ)} s (535)
which are used in place of equations 3.47 and 3.48. The effect of this flattening on the
resulting samples of any thermodynamic observable, including the number density itself,
can be removed by assigning each sample a weight given by P(NN). This recovers the
original grand-canonical distribution, but with information on both sides of the energy

barrier.

In practice, the required form of 77(N;) is not known exactly, as this would require d-priori
knowledge of P(NV), which is precisely that which simulation is attempting to measure.
However, an estimate of P(V) can be obtained using histogram reweighting from another

temperature, which is then improved in the multi-canonical simulation.

Tracing phase boundaries

The combination of histogram reweighting and multi-canonical sampling provides a pow-
erful tool for tracing the liquid-vapour coexistence curve. The method proceeds as fol-

lows:

1. Perform an unbiased GCE simulation at some temperature close to (but below) the

critical temperature and at a chemical potential near the transition line.

2. Use histogram reweighting to improve this estimate of 1 and perform a second GCE

simulation.

3. Re-weight the resulting P(NN) to a lower temperature, and tune 4 until this is bi-

modal with two peaks of equal area.

4. Using this tuned p, and the re-weighted P(/NV) as the preweighting function, per-

form a multi-canonical GCE simulation at this temperature.

5. Unfold from this biased simulation the actual statistics. Correct the estimate of

by reweighting the new histogram.

6. Repeat steps 3 to 6.

The scheme steps along the phase boundary, self correcting any deviations. All but step
1 can be completely automated. This has been accomplished using GOLDILOCS and a
series of auxiliary codes to perform the integration under P(/N) and the reweighting pro-

cedure. These are invoked by a Unix shell script which performs the steps in temperature.
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Figure 5.9: Particle number histograms at decreasing temperatures produced using multi-
canonical sampling with histogram reweighting applied to the Lennard-Jones liquid-vapour tran-
sition (left). The resulting chemical potential as a function of temperature along the phase bound-
ary is shown on the right.

The implementation has been tested by studying the Lennard-Jones liquid-vapour tran-
sition. The potential is truncated and force-shifted for comparison with results for core-
softened potentials in chapter 7. With the cut-off at R. = 2.50, the critical temperature
is substantially reduced from that obtained with the full Lennard-Jones potential. The
procedure was begun from an initial temperature of 7* = 0.96, at which P(N') possesed

equal area under two peaks at ©* = 7.9671.

In this and the subsequent multi-canonical simulations, a cubic simulation cell of side
7.130 was employed. Each simulation consisted of 10, 000 equilibration cycles followed
by a further 250, 000 from which samples were taken. A step of AT™ = 0.004 was used
in descending along the coexistence curve. Sample particle number histograms from the
procedure are shown in figure 5.9 along with the resulting phase boundary in the p — 7'
plane. The phase boundary in the P-T plane can be obtained by unfolding the sampled
pressure data from the GCE simulations.

The critical phenomena associated with the liquid-vapour transition have not been studied
in detail in this thesis. An estimate of critical temperatures has been made by fitting the
density data obtained from the above procedure to equation 5.1a, and extrapolating to
zero density difference. This provides a suitably accurate value for observing trends in
the critical temperature. Methods are however available for obtaining detailed information
on critical properties. See e.g. Bruce and Wilding (1992); Wilding (1995) for studies of

the Lennard-Jones fluid.
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5.6.2 Other Methods

Other Monte-Carlo methods which have not been employed in this thesis are briefly de-

scribed below.

Gibbs Ensemble

A popular method for studying liquid-vapour equilibria is the Gibbs-ensemble approach
of Panagiotopoulos (1987). Problems associated with sampling of the interface are avoided
by simulating in two coupled single phase cells of fixed total volume and particle number.
The probability distribution for the combined system is

PG X
NINII

exp [Ny InV; + NyyInVip — BU(Np) — BUr(Nipp)] (5.36)

where the subscripts I and /1 refer to the two coupled cells. Acceptance criteria for three

kinds of trial move can be obtained.

1. Particle displacements within a cell.
2. Moves of particles between cells.

3. Exchange of volume between cells.

It can be shown that simulations in this scheme will come to equilibrium with equal chem-
ical potential associated with each cell. At a specified temperature the method will there-
fore locate two phases of different densities. The coexistence pressure may be sampled

during simulations at this equilibrium.

This approach has not been adopted in this work. As will become clear in chapter 6 this
work is concerned with systems which may posses two fluid phase transitions. At a given
temperature the Gibbs-Ensemble technique is capable of finding only two of these phases
per simulation. In contrast the histogram reweighting/multi-canonical sampling scheme
will exhibit a third peak if an extra fluid phase is present. In addition the multi-canonical
scheme requires a single simulation cell, making it simples to accommodate within the
GOLDILOCS code.

Phase Switching Monte-Carlo

Also worthy of note are the recently developed phase-switching Monte-Carlo methods.

These operate in the spirit of multi-canonical sampling, sampling two phases within a
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single simulation. In the context of solid-solid transitions the method is termed lattice-
switch Monte-Carlo (Bruce et al., 1997, 2000). Rather than traversing the complex inter-
facial region, the method snaps from one phase to another in a single MC move of the cell
vectors. Fractional co-ordinates are held fixed during this move. Sampling takes place in
a modified ensemble in which ‘gateway’ configurations from which the lattice switch can
occur are preferentially biased. The method was introduced in the context of hard-sphere

systems.

Generalisation to soft potentials is a very recent development and hence phase switching
methods have not been employed in this thesis. A phase-switching method for the freezing
transition has also been presented (Wilding and Bruce, 2000) and tested for the hard-
sphere system. Recent application to the Lennard-Jones system has been reported by
Errington (2003).

It is hoped that the results in chapter 7 may be refined in further work employing the
phase-switching methodology.

5.7 Augmented Meta-dynamics

For each of the above methods, some prior information regarding the phases involved is
required. For example, to study the melting transition the structure of the solid must be
known. For simulations of real systems this is often known from experiment. In the case
of model systems, the mechanically stable crystal structures are not known d-priori. A
simple atomistic simulation is likely to explore only local minima in phase-space close
to its initial conditions. Minima corresponding to other crystal structures will not be
explored. The simulation may be initialised with a variety of crystal structures, but cannot

guarantee that others exist which have not been considered.

5.7.1 Methodology

A method is therefore needed for accelerating the sampling of rare events, such as travers-
ing an energy barrier between two crystal structures. Several such methods are available.
This work concentrates on the meta-dynamics method of Laio and Parrinello (2002). This

is briefly described below.

In an atomic simulation, N collective coordinates are identified encapsulating motions of
interest. With these coordinates constrained, a traditional ensemble molecular dynam-
ics or Monte-Carlo simulation is conducted, during which the generalised forces on the

collective coordinates are averaged. These are used to evolve the collective coordinates
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through a meta-step in the direction of steepest descent. The process repeats, allowing
the collective coordinates to explore the energy landscape generated by the wider system.
The scheme’s utility lies in artificial augmentations to this landscape, preventing return
to previously visited states. The basin in which the simulation begins becomes flattened
by these augmentations, forcing the simulation to locate other, previously unknown, sta-
ble states. While other schemes for escaping minima explore only the zero temperature
energy landscape, meta-dynamics simulations operate at finite temperature and pressure,

exploring a free energy landscape.

By keeping track of the number and height of augmentations required to escape a min-
imum, the depth of the basin can be estimated directly from the simulations, providing
information on relative stabilities of atomic configurations. The meta-dynamics method-
ology has been mainly applied to studies of chemical reactions, in which the collective
degrees of freedom are chosen as a suitable reaction coordinate. See e.g. lannuzzi et al.
(2003); Gervasio et al. (2004); Ensing et al. (2004) for examples using Car-Parrinello

molecular dynamics.

5.7.2 Application to Crystal Structures

The application of meta-dynamics for the location of crystal structures has been intro-
duced by Martonak ef al. (2003). Here the collective coordinates are the components of
the cell vectors in a MD simulation. These constitute a six dimensional free energy land-
scape in the case where symmetry of the matrix h (3.23) is enforced. The derivative of

the Gibbs free energy with respect to h leads to a force of

Y 9
T Ohy  omy (o TS+ Pdet(h)
= v{[P-Pn +[P-Pn]} (1 — %@j) . (5.37)

where P is the external pressure and V' = det(h). The pressure tensor P is computed as
a canonical ensemble average over a run in which the cell vectors are constrained. As the
above force is symmetric, the six independent components can be organised into a vector

Fiperm- Similarly the independents components of h can be arranged into the vector h,,.

A steepest descent step of length 6k can now be performed along the Gibbs free energy
surface in h,,.

F erm
h(+) = h® 4+ 5h—2 (5.38)
‘Ftherm’

The fractional co-ordinates of the ions are kept constant during this step. This constitutes

one meta-step. The process is repeated, equilibrating an MD run in the new cell, averaging
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the new pressure tensor, taking a new step and repeating. The system will explore the

minimum of the Gibbs free energy surface in which the system was initialised.

The meta-dynamics can be driven out of the initial minimum, into another, correspond-
ing to a second crystal structure which is stable/metastable at the same temperature and
pressure. This is accomplished by augmenting the free energy surface with the goal of
“filling-in’ the minimum in which the system began, forcing the system into a new con-

figuration..

At each step, a Gaussian of height W is constructed at every point on the six-dimensional

surface which the meta-dynamics has already visited.

|h1(,t) _ hgt/)|2
Gaug = Yy _ Wexp = (5.39)

The ‘force’ on the cell vectors now becomes
F= Ftherm + Faug = _th - vhgaug (540)

As long as the system remains inside the initial basin of attraction, the force Fy¢;.,,, will
point roughly toward the minimum, whereas the augmentation force F,,, will tend to

point away from it. Hence
I = Ftherm : Faug/‘FthermHFaug| ~ —1. (541)

At the cusp between two minima, the two contributions to the force will become parallel
and their dot product will sharply change from -1 to +1. If a transition is detected in
this way, the augmentation force can be switched off allowing the system to fall into the
second mimima. Evolution can then switch to ordinary MD to sample the second phase,

or the system can be quenched to obtain the perfect crystal.

As with the original Parrinello-Rahman method, meta-dynamics in this form suffers from
a lack of modular invariance. False transitions between different unit cells of the same
structure can therefore occur. As the cell has no explicit momentum conjugate in this
scheme, the method of Wentzcovitch (1991) cannot be used to correct this problem. Each

transition detected must be carefully checked for a change in structure.

5.7.3 Implementation and Validation

Given a code which can simulate a cell of arbitrary shape in the canonical ensemble,

implementation of the Martonak er a/l. method is trivial. The implementation in the
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Figure 5.10: Evolution of the potential energy difference (from a perfect fcc crystal) and cell
vectors during a meta-dynamics + conjugate gradient optimisation 256 Lennard-Jones atoms at
T* = 0.17 and zero pressure (left). Initial positions were generated randomly in a cubic cell. The
right hand plot showns the distribution of neighbour distances g(r) for the final configuration and
for a perfect fcc crystal at T* = 0.375 and P* = 1.18.

GOLDILOCS code has been tested with a simple problem. An initial configuration of
Lennard-Jones atoms in random positions will behave as a glass at a temperature of 7™ =
0.17. This is easily confirmed by simulation. At temperatures below the glass temperature
the system is easily trapped in a local minimum. The meta-dynamics method should
be able to escape this initial free energy basin and locate a close-packed (lower energy)

crystal structure.

Results shown in figure 5.10 are for a system of 256 atoms randomly placed (subject to
an forbidden overlap distance of 0.87¢) in cube of side 6.23¢0. This corresponds to the
density at 7* = 0, P* = 0. The meta-dynamics simulation employed a time-step of
t* = 0.004, for 100 equilibration and 500 sampled steps per meta-step. A temperature of
T* = 0.17 and zero pressure were imposed. A step size of 0h = 0.250 was used, with

augmentations to the energy landscape of height W' = 50e.

As the dynamics are not initialised in a well defined based of attraction, the value of equa-
tion 5.41 is not a useful indicator. However after 34 meta-steps, the system had become
visibly ordered. At this point the evolution of the system was passed to a conjugate gra-
dient (CG) enthalpy minimisation algorithm. The GOLDILOCS CG minimiser is of the
Polak-Ribiere type, using code adapted from Press ef al. (1986). Enthalpy is minimised
with respect to both the atomic coordinates and the cell vectors. The final configura-
tion was then used in a constant pressure Langevin dynamics simulation of 35, 000 At at
T* = 0.375 and P* = 1.18. A time-step of At* = 0.0028 was used. The distribution

of pair distances g(r) averaged over the equilibrated portion is also shown in figure 5.10
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along with the equivilent results for a perfect fcc crystal. This indicates that the dynamics
have located the fcc minimum. The energy is within 2.4% of that obtained for a perfect

fcc crystal. Total excecution time was less than 5 minutes on a single workstation.

Repeat simulations with 288, 384 and 500 atoms each located the fcc structure in less
than 50 meta-dynamics steps. No simulation located the hcp-structure. The small energy
difference between the fcc and hcp structures will likely require increased care in the

choice of 6h and W if the hcp minimum is to be identified.

The meta-dynamics method will be used in chapter 7 to locate crystal structures for core-

softened pair potentials.



Chapter 6
Liquid-Liquid Phase Transitions

The occurrence of two or more liquid phases in a system is often observed when deal-
ing with mixtures and other systems which are made up of multiple components. These
phases are important in industrial chemistry contexts and are in many ways well under-

stood.

The presence of two thermodynamically distinct liquid states in single component sys-
tems is somewhat more unusual. Experimental and theoretical evidence of liquid-liquid
phase transitions (LLPT) in elemental melts has been accumulated only during the last
decade. This will be reviewed in section 6.1. Note that this applies only to classical phase
transitions in which both phases obey Boltzmann statistics. Intrinsically quantum low

temperature transitions (e.g. in helium) are not of interest here.

The presence of thermodynamic anomalies in liquid metals and in water can possibly be
explained by the LLPT phenomenon. This has lead to the study of simple core-softened
model systems (which may manifest two liquid phases) as a mechanism for understanding
these anomalies. These studies will be reviewed in section 6.2, motivating the study of

three-dimensional core-softened potentials presented in chapter 7.

6.1 Elemental Systems

6.1.1 Phosphorus

Much of the recent interest in liquid-liquid phase transitions can be attributed to the exper-
imental observations of liquid phosphorus by Katayama e al. (2000). This study located
a maximum in the melting curve at high pressure as shown in figure 6.1. The negative

slope of the melting curve can only be reconciled with the Clausius Clapeyron equation

114
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if the liquid in this region is of higher density than the solid, which seems unlikely to be

true if the liquid can only exist in the expected tetrahedral molecular form.

X-ray diffraction studies of the liquid structure either side of the melting curve maximum
produced rapidly changing radial distribution functions over only a 0.1 GPa range. The
two forms agree extremely well with data from an earlier ab-initio study of liquid phos-
phorus by Hohl and Jones (1994). In this study the low pressure tetrahedral liquid was
observed to polymerise under pressure to a higher density form. Further experimental
work supports this polymeric structure by analogy with the structure factors of polymeric
solid phosphorus and arsenic (Katayama, 2002). Recently Katayama et al. (2004) have
demonstated macroscopic phase separation of the molecular and polymeric liquid, con-
firming that the abrupt change in structure is the consequence of a first order liquid-liquid

phase transformation.

More recent ab-initio studies have provided further information on the structure of lig-
uid phosphorus. It has been shown that the phase transition can be temperature induced
as well as pressure induced, with a cut-off temperature of 2000K above which the tetra-
hedral low density liquid cannot be formed (Morishita, 2001a). These studies have also
produced detailed information on bond angle distributions in the polymeric liquid, and
band structure calculations showing that the band gap present in the low density liquid
vanishes in the polymeric form leading to metallic character (Morishita, 2001b, 2002).
Sufficiently small systems sizes are employed that the resulting phase boundaries can be

expected to require substantial finite-size corrections.

The work of Morishita has been confirmed by Senda ez al. (2002a,b), and more recently
by Ghiringhelli and Meijer (2005). The experimental work of Katayama has recently been
reproduced by Monaco et al. (2003) who have accurately located the phase boundary in
the P-T plane, also shown in figure 6.1. Ballone and Jones (2004) have constructed a
reactive force field model for phosphorus fitted to ab-initio data. The two liquid phases
have been reproduced via Monte-Carlo simulations of this model. The exact location of

the phase boundary within this model has not yet been mapped.

6.1.2 Hydrogen

The phase diagram of hydrogen under extreme conditions is of clear importance for stud-
ies of stellar interiors. As the most simple elemental substance, it has attracted much
attention from first-principles studies. These are complicated by the light mass of the
hydrogram atom, often requiring that nuclear quantum effects are included to reproduce

experimental data.
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Figure 6.1: The high pressure phase diagram of liquid phosphorus as mapped by Monaco et al.
(left) and by Katayama et al. (right) in which the melting curve maximum can be seen.

Under high pressure, hydrogen gas can be compressed to a liquid consisting of /5 molecules.
Upon further compression/cooling this freezes to a hexagonal close packed (hcp) solid
structure with a freely rotating H, molecule at each lattice site. It has long been consid-
ered that at extreme pressures, this molecular hep solid will compress to an atomic crystal

with metallic character.

Recent experimental measurements of the hcp solid melting temperature have been con-
ducted by Datchi ez al. (2000). Two semi-empirical equations for melting curves are used
to extrapolate the results to higher pressure. In one case, this predicts a maximum in
the melting temperature with respect to pressure. Beyond this, the liquid state persists
at lower temperatures. The predicted maximum coincides with the point at which H,
molecules dissociate into a metallic liquid as simulated by Pfaffenzeller and Hohl (1997)
using ab-initio molecular dynamics. Suggestions that the metallic state of hydrogen is in
fact a low temperature atomic liquid have followed. Scandolo (2002) has also studied the
dissociation/metallisation in the liquid using ab-initio molecular dynamics. In this case
the change is accompanied by a small but rapid change in volume, suggesting a first-order
phase transition. This must cause a discontinuity in slope where it intersects the melting
curve. It is suggested that the direction of the melting curve changes during this disconti-
nuity, and hence the LLPT is the mechanism responsible for the maximum. Experiments
at higher temperatures (2200 to 4400 K) by Weir and Mitchell (1995) indicate a continu-
ous change. Scandolo suggests that these studies can be reconciled if the line of first-order
liquid-liquid transitions ends in a critical point at approximately 2, 000 K as shown in fig-
ure 6.2. However, quantum Monte-Carlo (QMC) calculations conducted by Militzer et al.
(1999) indicate the first-order nature persists to temperatures of 10, 000 K. These may be
heavily dominated by finite-size effects (system sizes accessible to QMC are extremely

small). Improved QMC calculations near the proposed critical point are underway (De-
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Figure 6.2: Phase diagrams of hydrogen from two ab-initio molecular dynamics studies. On the
left is the diagram proposed by Scandolo (2002). Radial distribution functions are shown for each
of the circular points. These form a path which crosses the LLPT. The phase diagram of Bonev
et al. (2004) is shown on the right. Dots and squares indicate previous experimental data of the
melting curve. Triangles indicate two-phase simulations used to bracket the melting curve. The
first-order LLPT is detected at the diamond symbol.

laney, 2005).

In recent work, Bonev ez al. (2004) have employed two-phase NPT simulations to confirm
that the melting curve exhibits a maximum. These were conducted with first-principles
Car-Parrinello molecular dynamics. In common with the above ab-initio studies, the nu-
clei are treated as classical particles. This approximation is justified by showing that the
first order free energy correction due to nuclear quantum effects is nearly identical for
both phases. Transitions between the molecular fluid and a metallic liquid are observed at
pressures higher than the melting curve maximum. In this region a volume discontinuity
is observed along with the hysteresis indicative of a first-order transition. These results
suggest the melting curve maximum is not a direct consequence of a liquid-liquid phase

transition. The phase diagram as studied by Bonev ef al. is shown in figure 6.2.

6.1.3 Carbon

There is some indirect experimental evidence suggesting a LLPT in carbon. This comes
from an investigation into the melting curve of graphite (Togaya, 1997). Very few state
points were measured as shown in figure 6.3. These indicate a similar change in direction
of the melting curve slope to that seen in phosphorus at the LLPT. This assumption is
based on only two data points, and there are doubts about some of the measurement
methods used. In particular temperature was not measured directly but was inferred from

the melting enthalpy which was assumed to be pressure independent.

Despite these doubts, the results are in broad agreement with earlier experimental works
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Figure 6.3: Melting curve of graphite as measured by Togaya (left). A similar maximum to that
observed in phosphorus and hydrogen is seen. The right hand figure shows Van der Waals loops
liquid carbon isotherms as simulated by Glosli and Ree.

on the phase diagram of carbon (Bundy, 1989; Bundy et al., 1996), which have led to

speculation of a LLPT based on theoretical models of graphitic and diamond-like liquids
(Vanthiel and Ree, 1989).

The method of tight-binding molecular dynamics (TBMD) has historically led to good
results in studying solid phases of carbon. Studies of the liquid using this method were
conducted by Sugino (1999) and Morris et al. (1995). In both cases, an increase in co-

ordination number with increasing pressure was observed without a phase transition.

A liquid-liquid transition was however predicted by Glosli and Ree (1999). Their NVT
simulations used a well established bond order model for atomic interactions in carbon
(Brenner, 1990; Brenner et al., 1991). The transition manifested itself as a rapid decrease
in volume for a small increase in pressure, accompanied by a change in the co-ordination
number from 2 (sp bonding) to 4 (sp? bonding.) No sp? bonded liquid was observed.
Plots of isotherms (figure 6.3) obtained from several simulation points showed classic
signs of a first order phase transition which seemed to correspond with Togaya’s melting
curve maximum. Glosli and Ree also showed that removing the torsional energy term
(introduced by Brenner to include effects of rotation about a carbon-carbon double bond)

left a model which produced no liquid-liquid transition.

Recent simulations using density functional theory (DFT) do not agree with this re-
sult (Wu et al., 2002). They show no volume discontinuity, merely an increase in co-
ordination with increasing pressure, and no exclusion of the sp? bonded liquid. Other
DFT calculation of high pressure carbon show the same trend (Grumbach and Martin,
1996; Galli er al., 1989). Wu et al. have shown that the disagreement is due to the
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torsional energy term in the Brenner potential causing an energy barrier to sp? bonding
which is inappropriate for the modelling of bulk carbon. This barrier should in fact be

much lower.

Interestingly, simulations using a second generation of the Brenner Potential (Brenner
et al., 2002) agree with the ab-initio results (Kum et al., 2003). This newer model for
carbon therefore does not contain the inappropriate energy barrier to sp? bonding and

may be useful for the study of other phenomena in bulk carbon.

It would seem that the evidence points toward there being no liquid-liquid transition in

carbon.

6.1.4 Others

The above materials have formed the focus of much discussion on elemental liquid-liquid
phase transitions. Hydrogen is a material of fundamental physical importance, whereas
high pressure studies of carbon have obvious implications for studies of planetary interi-
ors. The interest in phosphorus is largely due to it being the first elemental melt for which
definitive evidence of a first order transition exists. It should be stressed however that the
phenomenon is by no means unique to these systems. Many elemental melts are known to
undergo structural changes which may or may not be associated with a phase transition.
In many cases these changes coincide with the metallisation of the liquid.

For example, Brazhkin ez al. (1999) have conducted studies of three elemental melts under

extreme pressure. For sulphur !

evidence for two additional lines of phase transitions
are located in the liquid between 1000 and 1500 K at pressure of 4 GPa upward. These
may correspond to structural changes simulated by Tse and Klug (1999) using ab-initio
molecular dynamics. Selenium is found to posses a transition at temperatures between
1000 and 1200 K from 2 GPa upwards. This has also been studied in the experiments of

Katayama (2001); Katayama et al. (2001).

Liquid iodine is also shown to posses two structural changes between 2 and 4 GPa at
temperature of 800 K upwards. Brazhkin er al. discuss discuss general theoretical models
for first order phase transitions in elemental melts. A treatment specific to iodine has
been presented by Likalter (2002). A tight-binding potential which reproduces two phases
liquid has been developed by Koslowski and Stepanov (2003).

Umnov et al. (1992) have also presented experimental evidence for a transition in Bis-

muth, and in Tellurium (Brazhkin ez al., 1992). Funamori and Tsuji (2002) have measured

'Liquid sulphur also undergoes a well known )\ transition at 159 °C' between Sg rings and polymeric
chains.
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an anomalous expansion under increasing pressure for liquid Tellurium which may be re-
lated to this transition. In many of these cases a melting curve maximum is also observed

and the structural change is accompanied by a rapid decrease in volume.

A liquid-liquid transition has been reported by Sastry and Angell (2003) in a rather dif-
ferent regime. Using two-phase simulations of the Stillinger-Weber potential (Stillinger
and Weber, 1985), a metastable first order transition is located in the supercooled region.
There is no conclusive experimental evidence for such a transition. Simulations using
more accurate or ab-initio models have not been reported. This transition may therefore

be a peculiarity of the Stillinger-Weber model, as in the Brenner potential for carbon.

This is by no means a comprehensive survey, (see Angilella et al. (2003) for a recent

review article) but serves to illustrate the extent of the phenomenon..

6.2 Core-Softened Model Systems

While many of the above systems have been modelled using ab-initio and complex semi-
empirical potentials, these representations remain too complex for detailed thermody-
namic calculations to be performed. There is much interest in the study of simpler mod-
els that attempt to approximate complex anisotropic interactions with a simple isotropic
pair potential. One such class of models are core-softened pair potentials. In addition to
the hard repulsive core of e.g. the Lennard-Jones fluid or the hard-sphere system, these
models posses a second, softer repulsive region at larger radius. In some cases attractive
regions are also included. In this fashion, these models attempt in some sense to encapsu-
late the energetics of complex systems in which bonding can occur at two characteristic

distances.

Inversion of approximate structure factors obtained from scattering experiments leads to
core-softened effective pair potentials for a variety of liquid metals (Yokoyama and Ono,
1985; Hoshine et al., 1987) including some of those discussed in the previous section.
Some of these resemble specific core softened models that will be discussed below. In
addition, models which posses a soft outer repulsive region surrounding an inner hard

core have obvious application in studies of colloidal systems.

6.2.1 Relevance to Water

Substantial new interest in core-softened models has been generated over the last decade
due to their possible relevance to liquid water. Water exhibits a variety of liquid state

anomalies. Examples include a compressibility maximum at 46 ° C, and the well known
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density maximum at 4 ° C, associated with the anomalous contraction upon heating of

water.

Poole et al. (1992) conducted molecular dynamics simulations of metastable supercooled
water using the ST2 (Stillinger and Rahman, 1974) model. These contradicted the ther-
modynamics of the popular “stability-conjecture” in which the density maximum is ex-
plained in terms of a re-entrant liquid spinodal line. Isobars in the supercooled liquid
exhibited points of inflexion that would be expected when approaching a critical point
from above in temperature. The suggestion followed that this second critical point may
mark the termination of a line of metastable liquid-liquid phase transitions. At lower tem-
peratures, either side of the supposed liquid-liquid transition, structure similar to the high
and low density amorphous phases of ice was observed. These results were later refined
by Harrington et al. (1997b). In addition, simulations by Brovchenko ef al. (2003) suggest
the presence of two liquid-liquid transitions in supercooled water, one being at negative

pressure.

Subsequent experiments reported by Mishima and Stanley (1998a) studied the melting
line of ice IV. This is metastable with respect to the familiar ice Ih melting curve, and
crosses the suggested line of metastable liquid-liquid transitions. A discontinuity in the
slope of the ice IV melting curve was observed at the intersection. Clearly, one possi-
ble mechanism for this discontinuity could be an abrupt change in the liquid density due
to a first-order phase transition. The suggested phase diagram is indicated in figure 6.4.
The LLPT line is argued to be an extension of the experimentally verified transition be-
tween the low and high density forms of amorphous ice, into the metastable liquid region.
Further simulations using the SPC/E (Berendsen et al., 1987) model for water, also by
Harrington et al. (1997a) exhibit less compelling evidence of the transition. However,
the metastable liquid-liquid transition is indirectly supported by the TIP4P (Jorgensen,
1981) model simulations of Poole e al. (1993). This model has been shown to reproduce
the experimental phase diagram with superior accuracy to SPC/E and other models (Sanz
et al., 2004a,b). The liquid-liquid transition is also supported in simulations of the TIPSP
(Mahoney and Jorgensen, 2000) model by Yamada ef al. (2002). Further support for the
second critical point hypothesis has been presented by Tanaka (1998).

In further work, Mishima and Stanley (1998b) argued that the new critical point may
arise due to a second minimum in the effective pair-potential between water molecules.
The two minima represent different preferred orientations of two molecules as shown in
figure 6.4. The possibility of modelling the general LLPT phenomenon using cheap, sim-
ple pair-potentials arises. This would allow extensive thermodynamic calculations to be
performed. This conjecture has spawned several studies of core-softened pair potentials

which will be reviewed below.
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Figure 6.4: 2nd critical point hypothesis of Mishima and Stanley. The speculated phase diagram is
shown in (a). Ty marks the thermodynamic melting temperature, and I'x the glass transition. The
metastable ice IV transition crosses the proposed LLPT line. The proposed effective pair potential
is shown in (b), the two minima corresponding to arrangements of water molecules shown in (c).

With regards to water itself, the evidence for the metastable second critical point is far
from conclusive. Alternative explanations of the anomalies in water do not require a
liquid-liquid phase transition. This work leaves this controversy for other studies’. It

should also be noted that water is not unique in possesing these anomalies.

6.2.2 Aims for Studies of Model Systems

In addition to any possible relevance to liquid metals, colloids or water, the study of core-
softened pair potentials has become a problem of intrinsic interest. The properties of a
model which result in the appearance of phase transitions has long been a fundamental
issue. Core-softened potentials introduce the means to study the possible appearance of
additional phase transitions and liquid state anomalies.

Long before the recent interest in liquid-liquid phase transitions, Hemmer and Stell (1970)
proposed the interaction potential shown in figure 6.5. A simple expression for the
Helmholtz free energy of this model in one dimension was calculated. This led to a
set of parameters V;d/a for each A for which two phase transitions occur. A triple point
at which all three fluid phases coexist was located for a subset of these parameters. These
authors speculate that a smoothly varying form of the potential could be constructed that
would have the same properties, and that the phenomenon may also occur in two and three
dimensional systems. This is clearly relevent to the suggested pair-potential of Mishima
and Stanley.

Detailed simulations of such models were not tractable at this time. With the recent revival

2See Glover (2004) for a review of work in this field
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Figure 6.5: Piecewise core-softened pair potentials. The Stell-Hemmer Pair potential is shown
on the right. The tail is of the form —a~ye™"". The Jagla ramp potential is shown in the centre,
with the collapsing hard spheres model of Stishov shown on the right.

of interest in these models, the application of computer simulation has allowed studies to
be conducted in more detail. It is useful to state the questions which recent studies of

core-softened pair potentials aim to answer.

Can these potentials generate a second liquid phase with an associated critical
point?

e What are the characteristics of the two liquid phases and the critical point?

e Does the line of liquid-liquid phase transitions lie in the thermodynamically stable

regime?

e What is the solid phase behaviour of these systems? How is it related to that of the
liquid?

e How does the shape of the potential change the answers to these questions?
e What is the simplest model that will lead to a liquid-liquid transition?

e How does the behaviour change if the model is varied?

These are by no means easy questions to answer. Here work on several recent studies
which attempt to provide some answers is reviewed. Due to the range of models adopted,

several questions remain.

6.2.3 The Lennard-Jones Plus Spin Model

This model was presented by Lee and Swendsen (2001) as a possible means of mimicking

short range order effects in real systems. A system of Lennard-Jones particles is modified
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by giving each particle an extra spin-one-half degree of freedom. Pair interactions be-
tween particles with like spins take the usual Lennard-Jones form with length parameter
o,. For opposite spins the repulsive part of the pair-potential only is used with different

length parameter o).

The orientation of each spin is allowed to flip during the simulation with a probabil-
ity determined by the change in total energy this would produce, according to the usual
Monte-Carlo methodology. The authors conducted Monte-Carlo simulations with this po-
tential in various ensembles, apparently tracing coexistence curves with a combination of
Gibbs-Ensemble and multi-canonical methods. All simulations were conducted in two

dimensions.

This model reproduces a stable liquid-liquid phase transition for the case where o), is less
than o,,. The liquid-liquid coexistence line ends in a critical point which lies in the stable
liquid region. As might be expected, the liquid-liquid transition lies along the transition
from ferromagnetic to antiferromagetic ordering of this spins in the liquid. Similarly, a

second line of phase transitions exist along this line within the solid.

6.2.4 The Collapsing Hard Spheres Model

The ‘collapsing hard spheres model’ has been studied by Stishov (2002). A sketch is
shown in figure 6.5. The outer ‘soft’ core can be treated as a perturbation on a hard
sphere system. Application of second order thermodynamic perturbation theory produces
isotherms which exhibit the classic Van-der-Waals loop associated with a first order phase
transition for a = 1.5b (Ryzhov and Stishov, 2002, 2003). This model had previously
been studied by Bolhuis and Frenkel (1997) and others in the context of isotructural solid-

solid phase transitions (and a possible solid-solid critical point) for smaller values of a.

This indicates that systems with two characteristic repulsive distances are capable of ex-
hibiting a liquid-liquid transition, and that the attractive part of the potential is not im-
portant. The second critical point is metastable for the range of parameters investigated
by the author. No simulation studies of this potential have been reported. Note that it is
generally accepted that the liquid-gas transition cannot be modelled without an attractive
region in the pair-potential. This implies that the LLPT in the collapsing hard-spheres

model is the only fluid-fluid transition present.

6.2.5 The Ramp Potential

Jagla (1998) has proposed a ‘bare-bones’ version of the original Stell-Hemmer piecewise

ramp potential containing the repulsive components only as shown in figure 6.5. Monte-
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Figure 6.6: Modified form of the Jagla ramp potential which includes an attractive component.
The resulting phase diagram is shown on the right with a split temperature scale.

Carlo studies of this potential in two dimensions were conducted, locating several solid
structures and a maximum in the solid-fluid coexistence curve. The model shows no
liquid-liquid transition (and in fact no liquid state), however the fluid phase does exhibit

a temperature of maximum density (TMD).

A modification of this basic form which includes an attractive component was later pre-
sented (Jagla, 2001). This is shown in figure 6.6 and closely resembles the original Stell-
Hemmer form. Using this potential, Monte-Carlo simulations were conducted in a vari-
ety of ensembles in two and three dimensions. Van der Waals loops were produced in
both the two and three dimensional cases. These transitions occur in the stable liquid
regime with a liquid-liquid critical point at lower temperature and higher pressure than
the liquid-gas critical point. Wilding and Magee (2002) have accurately traced the three-
dimensional liquid-liquid transition using the histogram reweighting and multi-canonical
sampling technique described in section 5.6.1, and confirmed the presence of the density
maximum. This places the presence of a liquid-liquid transition in this system beyond

reasonable doubt.

6.2.6 The Shoulder Potential

The ‘shoulder’ potential has been studied in two forms. The first is discrete, and resembles
the collapsing hard-sphere model above, with the addition of an attractive square well.
The second is smooth and is generally constructed as a superposition of an outer Gaussian

minimum onto the Lennard-Jones potential.
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Figure 6.7: Discrete (left) and smooth (right) forms of the shoulder potential. A second critical
point is present in the three-dimensional discrete potential for various values of b/a and c/a only

when |Ua/Ug| > 2.

Both forms are shown in figure 6.7.

After confirming that these potentials give similar results in one dimension to the Stell-
Hemmer potential, Sadr-Lahijany ez al. (1998) conducted molecular dynamics simula-
tions of both the smooth and discrete potentials in two dimensions. For the smooth ver-
sion parameters of A = 1.7¢, rp = 1.50 and w = 25072, were used. For both models,
density and compressibility anomalies were observed, along with an unexpected increase
in diffusion coefficient with increasing pressure. The authors suggest that these anoma-
lies are related to two different local structures in the liquid. In a follow up paper, Scala
et al. (2001) located two solid structures for the smooth potentials. An approximate phase
diagram was obtained using single phase techniques. The transition between the high
density square and the low density triangular solids causes the slope of the melting curve
to change discontinuously with temperature. This occurs in the region close to the liquid
anomalies. The justification of these anomalies relies on simulations in both the NVT
and NPT ensemble. The authors use volume rescaling and the Berensden thermostat for

sampling and hence the conclusions cannot be taken as entirely reliable.

Scala et al. (2000) present a thermodynamic argument that the smooth shoulder potential
must posses an extra line of phase transitions. Specifically, it is shown that a second
minimum in the enthalpy occurs as the pressure is increased. This argument relies on
the enthalpy being independent of structure, i.e. the extra phase transition is either an
isostructural solid-solid or liquid-liquid phase transition. Referring to the MD simulations
above, it is argued (without simulation or calculation) that the anomalies observed can be
explained if this line of phase transitions ends in a second metastable critical point within
the supercooled liquid. This is a further suggestion that the shoulder potential is useful
for understanding the anomalies of liquid water. Note that Smith and Bruce (1995) have

performed multi-canonical Monte-Carlo simulations on a model colloid which resembles
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the discrete potential without the shoulder. Only the attractive well is present, however

this is sufficient for two fcc phases of different density to be observed.

As with the Jagla ramp potential, the smooth shoulder model in two dimensions has been
tackled using state of the art Monte-Carlo methods by Wilding and Magee (2002). Using
the same model parameters as Sadr-Lahijany et al. the presence of the two solid phases
is confirmed, as are the liquid anomalies. No evidence is found to support the presence
of a metastable second critical point. The density anomaly is shown to be a consequence
of approaching the triangular solid freezing temperature. During this process clusters of
lower density than the surrounding liquid are formed, lowering the average density and

generating the expansion on cooling.

The first molecular dynamics simulations of a shoulder potential in three dimensions were
conducted by Franzese et al. (2001). These were restricted to the discrete form. In contrast
to the two dimensional case a metastable second critical point was identified for certain
parameterisations, again using single phase methods. In a follow up paper Buldyrev et al.
(2002) showed the absence of a density anomaly in these three dimensional simulations.
Franzese et al. (2002) suggested that this may be due to the lack of a second solid phase.
The single solid phase present was identified by crystal growth from a seed surrounded
in a gaseous simulation. Skibinsky ef al. (2004) have mapped in detail the location of the
second critical point as a function of the parameters in this discrete potential. Note that in
contrast to the hypothetical two dimensional (supposed waterlike) liquid-liquid transition,
this metastable second critical point lies at higher temperature than the liquid-gas critical

point in all cases mapped.

The smooth shoulder potential in three dimensions has been the subject of only two lim-
ited studies. The first (Mausbach and May, 2003) explores only the high temperature
liquid, well above the melting line. Unsurprisingly, no liquid anomalies were found. No
second critical point is found. The second study (Netz ef al., 2003) has measured a dif-
fusion anomaly at somewhat lower temperatures in the microcanonical ensemble.’ Both

studies used a single parameterisation of equation 6.1.

In the following chapter, a detailed study of the three dimensional smooth shoulder poten-
tial is presented with a view to answering some of the questions posed in section 6.2.2 for
this model. Of particular interest is the difference between the behaviour of the smooth

and discrete forms of the shoulder potential in three-dimensions.

3 Attempts to reproduce this result with the GOLDILOCS code indicate the diffusion anomaly is a con-
sequence of cavitation in fixed-volume simulations.



Chapter 7

Phase Diagrams of Core-Softened

Potentials

Previous studies of the smooth shoulder potential in two and three dimensions have con-
centrated on the location of liquid anomalies for a single parameterisation of equation 6.1.
In this work a somewhat different approach is adopted. Explanations for unusual liquid
properties of core-softened potentials universally incorporate the phase behaviour of the
solid close to melting. It therefore seems logical to concentrate on quantifying the solid
and melting phase behaviour as a function of the parameters A,y and w. This may be
interesting in itself, and will indicate where liquid anomalies are likely to occur based on
existing knowledge of two dimensional systems. In this chapter the phase behaviour is

mapped for a family of parameters in which 7y and w are held fixed and A is varied.

As with the Lennard-Jones simulations reported in previous chapters, reduced units are
employed here. Energies are quoted as multiples of the Lennard-Jones well depth e,
lengths as multiples of 0. Reduced temperature 7™ is calculated as kgT'/¢e, with pressure

P* = Po? Je. Time is measured in units t* = (m/¢)'/?c where m is the atomic mass.

7.1 Candidate Structures

Much insight into the solid phase behaviour of a model substance can be extracted from
zero temperature enthalpy and volume characteristics as a function of pressure. For struc-
tures which can be expected to respond isotropically to hydrostatic pressure, energy is a
one-dimensional function of volume that can be traced with a series of static calculations.

The energetically relevant structures must first be identified.

The approach adopted here is to examine energy-volume curves for several simple isotropic

128
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Figure 7.1: Plots of the pair-potential described by equation 6.1 for three values of rq. For each
value of rq plots for A/e =0.25, 0.5, 1.0 and 1.5 are shown. The parameter w = 41.2202 in all
cases.

structures. Specifically face-centred cubic (fcc), body-centred cubic (bcc), simple cubic
(sc) and diamond. Meta-dynamics simulations can be initialised from any minima iden-
tified. These may locate further relevant structures. The hexagonal close-packed (hcp)

structure does not respond isotropically to pressure, but will be considered later.

Curves of this kind were traced for various values of A, ry and w. Examples are shown
in figure 7.2. Parameters for which the outer well represents a small perturbation do
not alter the dominance of the fcc structure. The simple cubic structure dominates at
intermediate 7y values. Curves for r( in the region of 1.5 to 20 show the diamond structure
as substantially more stable than close packed structures. Pair potentials with r( in this
region do not at all resemble the shoulder form. These are not relevent here but may be

interesting for later studies in their own right.

Both the fcc and sc structure exhibit two energy minima in some cases. For all parameters
explored the lower density sc minima is not energetically relevant, having only six nearest
neighbours at o compared to twelve in the lower density fcc case. The presence of two
minima for a given structure is precisely the prediction of Scala er al., although it is not

yet clear if this also applies to the liquid.

Meta-dynamics simulations have concentrated on potentials for which w = 41.220~2 and
ro = 1.4330. These values of w and 7y have been selected by eye to provide a suitable
shoulder to the pair-potential. Simulations for various values of A between 0.25 and
1.50 have been conducted, using both fcc minima as well as the sc structure as initial
conditions. In all cases zero external pressure is applied. Temperatures used ranged from
T =0.16 to 0.5.

The lowest energy structure with A = ¢ was generated from a run of 100 meta-steps as
shown in fig. 7.3. A step dh of 1.16 o is used, with free energy augmentations 2.63 € in
height. The final configuration was optimised using conjugate gradient energy minimisa-
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Figure 7.2: Example energy-volume curves for the lowest energy isotropic structures. Parameters
used are A = €/4, ro = 1.4330 (left), A = €, 1o = 1.4330 (centre) and A = 3¢/2, 1o = 1.5870

(right). Other isotropic phases considered lie well above this energy scale. w = 41.220~2 in all
cases.

tion with respect to the atomic positions and cell vectors. The result is easily identified
as a 5x5x5 repetition of a simple hexagonal (sh) primitive cell (v = = 90°,y = 120°)
with a = b = 1.0590 and ¢ = 1.0160. The system size was 216 particles. It is easily
confirmed via constant pressure simulation that this sh structure responds anisotropically
to hydrostatic pressure. The density of this structure lies between that of the sc and fcc
structures, however its energy is substantially lower than either with this A value. The
stability of this structure can be understood in terms of neighbour distances. The nearest
and second nearest neighbours lie at a distance ¢ and a respectively, close to the position
of the Lennard-Jones minimum, while the third nearest lie at \/m which is very
close to 7y. Both energy minima in the pair potential are therefore utilised.

A number of hybrid structures in which stacking alternates between sc and sh have also
been located when employing smaller 6/. These all lie midway in both energy and density
between the pure structures. No other structures of energetic relevance have been obtained
when employing alternative A values. It must however be stressed that the meta-dynamics
search of configuration space may not be exhaustive. Other structures of importance may

exist that have not been considered. The remainder of this chapter assumes this is not the
case.

7.2 Choice of ry and w

The choice of parameters used for the meta-dynamics above is essentially arbitrary. For
a given value of 7, the effect of small changes in w is not likely to be significant at zero
temperature. It is however prudent to examine the effect of altering ry on static energies

for the structures of interest. Plots of the pair-potential for three values of r are shown in
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Figure 7.3: Evolution of the cell angles and cell lengths during a meta-dynamics run initialised
from the simple cubic minimum. The dimensionless quantity I = Fyq - Foug/ |Fsal |Faug| is
expected to remain at =~ —1 while exploring the initial basin of attraction, and peak sharply at 41
at the cusp between two minima.

figure 7.1. The zero temperature behaviour of these three choices is studied below. The
effect of w on the location of finite-temperature phase boundaries is explored in the next
chapter. Static energy/enthalpy is by performing a conjugate-gradient (CG) minimisation
of the enthalpy U + PV with respect to both the cell vectors and the fractional atomic
coordinates. For optimisation of a given structure, the cell angles are held fixed to avoid

location of a lower energy structure.

Energies under zero pressure calculated in this way are shown in figure 7.4, as a function
of the outer-well depth A. Positions o = 1.246¢ and ry = 1.6200 are used with the well

width parameter w = 41.220~2 in both cases.

721 ry=1.2460

With the outer Gaussian well close to the Lennard-Jones minimum, no interesting phase
behaviour is apparent from the zero temperature data. The hcp structure has the lowest
energy for all A values in the range studied. This is near-degenerate in energy to the
fcc structure as in the pure Lennard-Jones case. The simple hexagonal structure is only
mechanically stable above A = €. Structural optimisation of this structure at lower A
values resulted in transformation to close packing. The sc structure is stable for all A, but

with high energy.

As both the sc and sh structures are of lower density than the close packed structures,
they cannot become lower in enthalpy under positive pressure at zero temperature. In
addition the entropic contribution at finite temperature is unlikely to overcome the energy

difference. The close-packed structures can therefore be expected to remain thermody-
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Figure 7.4: Ground state structural energies for outer-well positions ro = 1.2460 and ro =
1.6200 as a function of the outer-well A.

namically stable over the entire solid range for all A.

722 1y =1.6200

The data for ry = 1.6200 are somewhat more interesting. Several trends are apparent

from figure 7.4 and from the volume data (not plotted).

e For values of A greater than approximately 0.6¢ the sh structure is lower in energy
than the close-packed structures. As the sh structure is of lowest density, a transition

to close packing can be expected under positive pressure.

e In the region of A = ¢ the sc structure also overtakes the close-packed structures.
The sc density is lower than that of sh, and hence it can be concluded that the sc to

close-packing transition will only ever be meta-stable.

e As A increases, the energy difference between the hcp and fcc structures increases.
Beyond A = 1.4¢ the hep structure is mechanically unstable and only the fcc per-

sists to higher A values.

e Ataround A = 0.7¢, a second set of close packed structures becomes mechanically
stable in which the nearest neighbour distance is ry, rather than that associated with

the Lennard-Jones minimum.
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e At approximately A = 1.8¢ the lines for the high and low density close-packed
structures intersect. Beyond this, a metastable isostructural phase transition is ex-

pected under positive pressure.

e The energy of the diamond structure runs parallel to the low density close-packed
phases with density between that of the two close-packed phases. Several metastable

phase transitions will exist involving the diamond structure.

The nearest neighbours in the sc structure are close to the Lennard-Jones minimum at
approximately 1.12¢. The favourability of sc over the high density close packed structures
stems from second nearest neighbours which lie at /2 times this distance, which is close
to 7. Each atom has six neighbours close to the Lennard-Jones minimum plus six close

to ro. This compares to eight and twelve in the sh case which is therefore lower in energy.

From here on the two densities of close-packed structures will be denoted by the prefixes
1d (low density) and hd (high density). Both densities decrease in energy on increasing A.
The lower density structures contain more neighbours close to ry and hence the decrease

is faster in these cases.

723 1ro=1.4330

Data for the original choice of 1y = 1.4330 are plotted in figure 7.5. In this case the
simple hexagonal structure overtakes the fcc at almost exactly A = €/2, with the parallel
simple cubic line crossing at A = 3¢/4. Meta-stable isostructural phase transitions under
pressure may be realisable in potentials in the region A > 1.2¢. The hd-hcp structure
remains stable over the range of A studied. The energies of the two close packed structures

do not diverge as in the oy = 1.6200 case.

The initial choice of ry = 1.4330 seems suitable for further study at finite temperature.
A compromise between an abundance of interesting phase behaviour and simplicity is
achieved. In addition, figure 7.1 indicates that smaller values reduce to a single well, and
larger values generate a distinct second well. These cases may be of interest to further
study, but cannot be considered to posses the shoulder of interest here. A similar argument

applies to substantially altered values of w.

As is common, the hep phase is neglected in the work that follows. The fcc-hcep transition
is notoriously difficult to resolve, and is not of interest here provided the free energies of

the two structures do not differ by much more than the pure Lennard-Jones case.! This

'Tt should be noted that the lattice-switch Monte-Carlo method has been used to study the Lennard-
Jones fcc-hep transition by Jackson et al. (2002). The application of this method to the hcp-fee transition
in core-softened potentials may be an interesting avenue for further study.
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Figure 7.5: Optimised energy under zero pressure for various structures as a function of the outer
well depth parameter ro = 1.4330 in all cases. The hcp and fcc structures are near-degenerate as
indicated in the inset.

will be checked during the work that follows.

Four values of A have been selected for detailed investigation.

e A = €/4 - In this regime little deviation from Lennard-Jones behaviour is expected,
with the possibility that the sh/sc structures may come into play at high temperature

if they preempt the melting transition.

e A = ¢/2 - This represents the region in which a sh to close-packing transition is
expected under small positive pressure. It is indended to determine if this transition

intersects the fcc melting line, resulting in stable melting of the sh structure.

e A = € - Here the sh structure is expected to dominate, with transitions to close-

packing at high pressure.

e A = 3¢/2 - Which should manifest a metastable isostructural transition. This may
approach the melting curve and influence the liquid in accordance with the theories
of Scala et al. (2000).
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Figure 7.6: Left, liquid isotherms for the A = €/4 potential. Simulations conducted at NPT
are shown as circles, NVT simulations as squares. The isotherms place the critical temperature
between T* = 1.0 and T* = 1.17. Right, density difference vs temperature along the liquid-
vapour coexistence curve calculated using the histogram reweighting and muticanonical sampling
process. Two fits to the appropriate power law are presented.

The remainder of this chapter deals with detailed mapping of the above four phase dia-

grams using the computational methods described and tested in chapter 5.

7.3 Phase Behaviour for A = ¢/4

For this value of A the interest is in determining if any additional phases beyond those
observed in the Lennard-Jones phase diagram are present. If not, the alteration of the

phase diagram due to the perturbation may yield insight.

7.3.1 Liquid-Gas transition
Fluid Isotherms

To gain an initial approximation of the critical temperature, a series of isotherms were
traced over the liquid and liquid-vapour regions. NPT Langevin dynamics simulations
were employed in regions where the pressure varies rapidly with density. NVT simula-
tions were used at lower densities and through the liquid-vapour equilibrium region. Each
simulation length was t* = 400 in both equilibration and production phases. The system

size was 500 particles. The resulting isotherms are shown in figure 7.6.

These indicate that the critical isotherm lies between 7™ = 1.0 and 7™ = 1.17, providing
a starting estimate from which to begin the histogram reweighting and multi-canonical

sampling procedure.
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Figure 7.7: Liquid-gas transition in the A = ¢/4 potential. The first few number density his-
tograms employed in the multi-canonical sampling procedure are shown on the left. The Gibbs-
Duhem continuation of the melting curve from these GCE simulations is shown in the right.

Multi-canonical Monte-Carlo

Following the procedure in section 5.6.1, an initial bimodal histogram was obtained at
7" = 1.100 with a chemical potential of y* = —9.267 in a cubic cell of side 7.130.
From this starting point the liquid-vapour coexistence curve was traced to a temperature
of T* = 0.925 in 21 steps. Each multi-canonical GCE simulation employed 600, 000
cycles. Example histograms are shown in figure 7.7. These yield information on the
density of the two phases, allowing a three parameter fit of equation 5.1a to be obtained.
The extrapolation of this fit to zero density difference is shown in figure 7.6, yielding a
critical temperature of 77" = 1.108. If the three-dimensional Ising 3 = 0.3258 is imposed,
the critical temperature becomes 77 = 1.111. An estimate of the critical temperature is
hence taken as 77 = 1.108 & 0.003. This is larger than that identified for the Lennard-
Jones potential in the truncated and force-shifted case (0.961 &+ 0.004 - see appendix A).
A fit to the law of rectilinear diameters gives a critical density of p; = 0.302 £ 0.003.

Gibbs-Duhem Integration

Below T* = 0.925 the continuation of the liquid-vapour coexistence curve has been
traced with Gibbs-Duhem integration. A starting point for this series is taken from a
quadratic fit to the pressure-temperature data unfolded from the multi-canonical Monte-
Carlo simulations. The enthalpy and volume of both phases are sampled at each step
using constant pressure Langevin dynamics simulations of 75,000 At for the gas and
50,000 At for the liquid. A time-step of At* = 0.0012 was used for both phases with

suitably identified thermostat and barostat parameters. Both phases used simulations of
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500 atoms.

The join between the Monte-Carlo and Gibbs-Duhem data is shown in figure 7.7.

7.3.2 Solid

The solid structure for this potential is expected to remain close packed at low temper-
ature and high pressure. To determine the full phase behaviour of the solid, free energy

calculations have been performed at higher temperature as follows.

For temperatures in the range 7 = 0.0833 to 0.500 in steps of 0.042, the zero pressure
cell dimensions were first calculated for the fcc, sc and sh structures using system sizes of
256, 343 and 392 atoms respectively. These calculations sampled using the fully flexible
constant pressure Langevin dynamics algorithm over 100, 000 time-steps after equilibrat-
ing for 20, 000 At. The time-step At* = 0.0013 was chosen conservatively to be suitable
for all structures, as were the cell mass and particle friction coefficient. At no temperature
in this range were the sc and sh structures mechanically stable. As the fcc structure is of
the highest density, it can be concluded that as with the Lennard-Jones system, the solid

remains in this structure over the entire positive pressure range.

The free energies of the resulting fcc cells were computed using the methodology de-
scribed in section 5.4.2, and compared to those for the hcp structure at zero pressure
identified in the same fashion. Each calculation employed 50 short Langevin dynamics
simulations of 3,000 At (after 2,000 At equilibration) along the path to the harmonic
crystal. The time-step was unchanged from the constant pressure simulations above. The
optimal spring constant for the reference crystal was determined from 10 parallel simula-
tions of 10,000 At. For the system sizes employed (216 atoms for hcp, 256 for fcc) the
difference in free energy between the two structures was less than 0.008¢ for all tempera-
tures. This is smaller than the finite-size error in the calculation. The small outer well has

therefore done little to lift the hcp-fcc degeneracy at finite temperature.

7.3.3 Melting Curve
Two-Phase Simulations

A first attempt at locating the melting line for this potential was performed using two-
phase NPT Langevin dynamics simulations in a fully flexible cell (see section 5.3.1). A
system size of 1000 atoms was used, with each phase containing 500 atoms in a double-
cubic configuration. Conservative values of the time-step and particle friction coefficient

were used so as to be appropriate for the solid and liquid portions. A total simulation time
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of t* = 280 was used for each point sampled in the P-T plane. Pressures in the range
P* =0.047 to 0.710 were sampled.

The results close to the melting line are shown in figure 7.8. 80 simulations were con-
ducted in total. Each sampled point is identified as either solid or liquid. Simulations
which did not transform to a pure phase within the simulation time (i.e. those close to the
melting line) are not plotted. This method is clearly somewhat expensive, requiring many
NPT simulations, however the melting line has been accurately bracketed. This method
is therefore useful for determining the range of temperatures over which free energy cal-
culations should be performed to accurately locate the melting line. This strategy will
be adopted for the remainder of this chapter. Less simulations than used here are hence

required.

Free Energy Calculations

The melting temperature at a pressure of P* = (0.047 has been calculated from explicit
free energy calculations. For the solid phase, densities at temperatures up to 7™ = 0.500
in steps of 0.042 were identified for this pressure, again using the fully flexible NPT
Langevin dynamics scheme. Simulation parameters used were identical to those in section

7.3.2 above. 256 atom cells were employed.

At the identified densities, Helmholtz free energies were computed with the Einstein-
crystal method for system sizes of 256, 500 and 864, again using identical parameters in
section 7.3.2, and extrapolated to the thermodynamic limit. This accounts only for the
dominant finite-size effect in computing the Helmholtz free energy at a given density.
There is a possibility of further error due to finite-size effects in the identification of
density, i.e. in the initial NPT Langevin dynamics simulations. This will affect both the
density used for the thermodynamic integration, and the PV term added to the Helmholtz
free energy to give the chemical potential. This effect has been quantified by repeating a
selection of the free energy calculations using densities identified from NPT calculations
of 864 atoms. The change in free energy is less than 1075 in all cases. This effect has

hence been neglected in subsequent calculations.

A reference point for liquid-free energy calculations was taken at 7 = 1.000 and total
chemical potential * = —10.526. This is known to lie in the liquid region from the
multi-canonical data. In a cubic cell of side 7.790, a GCE Monte-Carlo simulation of
500, 000 cycles (after equilibration for 50, 000) identifies (N) = 304.4 + 0.2 and (P*) =
0.357 4+ 0.006, leading to a Helmholtz free energy per atom of f* = —11.080 + 0.003.

Six free energies along the P* = (.047 isobar have been computed by thermodynamic

integration from this reference point, at temperatures of 7 = 0.375 to 0.583. The density
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Figure 7.8: Melting curve for the potential with A = €/4 (left) calculated using the two-phase
NPT coexistence method described in section 5.3.1. The solid line is the melting curve computed
from free energy calculations and traced with Gibbs-Duhem integration. The chemical potential
of the solid and liquid phases along the P* = 0.047 isobar is shown on the right.

of the liquid at each temperature was first computed from an NPT Langevin dynamics
simulation of 100,000 time-steps with At = 0.0026. The system size was 350 atoms,
with an equilibration period of 20,000A¢. The integration itself employed 10 sampled
points along both the isotherm and isochore needed to reach the temperature and density
of interest. Each sample employed 10, 000 equilibration steps before sampling for 50, 000
steps, also using 350 atoms. To estimate the effect of finite-size, the entire process was
repeated with 500 atoms. The resulting changes in free energy are much smaller than the

statistical error on the reference point and have hence been neglected.

Plots of the resulting solid and liquid chemical potential along the P* = (0.047 isobar
are shown in figure 7.8. Interpolation to the intersection reveals a melting temperature
of T = 0.471. The total error on this melting temperature is estimated as less than
£0.008. This is dominated by the statistical error in the liquid reference free energy,
which has been controlled to an acceptable level with the use of a long GCE Monte-Carlo

simulation.

Gibbs-Duhem Integration

This melting point has been used as the starting point for a Gibbs-Duhem series in the
direction of increasing temperature. An integration step size of AT* = 0.021 was em-
ployed. At each step the two phases were sampled using NPT Langevin dynamics sim-
ulations. Parameters were identical to those used for the full Lennard-Jones potential in
section 5.5.2, with the exception of the time-step which was reduced to At* = 0.0028.
The first few steps of the resulting series are shown in figure 7.8 in comparison to the

two-phase simulation results. To check for integration errors in the Gibbs-Duhem series,
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Figure 7.9: Phase diagram of the A = ¢/4 potential. The temperature-pressure projection is
shown on the left, with the density-temperature projection on the right. Both forward and reverse
Gibbs-Duhem series are plotted. The two are indistinguishable on this scale. The low pressure
region and triple point have not been studied in detail. Other than shifts in the melting and critical
temperatures, no interesting phase behaviour over the Lennard-Jones case is observed.

a portion of the melting curve was retraced in the direction of decreasing temperature
between 7™ = 1.005 and 7™ = 0.464.

The phase diagram for this potential is shown in figure 7.9. Both forward and reverse

Gibbs-Duhem series are plotted and are indistinguishable by eye.

7.4 Phase Behaviour for A = ¢/2

For this value of A the sh structure may remain thermodynamically stable at appreciable

temperature, leading to a possible sh-fcc transition.

Much of the methodology has been exemplified in the previous section. For this potential
some details of the simulations will be dispensed with, concentrating on the key param-
eters and findings. Substantial differences from the methodology used in the previous
section will be noted where appropriate. In many cases new thermostat and barostat pa-
rameters are required for the Langevin dynamics sampling. The choice of these follows
the procedures outlined in chapter 4 and will not be explicitly discussed here unless un-

usual.
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Figure 7.10: Critical behaviour of the A = €¢/2 potential. The fluid isotherms used to find an
approximate critical temperature are shown on the left. The first few number density histograms
arising from the multi-canonical sampling procedure are shown on the right.

7.4.1 Liquid-Gas Transition
Fluid Isotherms

As with the previous potential, an initial estimate of the liquid-gas critical temperature was
obtained by seeking the first fluid isotherm on increasing temperature without indications
of hysteresis. The isotherms are shown in figure 7.10. These indicate that the critical
isotherm lies between 7" = 1.17 and 7™ = 1.33.

Multi-canonical Monte-Carlo

At a temperature of 7™ = 1.279 a bimodal histogram suitable as a starting point was
obtained at a chemical potential of 1 = —10.782. A selection of the number density

histograms obtained while stepping along the coexistence curve are shown in figure 7.10.

The critical parameters are identified as 7 = 1.293 £ 0.006 and p} = 0.284 &£ 0.006

indicating a further increase in critical temperature on increasing A.

Gibbs-Duhem Integration

Below temperatures of 7™ = 1.142 the liquid-vapour curve was traced with Gibbs-Duhem
integration. A fit to the pressure data unfolded from the multi-canonical simulations gives
P* = 0.0592 as the initial pressure for the series. A time-step of AT* = (0.021 was
employed for both phases. Other parameters are unchanged from section 7.3.1. The

resulting series is plotted in figure 7.12.
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Figure 7.11: Chemical potential as a function of temperature along the zero pressure isobar for
the A = €/2 potential (left). Three structures are shown. The sc structure is mechanically unstable
beyond T* = 0.25. The chemical potential of the solid and liquid along the P* = 0.047 isobar is
shown on the right.

7.4.2 Solid

Free energy calculations were performed along the zero pressure isobar for all relevant
structures, again using densities identified from constant pressure Langevin dynamics
simulation. Parameters for these and the resulting Einstein crystal calculations were un-
changed from section 7.3.2. Results are shown in figure 7.11. These are uncorrected for

finite-size effects.

The sc structure is now mechanically stable at finite temperature, but not beyond temper-
atures of 7™ = 0.25. The sh structure is also stable, with comparable free energy to fcc.
Although at zero temperature the energy of the sh structure is slightly less than that of
the fcc, at no finite temperature realisable in a simulation is this the case. As temperature
increases the separation between the fcc and sh structures increases. There must there-
fore be a transition between these two structures, but at temperatures below those readily

accessible to the simulations methods used here.

Free energies for the hcp structure were also computed and found to be indistinguishable

from the fcc values.

7.4.3 Melting Curve
Two-Phase Simulations

No attempt to achieve high accuracy with two phase simulations has been made in this
case, the aim being to provide a starting point for accurate free energy calculations. A

total of 63 NPT simulations were conducted, prepared and evolved as in section 7.3.3.
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These bracket the melting temperature as lying between 7" = 0.3 and 7" = 0.4 for
pressures P* < 0.7.

Free Energy Calculations

A point on the melting curve was sought along the P* = 0.047 isobar. For the solid
phase, free energy calculations were performed for temperatures in the range 0.208 to 0.5
in steps of 0.042. The number of sampled points along the path to an Einstein crystal
was decreased to 24 with no appreciable decrease in accuracy. Otherwise simulations

proceded as in section 7.3.3.

Liquid free energy calculations also proceded as in section 7.3.3. A reference point at

T = 1.167 with g = —9.474 was taken. Grand canonical Monte-Carlo simulation
reveals (N) = 368.6£0.2, and (P*) = 2.56+0.01. The Helmholtz free energy per atoms
at the reference point is therefore f* = —12.75 £ 0.01. Thermodynamic integration to

temperatures between 0.292 to 0.500 in steps of 0.042 was performed. Plots of chemical
potential for both the solid and liquid along the P* = (0.047 isobar are shown in figure
7.11. The melting temperature is identified as 7™ = 0.315 £ 0.01. Again the uncertainty

is dominated by statistical error in the liquid reference free energy.

Gibbs-Duhem Integration

Gibbs-Duhem integration initiated from this point proceeded in the direction of positive
temperature using simulation parameters and sizes unchanged from section 7.3.3. To
check for integration errors the series was reversed from a temperature of 7™ = 1.002 to

T* = 0.606. This reversed series is again indistinguishable from the original.

The phase diagram for the A = ¢/2 potential is shown in figure 7.12.

7.5 Phase Behaviour for A = 0.55¢

It is clear that the choice of A = €/2 has not captured the interesting phase behaviour
expected in this region. Increasing A to 0.55¢ widens the energy difference between
these two structures and should therefore manifest the transition at higher temperature
and pressure. A study of the condensed phase behaviour of this model therefore seems

appropriate.
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Figure 7.12: Phase diagram of the A = ¢/2 potential. The temperature-pressure projection is
shown on the left, with the density-temperature projection on the right. The forward and reverse
Gibbs-Duhem series are again indistinguishable on this scale. This phase diagram represents a
further decrease in melting temperature, and increase in critical temperature over the Lennard-
Jones case.

7.5.1 SH-FCC Transition

Zero Temperature

To locate the pressure of the sh-fcc transition at zero temperature, the optimised enthalpy
as a function of pressure was plotted for both structures. Optimisation was performed
with respect to atomic positions and cell vectors using conjugate gradient minimisation.

A system size of 392 atoms was used for the sh structure, with 256 in the fcc simulations.

The two enthalpy curves intersect at approximately P* = 8.9. At this pressure the sh
structure is of lower density. By simple consideration of the Clausius-Clapeyron equation
these results require that the transition at higher temperature occurs at lower pressure.
This provides a range over which the finite temperature transition can be sought with free

energy calculations.

Finite Temperature

A finite temperature point on the phase boundary was sought along the 7" = 0.167
isotherm. Using a system size of 392 atoms for the sh case, and 256 for the fcc case,
densities for the pressure of interest were computed using NPT Langevin dynamics simu-
lation in the usual fashion. Volume samples were taken over 100, 000A¢ (At* = 0.0012)
after a 20, 000At equilibration process. It should be stressed that density responses to
pressure and temperature in the sh structure occur anisotropically. Expansion along each

crystal direction must be considered separately when constructing a cell for thermody-
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Figure 7.13: Free-energy calculations for the A = 0.55¢ potential. The location of the sh-fcc
transition along the T = 0.167 isotherm is shown on the left. The right hand figure shows the
location of the sh-liquid and fcc-liquid melting temperatures from free energies computed along
the P* = 0.118 and P* = 2.374 isobars respectively. All solid free energies shown are those
extrapolated to the thermodynamic limit.

namic integration. Free energies were computed using the Frenkel-Ladd Einstein crystal

method, with parameters matching those in section 7.4.2.

The process was repeated at increasing pressure until useful trends in the free energy could
be identified. An extrapolation of the free energies at pressures in the range P* = 0.02
to 0.35 indicated an intersection at pressures between 0.9 and 1.3. Further calculations
in this region employed finite-size corrections. Additional systems sizes of 640 and 972
atoms were employed for the sh phase. 500 and 864 atom systems were used in the fcc
case. The resulting intersection is shown in figure 7.13. Extrapolation between sampled
points yields a transition at P* = 1.15. The uncertainty on the pressure is estimated at
approximately 0.01. This arises from the extent to which finite size errors may not be

accounted for, as described in section are comparable to those in figure 5.6.

7.5.2 Melting Curves

The sh to liquid transition has been located at a pressure of P* = 0.118. Parameters for
the solid-free energies match those in section 7.4.2 with finite size corrections computed
using system sizes of 392, 640 and 972 atoms. A reference point for computing liquid
free energies was taken at 7* = 1.171 with chemical potential y* = —9.474. A GCE
Monte-Carlo simulation in a cubic cell of side 7.79¢ results in (N) = 370.7 & 0.3 and
(P*)y = 2.730 4 0.009. The Helmholtz free energy per atom at this density and chemical
potential is therefore f* = —12.95 £ 0.01. As with the solid free energy calculations,

parameters for the thermodynamic integration are identical to the A = €/2 case.

The intersection of the sh-solid and liquid chemical potentials along this isobar is shown
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Figure 7.14: Phase diagram for the potential with A = 0.55¢ in the region of the sh-fcc-liquid
triple point. The pressure temperature projection is shown on the left. Points shown are the three
Gibbs-Duhem series described in the text. The triple point lies within the shaded triangle formed
by the three intersecting series. The temperature density projection is shown on the right. Dashed
lines indicate meta-stable continuations of the phase boundaries.

in figure 7.13. The value for the melting temperature obtained is 7™ = 0.343 £ 0.008,

again dominated by the statistical error in the reference free energy.

By a similar process, the fcc melting temperature at P* = 2.373 was determined. Solid
free energies were calculated with parameters identical to those used in computing the
fcc melting temperature for the A = ¢/2 potential in (section 7.4.3). The same liquid
reference state employed for the sh melting temperature was used for thermodynamic
integration. The intersection of the fcc and liquid free energies is shown in figure 7.13,

locating the melting temperature at 7™ = 0.516 £ 0.008.

7.5.3 SH-FCC-Liquid Triple Point

The three pairs of free energy calculations have each provided a point on a coexistence

curve which can be used as the starting point for a Gibbs-Duhem series.

The sh-liquid curve was traced in the direction of increasing temperature, initially in steps
of AT* = 0.02. 640 atoms are used in the NPT Langevin dynamics simulations for each
phase. These employed a time-step of At* = 0.0012 with suitably identified friction
coefficients and cell masses. The total length of each simulation was 50, 000At after
equilibrating for 5,000. The use of the fully-flexible variant is required for sampling
the sh phase in which the volume fluctuations are anisotropic. The fcc-liquid curve was
traced in both directions using systems sizes of 500 atoms in each phase using equivalent

parameters, but with shorter relaxation times enabled by the fcc structure.

The fcc melting curve intersects that of the sh structure close to its initial point. Repetition

of the sh-liquid series with a smaller step of AT* = 0.004 was required to accurately
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locate the intersection. At this point, the sh and fcc structures posses equal free energy,
and hence this point should lie along the sh-fcc line of phase transitions. To confirm this, a
third Gibbs-Duhem series initialised from the the previously identified point on this curve
was conducted in the direction of increasing temperature. A step size of AT* = 0.021
was employed with 500 atoms in the fcc phase and 640 in the sh. Simulation lengths
and parameters were identical to those used for the respective phases when tracing their

melting curves.

The three Gibbs-Duhem series are shown in figure 7.14 along with the corresponding
temperature-density information. The sh-fcc series does indeed meet the intersection of
the two melting lines, forming a triple point to within the error of the initial transition
temperatures. The same triple point is located by the intersection of any two series, and
is independently confirmed by the third. No further consideration of the error in the
Gibbs-Duhem series is therefore required. The location of the triple point is hence 7}, =
0.358 £ 0.002, P, = 0.54 £ 0.02.

The Gibbs-Duhem information also confirms that both melting points measured are ther-
modynamically stable, information which was not available from the above free energy

calculations alone.

7.6 Phase Behaviour for A = ¢

Here the sh structure is expected to dominate at low pressure. The transition to fcc
is expected to occur at significantly higher pressures than the A = 0.55¢ case. The
temperature-density projection shown in figure 7.14 indicates a decreasing density dif-
ference between the sh and liquid phases with increasing temperature. In the limit that
this difference becomes zero, a maximum in the melting temperature with respect to pres-
sure will be observed. Although preempted in the A = 0.55¢ case, this may be realised
here.

7.6.1 Liquid-Gas Transition
Fluid Isotherms

Fluid isotherms for the A = € potential are shown in figure 7.15. The critical temperature

1s suggested as lying marginally above 7™ = 1.5 from these plots.
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Figure 7.15: Critical behaviour for the A = € potential. Isotherms plotted to locate an approxi-
mate critical temperature are shown on the left. Number density histograms along the liquid-gas
transition for temperature close to the critical point are shown on the right.

Multi-canonical Monte-Carlo

In fact, a suitable bimodal number density histogram from which to begin the histogram
reweighting/multi-canonical sampling procedure was identified at 7* = 1.671 when using
a chemical potential of ;*=-14.137. This suggests that the hysteresis effect between 7™ =
2.5 and the 1.671 is negligible for the system size used in plotting the above isotherms.

From this initial point, stepping along the liquid-vapour coexistence proceeded in steps
of AT* = —0.008, other parameters are unchanged from section 7.3.1. The critical
parameters are idendified as 7" = 1.680 £ 0.004, p} = 0.2716 &+ 0.0005. The reduced

step size has led to a substantial accuracy improvement in the critical density.

Gibbs-Duhem Integration

Below temperatures of 7™ = 1.450 the probability of traversing the mixed phase region
is negligible, and hence the remainder of the curve can be traced using Gibbs-Duhem
integration. The vapour pressure is identified at P* = 0.067 at this temperature from
a fit to the multi-canonical data. Note that the temperature step used is increased from

previous cases to AT = —0.03 with no loss of accuracy.

7.6.2 Solid
Zero Pressure Isotherm

Again the free energy for all relevant structures has been computed along the zero pressure
isotherm up to temperatures of 7% = 0.600 in steps of 0.042. With the exception of
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Figure 7.16: Free energy calculations for the A = e potential. The zero pressure free energy per
atom against temperature is shown on the left for all energetically relevant structures. Location of
melting temperatures by free energy calculation are shown on the right for the fcc structure (top)
and the sh structure (bottom).

relaxation times for the thermostat and barostat, all parameters used were identical to

previous cases. The resulting chemical potentials are shown in figure 7.16.

With this value of A, the sc structure is now mechanically stable over a wider tempera-
ture range. The free energy difference between this and the sh structure is substantially
constant with increasing temperature. As the sc structure is of lower density it can be con-
cluded that the effect of positive pressure will increase this difference. The sc structure

can therefore never be more than metastable.

The meta-dynamics procedure has identified a number of hybrid structures in which the
stacking alternates between sc and sh. A number of sample free energies were computed
for these structures. In all cases the values lie part way between the sh and sc energies,

indicating that such hybrids are not energetically favourable.

In contrast to smaller A values, the close-packed fcc and hep structures become mechan-
ically unstable beyond temperatures of approximately 7* = 0.4. In addition the two
structures are resolved in figure 7.16 with the hcp structure lower in energy. The differ-
ence is still however small and may be reversed on applying finite-size corrections. The

hcp phase is therefore still neglected in what follows.

As with the A = 0.55¢ potential a stable sh-fcc transition is expected, at somewhat larger
pressures. A metastable sc-fcc transition under positive pressure is also implied. This
would be expected to occur at pressures below the sh-fcc transition due to the smaller free

energy difference.

No finite-size corrections have been computed along the zero pressure isobar.
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Figure 7.17: Solid-solid transitions in the A = € potential. Zero temperature enthalpies for the
sc, sh and fcc structures are plotted as a function of pressure on the left. The chemical potential of
the sh and fcc structures along the T* = 0.292 isotherm are plotted on the right.

Solid-Solid Transitions

As with the A = 0.55¢ potential, the static sh-fcc transition has been located to indicate a
suitable range in which to search at finite temperature. Plots of enthalpy against pressure
for the sc, sh and fcc structures are shown in figure 7.17. Enthalpy was optimised at each
pressure using CG minimisation. The metastable sc-fcc transition occurs at a pressure of
P* = 3.63, with the sh-fcc transition at P* = 13.31.

The sh-fcc transition at finite temperature was located by performing six Einstein crystal
calculations for each phase in the pressure range P* = 10 to 17 at a temperature of
T* = 0.292. Parameters used for the calculation and finite-size corrections were identical
to section 7.5.1. Results are shown in figure 7.17. The transition at this temperature is
located at P* = 12.86 + 0.01.

The metastable sc-fcc transition has not been explored at finite temperature. It can be
expected that each of the hybrid sh-sc states will also undergo a transition to close-packing
under pressure. The sh-fcc transition therefore marks the stable boundary of a continuum

of meta-stable transitions which terminates at the sc structure.

7.6.3 Melting Curves
Two Phase Simulations

These were conducted for the sh-liquid transition only. Initial conditions were constructed
with 332 atoms in the solid phase and 332 in the liquid. The interface was constructed

along the (1010) direction. Using NPT simulations of equal length to those previously
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used in fcc melting simulations, the melting temperature was identified as lying between

T = 0.58 and 0.63 for pressures up to approximately P* = 1.

In addition, the NPH two-phase method described in section 5.3.1 was found to be useful
in this case. With a conserved quantity of 8.2 ¢/atom, and a volume relaxation time of
tZel

P* = 0.237. This compares to a subsequently identified (during Gibbs-Duhem integra-

; = 70.0, the rm.s. fluctuation in enthalpy is less than 0.05 ¢/atom at a pressure of

tion) latent heat of 2.16¢/atom. The corresponding average temperature in this simulation
(at equilibrium) was measured to be 7™ = 0.609 4= 0.002. The total simulation length was
100, 000 time-steps of At* = 0.0023.

This NPH approach has not been successful when applied to the fcc-liquid transition in
this or any other parameterisation of the shoulder potential. No combination of simulation
parameters which lead to fluctuations in the cell kinetic energy of less than the latent heat
per atom can be found in these cases. For the A = 0.0, ¢/4 and ¢/2 fcc melting at
P* = 0.047, the latent heats are AH* = —0.965, 0.646 and 0.604 respectively. These

significantly lower values suggest why the approach was not useful.

Free Energy Calculations

As with the A = 0.55¢ case the same liquid reference point was used to compute free
energies for melting of both structures. A point at 7* = 1.500 with p = —12.368 was
taken. Grand canonical Monte-Carlo simulation reveals (N) = 366.1 £ 0.5, and (P*) =
3.59+0.01 under these conditions. The simulation length and size is identical to that used
for previous liquid reference points. The Helmholtz free energy per atom of the reference
point is hence computed as f* = —16.99 + 0.01.

Based on the information provided by the two-phase simulations, the sh melting tem-
perature was sought along the P* = 0.237 isobar. Free energies for both phases were
computed at points between 7 = 0.471 and 0.671 in steps of 0.041. Both solid and
liquid free energies were computed as in section 7.5.2. Results are shown in figure 7.16.
Interpolation to the intersection provides a melting temperature of 7* = 0.614 £ 0.009

which is in agreement with the result of the two-phase simulations.

The fcc melting temperature has been located at a pressure of P* = 24.86. For the
solid phase, free energy calculations employed a longer simulation time of 15, 000 sam-
pled steps after equilibrating for 5,000 A¢. 30 points along the path to the harmonic
crystal were sampled. Other parameters and system sizes were unchanged from section
7.5.2. At pressures in this regime, small differences in density result in large free energy

changes. The longer simulation times allowed confirmation that the density identified
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Figure 7.18: Phase diagram for the potential with A = ¢ in the region of the sh-fcc-liquid triple
point. The pressure temperature projection is shown on the left. The triple point lies within the
shaded triangle. Points shown are the three Gibbs-Duhem series described in the text. The tem-
perature density projection is shown on the right. Dashed lines indicate meta-stable continuations
of the phase boundaries.

from Langevin NPT simulations did indeed result in the pressure desired to suitable accu-
racy. The liquid thermodynamic integration procedure is unchanged from section 7.5.2.
The resulting chemical potentials are plotted in figure 7.16 locating the melting tempera-
ture at 7" = 1.851 £ 0.009.

As in previous cases, the error on both of these melting temperatures is dominated by the

statistical uncertainty in the liquid reference point.

7.6.4 SH-FCC-Liquid Triple Point

As with the A = 0.55¢ potential, the three pairs of free energy calculations have been used
as starting points for Gibbs-Duhem integration. To ensure long term numerical accuracy
in the sh-liquid series (which must now cover more distance to reach the triple point),
the time-step for both phases was further optimised to At* = 0.0017 while keeping the
number of sampled time-steps unchanged. Averages are therefore computed over a longer
time. The number of equilibration steps for each phase was increased to 10,000. A
temperature step of A7T* = 0.029 is used. Similar increases in time-step and equilibration

time were made for the fcc-liquid series.

Tracing the melting curve maximum with a positive temperature step is clearly not possi-
ble. In this region the inverse of equation 5.25 was integrated to compute melting temper-

ature as a function of pressure. A pressure step of AP* = (.237 is employed.

For the sh-fcc series, substantial changes were required in the barostat parameter. As dis-
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Figure 7.19: Phase diagram of the A = ¢ potential in both the pressure-temperature and
temperature-density planes. The sh phase now dominates at low pressure. A maximum in the sh
melting curve is marginally preempted by the fcc phase. A further increase in critical temperature
with A is observed.

cussed in section 4.6.2 the wide frequency influence of the constant pressure Langevin
dynamics scheme can require long volume relaxation times if operated at both low tem-
perature and high pressure. In this case a relaxation time six times longer than used in the
A = 0.55€ case is required. The cell does not however decouple from the dynamics and

correct sampling is achieved.

System sizes employed are unchanged from the A = 0.55¢ case. The resulting three series
can be seen explicitly in figure 7.18. Again, any two of the three series can be used to
locate the same triple point to within the error of the initial free energy calculations. The
triple point is located at 73, = 1.04 + 0.01, P, = 11.7 £ 0.2. The sh melting curve can
be traced deep into the fcc region with a large range of metastability. Within this range, a
maximum in the melting curve appears at slightly higher pressures than the sh-fcc triple

point.

The phase diagram for this value of A is plotted in figure 7.19.

7.7 Phase Behaviour for A = 3¢/2

In this potential the sh melting curve may exhibit a maximum in the stable regime. In

addition, an isostructural fcc-fcc transition is expected at positive pressure.
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Figure 7.20: Critical behaviour for the A = 3¢/2 potential. The critical temperatures identified
for smaller values of A are shown on the left. A quadratic extrapolation to the current A is shown.
Histograms resulting from the subsequent reweighting and multi-canonical sampling procedure
are shown on the right.

7.7.1 Liquid-Gas Transition
Extrapolation of Starting Point

Rather than repeat the expensive process of tracing fluid isotherms, a starting point for
the multi-canonical sampling procedure was obtained by extrapolation from previous A
values. Figure 7.20 shows a plot of critical temperature against A. A quadratic fit to

the previously identified critical temperatures yields 77 = 2.142 when extrapolated to
A=1.5.

Multi-canonical Monte-Carlo

Based on this estimate, a suitable bimodal histogram from which to begin tracing the lig-
uid vapour coexistence curve was identified at 7™ = 2.083 with a chemical potential of
w* = —17.705. Again a step of AT* = —0.008 was employed to trace the coexistence
curve to temperatures of 1.867. Extrapolation of the resulting data to zero density differ-
ence yields a critical temperature of 77 = 2.12 & 0.04. The large uncertaintly reflects a
significant deviation from the 3D Ising exponent in the three-parameter fit. The critical

density is identified as p} = 0.265 £ 0.002.
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7.7.2 Metastable FCC-FCC Transition
Zero Temperature

The isostructural transition was first located at zero temperature using conjugate-gradient
enthalpy minimisation. A system size of 256 atoms was used for both fcc phases, opti-
mising at pressures between P* = (0.237 and P* = 2.37 in steps of 0.12. The resulting
enthalpy per atom for both phases is shown in figure 7.21. The intersection reveals a tran-
sition pressure of P* = 1.09. Note that above P* = 1.4 the lower density phase collapses
to the higher density structure during optimisation, indicating mechanical instability.

Finite-Temperature

To locate the transition at finite temperature, free energy calculations were performed
for both phases along the 7* = 0.208 isotherm. Pressures employed matched the zero
temperature case. Suitable densities for the Einstein crystal procedure were identified
from 100, 000 At constant pressure Langevin dynamics simulations following 10, 000 At
equilibration periods. The timestep used was At* = 0.0012, and the system size was 256

atoms for both phases.

Subsequent free energy calculations at the identified densities employed 24 points along
the path to an Einstein crystal. The free energy derivative at each point was averaged over
3,000 At after equilibrating for 2, 000. As in all other cases the optimal spring constant
was identified from parallel simulations of 10,000 At. The time-step is unchanged from
the NPT calculations. Finite-size corrections were computed by employing system sizes
of 256, 500 and 864 atoms. The chemical potentials derived from these free energies are
plotted in figure 7.21, locating the transition pressure for this temperature as P* = 1.27.

As with sh-fcc transitions the error on this value is small, being approximately 0.01.

Gibbs-Duhem Integration

The isostructural transition predicted by Scala e al. has now been identified as fcc-fcc at
low temperature. If this is to generate a density anomaly via the second critical point hy-
pothesis of Mishima and Stanley, then it must extend directly into the supercooled liquid.
To locate the extent of the fcc-fce transition, Gibbs-Duhem integration has been employed
with a temperature step of A7* = 0.03 in the direction of increasing temperature. Sim-
ulation lengths matched those used to good effect in the sh-fcc transitions traced above.

500 atoms were used in each phase.
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Figure 7.21: Metastable isostructural transition in the A = 3¢/2 potential. The enthalpy per
atom at zero temperature is plotted on the left for low and high density fcc phases. The results of
free energy calculations along the T* = 0.21 isotherm are shown on the right.

The resulting series indicates an increase in transition pressure with increasing temper-
ature. However, after just six steps the lower density fcc phase becomes mechanically
unstable. At this point a large density difference between the two phases still exists. The
isostructural transition does not end in a critical point, but terminates at the low density

fcc spinodal line.

The location of this line in relation to the limit of supercooled liquid metastability will be

examined in the next chapter.

7.7.3 SH-FCC Transition

This was identified by the same procedure as the A = ¢ case. The zero temperature
transition is located by CG enthalpy minimisation at P* = 25.27. The transition along
the 7% = 0.208 isotherm was then determined by computing the free energy of both
phases at ten pressures between P* = 23.67 and P* = 26.04.

In computing densities at each of these pressures, the low-temperature high-pressure lim-
itations of the constant pressure Langevin dynamics methods was reached. No suitable
relaxation time for the barostat could be identified which did not disrupt the particle mo-
tions, or result in cell decoupling. Instead, the Nosé-Hoover method was used with sepa-
rate five-thermostat chains on each degree of freedom. Other parameters and system sizes
used for the Einstein crystal calculations are unchanged from section 7.6.2. As plotted in
figure 7.22, the transition is located at P* = 25.17. The estimated error in this pressure is

approximately 0.01.
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Figure 7.22: Free-energy calculations for the A = 3¢/2 potential. The chemical potential of
the sh and fcc phases along the T* = 0.208 isotherm are shown on the left. Results of free
energy calculations used to locate melting temperatures are shown on the right for the sh and fcc
structures at P* = 0.237 and 23.67 respectively.

7.7.4 Melting Curves

The sh and fcc melting temperature were sought along the P* = 0.237 and 23.67 isobars
respectively. No two-phase simulations were performed in this case. A suitable range
over which to perform free energy calculations was estimated from trends in earlier data.
A reference point at 7 = 1.500 with 4 = —12.368 was used in computing the liquid free
energies along both isobars. Grand canonical Monte-Carlo simulation provides (N) =
415.6 £ 0.5, and (P*) = 4.52 £ 0.01, leading to a Helmholtz free energy per atom of
fr=

of interest employed parameters unchanged from section 7.6.3 as did the solid free energy

—20.79 £ 0.04. Thermodynamic integration from this reference point to the isobars

calculations.

The resulting chemical potential along each isobar is shown in figure 7.22. The sh melting
temperature is located at 7™ = 0.80, with the fcc melting at 7™ = 1.45. In both cases the
uncertainty is approximately 0.01. As with all other melting points, this is dominated by

statistical error in the liquid reference free energy.

7.7.5 SH-FCC-Liquid Triple Point

Gibbs-Duhem series for the sh-fcc, sh-liquid and fcc-liquid transitions have been com-
puted to trace the remainder of the phase diagram. Simulation lengths, parameters and
systems sizes were unchanged from the three-series traced in section 7.6.4, with the ex-
ception that Nosé-Hoover chains were used for the low temperature portion of the sh-fcc

transition. As in the previous case, any two of the three curves indicate a triple point, the
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Figure 7.23: Phase diagram of the A = 3¢/2 potential. The pressure-temperature projection in
shown on the left, with the temperature density projection on the right. The maximum in the sh
melting curve is clearly visible.

location of which is confirmed by the third to within the error of the initial free energy
calculations. The triple points lies at 7* = 1.48 £ 0.01, P* = 24.3 £0.1.

As can be seen in figure 7.23, the sh melting curve maximum now lies within the stable
regime. The fcc melting curve intersects at slightly higher temperature. There is hence a
small range visible in both the temperature-pressure and temperature-density projections
for which melting is reentrant. The metastable fcc-fcc transition is also plotted in figure

7.23. The termination of this lies well below the thermodynamic melting temperature.

7.8 Summary

Here, the observed trends in phase behaviour on increasing A with w and r( fixed at the
values employed above are summarised. For comparison purposes, the phase diagrams of

all four potentials are plotted together in figure 7.24

The liquid-gas critical temperature has been seen to increase quadratically with increasing
A. The pressure of the critical point also increases. No evidence of a thermodynamically
stable liquid-liquid phase transition has emerged. In particular data from Gibbs-Duhem
integration reveals that density is continuous along the liquid side of all melting and va-
porisation curves. In addition no third fluid peak has emerged during multi-canonical
sampling. A stable LLPT must meet either the melting or vaporisation curves at a triple

point and can hence be ruled out.

As A is initially increased, the fcc melting temperature is found to reduce, perhaps con-

trary to the expected behaviour. This decrease in melting temperature can be understood
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Figure 7.24: Complete sequence of phase diagrams in the P — T (left) and p — T planes (right).
The depth of the outer well A increases from top to bottom.
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by examining figure 7.1. For A values in this region, the effect of the Gaussian is to widen
the existing Lennard-Jones minimum. This allows larger fluctuations about equilibrium
lattice positions for a given temperature. The well known empirical rule of Lindemann
(Lindemann, 1910) states that melting will occur when the root-mean-square fluctuation
is ~ 15% of the nearest neighbour distance. This will occur at lower temperatures for

wider potential wells.

As the Gaussian outer minimum becomes distinct from the Lennard-Jones minima, the
simple hexagonal structure becomes lower in energy. The expected transition to fcc under
pressure has been observed and is seen to intersect the melting line. The resulting simple
hexagonal melting temperature increases with increasing A. The pressure of the sh-fcc

transition increases with increasing A, as expected from the larger enthalpy difference.

It has also been seen that the sh structure exhibits a maximum melting temperature, which
for larger A values is manifested in the thermodynamically stable regime. In the following

chapter the liquid will be studied in the region of this maximum.

The predicted isostructural transition has been observed for the fcc structure only. Al-
though two energy minima are also observed for sc symmetry (figure 7.2), the higher
energy structure is not mechanically stable when the atoms are permitted to move away
from lattice sites. The fcc-fcc transition does not approach the melting line. The possi-
bility of this occurring with alternative parameterisations is investigated in the following

chapter.

The two dominant sources of error in this study are the finite-size error in the solid and
the statistical error associated with computing a liquid reference point for thermodynamic
integration. The former has been largely corrected for by repeating calculations with
larger system sizes. The latter dominates over the liquid finite-size error, but has been
controlled to an acceptably low level. All phase boundaries shown in figure 7.24 can be
considered accurate to within temperatures of AT* = 40.05 and pressures of AP* =
+0.1.



Chapter 8

Exploration of Unusual Phase

Behaviour

The four phase diagrams computed in the previous chapter, combined with that of the
Lennard-Jones potential in appendix A provide valuable insight. The progression of phase
behaviour on increasing the outer well depth A is now known at fixed position and width
parameters 7y and w. No evidence of a thermodynamically stable liquid-liquid phase tran-
sition has emerged. The possibility of liquid anomalies, in particular a density anomaly,
has not yet been investigated. In section 6.2 two suggested mechanisms for generation of

liquid anomalies (based on 2D simulations) were reported. These are

1. A metastable liquid-liquid phase transition in the supercooled regime.

2. Formation of solid clusters close to the melting line in regions where the solid is of

lower density than the liquid.

An isostructural fcc-fce transition has been identified at large A. If both of the phases
involved are metastable at temperatures within the supercooled liquid, (i.e. above the glass
temperature), then heating beyond their respective spinodal lines may generate liquids of
differing density and hence a metastable liquid-liquid phase transition. Such behaviour

would be consistent with the predictions of Scala ef al. and relevant to supercooled water.

Our aims for this chapter are therefore as follows. First in section 8.1, the isostructural
transition mapped in section 7.7 will be studied in more detail. In particular it will be
determined if this reaches the supercooled liquid and if so, if supercooled liquids of two
different densities are generated. This process will involve identification of the glass tem-
perature. With this known, the possibility of generating high and low density amorphous
phases arises, which may also be relevant to a supercooled liquid-liquid transition.

161
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The choice of 7y and w employed in chapter 7 was essentially arbitrary. The extent of the
isostructural phase transition may be increased by altering these parameters, or by further

tuning of the depth parameter A. This will be investigated in section 8.2.

A pressure region in which the solid is of lower density than the solid exists for the
three-dimensional potential when A = 3¢/2. The liquid in this region will be probed

for anomalies in section 8.3.

8.1 Isostructural Phase Transition

In this section the properties of the fcc-fee transition mapped in section 7.7 (A = 3¢/2)
are considered in greater detail. In particular the low density spinodal line and the relative

location of the glass transition, i.e. the limit of metastability for the supercooled liquid.

8.1.1 LD-FCC Spinodal Line

This has been mapped in the pressure-temperature plane. The mechanical stability at
each temperature and pressure is determined using a constant pressure Langevin dynam-
ics simulation of 256 atoms over 50, 000 time-steps of At* = (0.0012. Each simulation
was initialised in the 1d-fcc state. Those which remained in this structure over the simu-
lation length were marked as mechanically stable. Temperatures and pressures sampled
in this fashion are shown in figure 8.1. The spinodal line is drawn between the regions
of metastability and instability. The limiting factor to progression of the isostructural

transition into the supercooled liquid is therefore the stability of the low density phase.

8.1.2 Glass Transition

The glass transition marks the lower temperature limit of metastability for the supercooled
liquid. Below this temperature atoms freeze into an amorphous glassy solid. Experi-
mentally, the transition can be located by plotting the specific volume as a function of
decreasing temperature in the supercooled liquid. This exhibits a discontinuity in slope
at the glass transition. The temperature at which this occurs is however dependent on

cooling rate, hence glass formation is not a true thermodynamic phase transition.

Application of this criteria to computer simulation requires non-equilibrium molecular
dynamics methods to ensure an equal cooling rate is used to reach all temperatures. An

alternative method has been proposed by Wendt and Abraham (1978). This is based on
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Figure 8.1: Limits of metastability relevant to the fcc-fcc transition. The left hand plot shows the
identification of the ld-fcc spinodal line. The glass temperature along the P* = 1.50 isobar is
identified via the method of Wendt and Abraham in the right hand plot.

characteristics of the pair-correlation function g(r) at a series of equilibrium simulations

in the metastable liquid and glassy states. The pair correlation function is defined as

g(r)= m<226(7‘—nj)>, (8.1)

i=1 j#i

which was met briefly in chapter 5. It gives the ensemble averaged distribution of pair
distances 7;;. It is easily calculated from either a molecular dynamics or Monte-Carlo
simulation in the ensemble of interest. Wendt and Abraham define the quantity R as the
ratio of the first minimum in g(r) to the first maximum. This is a convenient function of
local structure which varies more rapidly with temperature in the liquid than the glass.

The transition is located at a discontinuity in the slope of R with respect to temperature.

Using this methodology, the location of the glass transition for the current potential was
determined along the P* = 1.50 isotherm. Data for the calculation of g(r) were obtained
using constant pressure Langevin dynamics simulation. Each simulation was initialised
with a random configuration of 500 atoms subject to the condition that no two atoms are
separated by less than 0.850. This was equilibrated for 10,000 At before accumulating
statistics over a further 40, 000 At. Temperatures in the range 7™ = 0.267 to 1.00 were
studied. The values of 12 obtained from the resulting pair-correlation functions are shown

in figure 8.1. The glass temperature is identified as approximately 77 = 0.47.

Plots of g(r) in the glass region show significant peaks at both the Lennard-Jones min-
imum, and at ry. Attempts have been made to create a low density glass by randomly
placing atoms in a simulation cell subject to the condition that no two atoms are less than

0.997( apart. Simulation of these configurations at temperatures below the glass temper-
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ature have been conducted over pressures in the range P* = 0 to 0.5. In all cases the
system collapses to the same high density glass observed in figure 8.1. If the density is
constrained at that of the 1d-fcc phase or larger, the system cavitates and exhibits negative
pressure. This indicates that no stable low density amorphous phase exists in which the
nearest neighbour distance is . A large degree of crystalline order is required to stabilise

low density phases.

These results show that the fcc-fee transition does not extend into the supercooled liquid
region. The distance between the 1d-fcc spinodal line and the glass temperature is however
small. Small changes in the pair-potential may therefore allow the isostructural transition
to reach the supercooled liquid. The conjecture that this will generate a liquid-liquid phase

transition can then be investigated.

8.2 Adjustment of A, ) and w

8.2.1 Free Energy Derivatives

In this section the effect of changing the parameters A, ry and w on the Gibbs free en-
ergy of the phases involved is investigated. By comparing the magnitudes of free energy
derivatives with respect to these parameters, their relative importance in determining sta-

bility can be assessed.

Evaluation

First, consider the parameter A. The specific Gibbs free energy is written

g= —kBTTlnA (8.2)

with

1 oo o0
A = —— dr¥dpNdv —BH — BP
%NW/O /_OO/D(V)r p¥dV exp[FH — APV

1

A= —— N _BU — 8PV, .
VON!A?’N/O /D(V)dr dVexp [-6U — BPV)| (8.3)

as defined in sections 2.2.3 and 2.4.3. The derivative of interest is
NPT N A 0A

o (8.4)

NPT
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The parameter A appears in the NPT partition function A only through the potential

energy U, and hence

— (VON'A3N> / /D(V drNdV— exp [—0U — PYV)]
NPT

U
- = (gmw) [ . d”NdVﬁ<aA>eXp[ e
(8.5)

1 0A
A 0A

which can be identified from equation 2.18 as an ensemble average,

1 0A ou
Loal 5< > (8.6)
A OA|ypr A/ npr
Equation 8.4 then becomes
dg 1 <(9U >
= = (= : (8.7)
OA|Npr N \NOA/ ypp

The potential energy U is written as a pair potential,

N N
U= Z Z ¢r; — Aexp [—w (rij — ro)z] (8.8)

i=1 j>i

where ¢ ; is the Lennard-Jones potential. Hence the free energy derivative becomes

1 N N
TN <Z > exp [~w(ry - 7“0)2}> : (8.9)

dg

0A

i=1 j>i
The ensemble average can be written in terms of the pair correlation function,

dg

0A

=—p /00 Amr?g(r)exp [—w (ry; — ro)z]dr (8.10)
0

NPT

where ¢(r) is evaluated in the NPT ensemble. Similarly, for the parameters w and 7y,

99 = Ap/ Amr2g(r) (rij — 70)° exp [—w (ry; — 7’0)2} dr, (8.11)
Ow |y pr 0
and
99 = —2Awp/ Amr?g(r) (rij — ro) exp [—w (ry; — ro)Q}dr. (8.12)
90 | npr 0
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Figure 8.2: Free energy derivatives with respect to ro. The pair correlation function g(r) and
0¢/0ry are shown for both the high density (left) and low density (right) fcc structures. The
integral over the product of the two functions is clearly of opposite sign in each case.

Behaviour

Several observations can be made from the above derivatives without numerical calcu-
lation. The value of equation 8.10 is always negative. Increasing the A parameter will
always lower the Gibbs free energy regardless of structure. The rate of decrease is largest
for structures with larger peaks in g(r) close to ro. This is consistent with the increasing
favourability of open structures as observed in chapter 7 which was explained in terms
of zero temperature energies and nearest neighbour distances. Note that the free energy
derivative is independent of A itself. Increasing A is unlikely to significantly change ¢()
for a given structure, suggesting that the free energy as a function of A is approximately

linear.

Equation 8.11 will always be positive for A > 0. Increasing w narrows the width of
the outer well in the pair-potential, limiting the area of phase-space accessible at a given
energy and therefore lowering entropy. The decrease in free energy on widening the outer
well also favours open structures. As w decreases, the spread of r, values that contribute
to equation 8.11 increases. The rate of free energy decrease is therefore expected to
increase with increasing w.

The value of equation 8.12 combines both positive and negative contributions. Pair sep-
arations 7;; close to but less than 7 act to increase the free energy. Separations larger
than r( lead to free energy decreases. Any peaks in g(r) at ry are expected to move as
ro is varied. The free energy gradient arising from such peaks is therefore approximately
constant as ry changes. However, structures such as the higher density fcc contain domi-
nant contributions from peaks close to o. The effect on the free energy derivative of these

neighbour distances will increase as r( is moved towards o.

Plots of g(r) for both the low and high density fcc structures are shown in figure 8.2



Chapter 8. Exploration of Unusual Phase Behaviour 167

with 0¢/0r, superimposed. These were calculated at a temperature of 7* = 0.308 and
pressure P* = 1.374 which lies on the isostuctural transition. Simulations employed
10,000 equilibration steps, with g(r) computed over a further 40,000 steps. A time-
step of At* = 0.0017 was employed. It can be seen that the total contribution to the
free energy derivative will be negative for the high-density structure, and positive in the
low density case. The effect of decreasing ry will therefore increase the free energy
of 1d-fcc, while simultaneously decreasing that of hd-fcc. As changes in either w or A
can only change both free energies in the same direction, the parameter 7, seems the
most promising for inducing significant changes in the location of the fcc-fcc transition.
Despite this, differences between the free energy gradients of the two phases with respect

to A and ry cannot be discounted.

8.2.2 Tracing Phase Boundaries

Given the derivatives 8.10, 8.11 and 8.12, it is possible to compute (for any phase) free
energy differences due to changes in A, ry and w using thermodynamic integration. The
free energies computed in chapter 7 (or the free energy of the Lennard-Jones system) can

be used as reference points. For example

dA. (8.13)

N N e
G*(N,P,T) = G™(N,P,T) +
NPT

. 04

This requires computing the free energy derivatives as ensemble averages over a series of
points between two parameterisations for each temperature and pressure. The intersection
of free energies is then used to locate new phase boundaries. This requires considerable
computational effort, not substantially less than needed to compute the phase diagram of

a new parameterisation from scratch.

The above method can only be used if a reference point exists for the phase in question.
This limits the exploration of parameter space to small changes in A, ry and w where it
can be safely assumed that no new phases emerge. The application of thermodynamic
perturbation theory may therefore be of use. Here the first-order correction to the free en-
ergy due to a perturbation in the Hamiltonian of AH is computed as the ensemble average
(AH) over the unperturbed system. In the case of a pair-potential, this can be evaluated
from ¢(r) with minimal computation. The data for g(r) in the unperturbed system has
already been accumulated in chapter 7. Despite being essentially ‘free’ this correction is
not exact, and will require evaluating at many state points to locate intersections in the

free energy of two phases.

A more desirable approach is to directly trace the phase transition along a path in parame-
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Figure 8.3: Variation in fcc melting temperature with A. The Gibbs-Duhem series initialised from
the A = 0 (Lennard-Jones) melting temperature at P* = 0.047 is shown in comparison with
results from explicit free energy calculations in the left. The right hand plot shows g(r) for the
liquid and solid along with the functional form of 0G /A at the initial point.

ter space. A generalised Gibbs-Duhem methodology, such as that employed by Vega et al.
(2005) 1s ideally suited to this task. The total change in Gibbs free energy upon changing
pressure, temperature and some parameter A\ (representing A, w or ry) by infinitesimal
amounts is

dG = =8dT + Vdp + XdA, (8.14)

where X = 0G/O\. At constant pressure, a step along the phase-boundary in the A — 7'
plane requires that
— SodT + Xod\ = —SpdT + XdA (8.15)

where o and (3 denote the two phases involed. This leads to a generalised Clausius-

Clapeyron equation

A AH
o AH (8.16)
OB\ n.p BAX
where AX = X, — Xj3. Similarly, at constant pressure
A A
o __ AV (8.17)
OP |y r BAX

To trace phase boundaries as a function of A, w and ry, the relevant derivative X is given
by equations 8.10 to 8.12. The resulting Clausius-Clapeyron equations can be numerically
integrated with minor modifications to the tools employed in tracing P-T" phase bound-
aries (see section 5.5.2). This methodology can be used to confirm trends observed in the
previous chapter, such as the decrease in fcc melting temperature on increasing A. Be-
ginning from the force-shifted Lennard-Jones melting temperature identified in appendix

A, the melting temperature at P* = 0.047 can be traced as a function of A. Results of
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this procedure are shown in figure 8.3. A fixed step in temperature of AT* = —0.025 is
used in the Runge-Kutta integration. Equation 8.16 is computed at each step using 500
atom constant pressure Langevin dynamics simulations. Enthalpy and 0G/JA are aver-
aged over 20, 000 time-steps of At* = 0.0017 following a 10, 000 At equilibration period.

Integration error was checked by tracing the reverse series and found to be negligible.

When initialised in the centre of the Lennard-Jones error-bar, agreement with the explicit
free energy calculations is obtained. It can be expected that using the top or bottom of
the Lennard-Jones error bar will result in a series which passes though one of the other
points. The functional form of dG//0A is also shown in figure 8.3 along with g(r) for the
solid and liquid phases on the Lennard-Jones melting line. This indicates via equation
8.10 that the free energy of the liquid will decrease faster than the solid on increasing A,

explaining the observed decrease in melting temperature.

8.2.3 Melting Curves

The effect of A, w and ry on the sh melting temperature must be considered if the isostruc-
tural transition is to be extended into the supercooled liquid. The influence of the A pa-
rameter was effectively determined in the previous chapter, leaving the effect of w and rg

to be traced.

The pressure dependence of the sh melting temperature is approximately linear in the
region of the isostructural transition. Changes in this temperature will therefore be com-
puted at a single pressure with the expectation that the same constant shift will apply to

all pressures of interest.

Gibbs-Duhem series have been traced in the 7' — w and T — r, planes. In each case the
value of A is fixed at 3¢/2. Each series is initialised from the melting line traced in section
7.7 at the point T* = (.80, P* = 0.237, with parameters w = 41.220~2 and ry = 1.4330.

System sizes of 642 atoms are used for each phase.

w Parameter

Integration of equation 8.16 employed a step size of AT* = 0.02. Separate series were
employed for integration in the direction of increasing and decreasing temperature. At
each step the relevant free energy derivatives for each phase were computed from simula-
tions of 50, 000 At following equilibration for 10, 000 At. A time-step At* = 0.0017 was
employed. The resulting melting curve in the 7" — w plane is shown in figure 8.4. The

entire range of stability for the sh phase is shown. Above and below the range plotted the
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Figure 8.4: Variation of sh melting temperature with rq (left) and w (right) at P* = 0.237. The
range of ro shown is that relevant to the isostructural transition. For w the entire range over which
the sh structure is stable at the melting line is shown.

sh structure is mechanically unstable at the predicted melting temperature. Both series

were reversed to check for integration errors, which were found to be negligible.

ro Parameter

The equivalent curve for the ry parameter was traced in the same fashion, employing a step
size of AT* = 0.008 in the positive direction and A7T* = —0.02 in the negative. Larger
step sizes in the positive direction produced an irreversible series, implying excessive
integration error. The two series are also shown in figure 8.4. The sh structure remains

stable at the melting line beyond the range of ry shown.

8.2.4 Influence of A on Isostructural Phase Transition

Decreasing A is known to lower the sh melting temperature and may therefore allow the
fcc-fee transition to reach into the supercooled liquid. An initial point at 7* = 0.308,
P* = 1.274 was used for the Gibbs-Duhem integration. This lies on the isostructural
transition plotted in figure 8.1. Initially the transition temperature was mapped as a func-
tion of A using a step size of AT* = 0.025. Free-energy derivatives at each step were
computed using 60,000 At constant pressure Langevin dynamics simulations, following
a 10,000 At equilibration period. A time-step of At* = 0.0017 was employed, with 500
atoms in each phase. The limit of 1d-fcc metastability was encountered after three-steps,
corresponding to a decrease in A of 0.034¢. The transition pressure was then mapped
(from the same initial point) as a function of A using a step AP* = —0.12. Simulation
lengths and sizes used were unchanged from the temperature series. The limit of 1d-fcc

stability was reached in 10 steps, corresponding to a change in A of —0.426¢.
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Figure 8.5: Location of isostructural transition on decreasing the outer well depth. Two Gibbs-
Duhem series are initialised from point A. The first traces the transition as a function of temper-
ature up to the point B. The second traces the transition as a function of pressure, through the
point C to D. Beyond B and D the ld-fcc phase is mechanically unstable. Gibbs-Duhem series
in the P — T plane are initialised from B, C' and D and are shown along with zero temperature
transition pressure computed via enthalpy minimisation.

From the end points of the two series, and a third point lying half-way along the pres-
sure series, the fcc-fcce transition was traced at the resulting A values in the P — T plane.
Parameters used were identical to the original A = 3¢/2 case. In all cases the zero tem-
perature transition pressure was computed from explicit enthalpy optimisation of the two
phases over a series of pressures. Series were traced up to the maximum temperature of
1d-fcc metastability. The resulting series are shown in figure 8.5. The effect of decreasing
the A parameter can be seen as translation of the isostructural transition, combined with
a lowering of the 1d-fcc spinodal line. Both effects are easily understood in terms of the

decreasing outer well-depth on which the 1d-fcc structure is based.

From the above data, the rate at which the maximum temperature of 1d-fcc stability in-
creases with A is approximately 0.23¢~1. Melting temperature for the sh phase increases
at approximately 0.4¢ ! based on data in the previous chapter. Increasing the A parameter
is therefore not useful in extending the isostructural transition toward the liquid. The ‘best
case’ scenario lies at low A where the gap between the melting temperature and the 1d-fcc
spinodal line is the smallest. The smallest A for which the isostructural transition occurs

at positive pressure does not however lead to a useful extension toward the melting curve.
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Figure 8.6: Location of isostructural transition with ro. Two Gibbs-Duhem series are initialised
from the point A on the original phase boundary. The first traces temperature as a function of
ro up to the ld-fcc spinodal line in the T' — ro plane, where it reaches the point B in the P — T
plane. Similarly, the transition pressure is traced from A as a function of ro passing though C
and reaching the hd-fcc limit of metastability at D. Gibbs-Duhem series in the P — T' plane are
initialised from B, C and D. Zero temperature points are calculated explicitly using enthalpy
minimisation. The effect of altering r is seen to be a near pure rotation about the point F.

8.2.5 Influence of r, on Isostructural Phase Transition

As with the A parameter, the effect of the ry parameter has been investigated with two
Gibbs-Duhem series beginning from the point 7* = 0.308, P* = 1.274. The series traced
in the direction of increasing temperature encounters the limit of 1d-fcc metastability after
five steps of AT™ = 0.025. At this point a total change of Ary = —0.004 has occurred. In
the direction of decreasing pressure the series terminates after six steps of AP* = —0.12,
corresponding to a change Arqg = —0.022. In this case it is the spinodal line of the
high density fcc structure which prevents progression to lower pressures. All series used

identical simulations sizes/lengths to those employed in section 8.2.4 above.

Gibbs-Duhem series in the P — 7" plane were initialised from both end points, and from a
point half-way along the decreasing pressure series. These are shown in figure 8.6 along
with zero temperature transition pressures computed explicitly for each value of ry. The
effect of changing the ry parameter is an almost pure rotation of the isostructural transition
in the P — T' plane. Note that for all cases with negative slope the transition terminates at
the hd-fcc spinodal.

The density difference between the two phases does not change sign. The rotation can

only be reconciled with the Clausius-Clapeyron equation if decreasing ry changes the sign
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of the entropy difference between the two phases. Figure 8.6 suggests that the maximum
reach of the isostructural transition occurs when the coexistence line is vertical. In this
case the entropy of the two phases is equal along the phase boundary. This situation
will occur for approximately ry ~ 1.4270. To confirm that the isostructural transition
cannot reach higher temperatures when 7, is increased, a second Gibbs-Duhem series
in the P — r( plane was traced in the direction of increasing pressure. Beginning from
the point 7* = 0.308, P* = 1.274, this encountered the ld-fcc spinodal after 13 steps,
corresponding to a change Arg = 40.3350. For temperatures greater than 7™ = 0.308 the
1d-fce phase is mechanically unstable at this r, indicating that the maximum temperature
of 1d-fcc metastability continues to decrease on increasing . Note that the Gibbs-Duhem
series in the P — T plane calculated at this r, (1.768) does not pass close to the point £
in figure 8.6. The stationary nature of this point is therefore manifested for small changes

in 7o only.

It can be concluded that the maximum reach of the fcc-fcc transition achievable by varying
ro is approximately 7™ ~ 0.45 at rq &~ 1.4270. Itis clear from figure 8.4 that this increase
over the ry = 1.4330 case is matched by an increase in the sh melting temperature of
AT* = 0.03, and hence adjustment of the ry parameter is not useful in significantly

extending the isostructural transition toward the liquid.

8.2.6 w Parameter

Widening the outer Gaussian well is shown to decrease the sh melting temperature in
figure 8.4. This corresponds to a decrease of the parameter w. The effect of this decrease
on the isostructural transition has been investigated from the same starting point used
above, i.e. T* = 0.308, P* = 1.274 in the case w = 41.220~2. Again the transition
was first traced in the direction of increasing temperature using a step size of AT* =
0.025. The limit of 1d-fcc metastability was reached in just two steps corresponding to a
change in w of —5.110~2. A second series traced the transition as a function of pressure in
steps of AP* = —(.12. Here the limit of 1d-fcc metastability was reached in three-steps
corresponding to Aw = —11.4502. Both series used identical simulation sizes/lengths

to those used in section 8.2.4 above.

Beginning from the two endpoints of these series, the isostructural transition in the P — T
plane was traced with further Gibbs-Duhem integration. This proceeded as in section
7.7.2. As in the above cases, the zero temperature transition pressure was calculated
explicitly using conjugate-gradient enthalpy minimisation of both phases at a series of
pressures. The resulting set of isostructural transitions is shown in figure 8.7. The result

of decreasing w is similar to that of decreasing A, i.e. a translation of the isostructural
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Figure 8.7: Location of isostructural transition on decreasing w. Two series are initialised from
the point A on the original fcc-fce transition. The first traces the transition in the direction of
increasing temperature toward the point B where the spinodal of the low density fcc structure is
encountered. The second traces the transition in the direction of decreasing pressure, encountering
the low density spinodal at C. Gibbs-Duhem series in the P — T plane are initialised from points
B and C'. Zero temperature points are calculated explicitly using enthalpy minimisation.

transition in the direction of decreasing pressure, accompanied by a lowering of the max-
imum temperature of 1d-fcc metastability. As the outer well widens, the entropy of the
1d-fcc phase can be expected to increase, requiring less mechanical work to overcome
the difference in Helmholtz potential between the two phases, hence explaining the lower
pressure required. The rate of increase in the maximum temperature of ld-fcc metasta-
bility is approximately 7.3 x 107302 as w is increased. This is approximately twice as
fast as the increase in melting temperature. Increasing w therefore represents a useful
mechanism for increasing the reach of the isostructural transition toward the sh melting

line.

8.2.7 Optimal Parameters

As has been shown, adjustment of the A and ry parameters does little to extend the reach
of the isostructural transition into the supercooled liquid. Increasing the w parameter is
however useful. This can be increased up to a maximum of approximately 790 2. Above
this value the sh structure is no longer mechanically stable at the melting line. The phase
behaviour is therefore qualitatively different from that studied in chapter 7, and cannot be
determined using the available reference systems. With ry and A at their original values,
the pressure of the isostructural transition was traced as a function of increasing w using
the methodology above. The point T* = 0.308, P* = 1.274 with w = 41.22072 was
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Figure 8.8: Isostructural transition at optimised w. The location of the fcc-fcc transition with w
increased to w = 78.480 2 is shown on the left in relation to the sh melting curve and the ld-fcc
spinodal line. The location of the glass temperature is shown in the right.

used as the reference point. At w = 78.48¢ 2 the transition pressure at this temperature
has increased to P* = 1.516. This provides a reference point for tracing the isostructural
transition at this w. A smaller step in temperature of AT* = 0.013 was employed in
this case for enhanced location of the 1d-fcc spinodal line. In addition, data in figure
8.4 provides a starting point for tracing the melting curve. Tracing of this melting curve

proceded as for the w = 41.220~2 case in section 7.7.

The resulting phase boundaries are plotted in figure 8.8. As with the original parameterisa-
tion, the 1d-fcc spinodal line has been mapped with a series of constant pressure Langevin
dynamics simulations. The glass temperature has been located along the P* = 1.61 isobar
using the method of Wendt and Abraham. Simulation parameters and sizes match those

employed in sections 8.1.1 and 8.1.2.

In this case, the spinodal line of the ld-fcc structure lies significantly above the glass
temperature. Increasing the w parameter has therefore achieved the desired effect of in-

creasing the reach of the isostructural transition into the supercooled liquid.

As with the original parameterisation, glassy configurations in which the nearest neigh-
bour distance is 7y are mechanically unstable. Only a single density glass can be gen-
erated. The only low density solid which can possibly destabilise to a second liquid is
1d-fcc. Heating of this solid at a constant pressure of P* = 1.5 to beyond the spinodal
line does not however generate a low density liquid. Instead the 1d-fcc structure collapses
to a the same high density liquid previously observed. If the density is constrained to that
of the 1d-fcc a cavitated high density liquid is formed with negative pressure. The fact

that low density liquid and amorphous solid structures with nearest neighbours at 7 are
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not energetically favourable is perhaps not surprising. However these finding suggest that

such structures are entirely unstable.

A final attempt to locate a supercooled liquid-liquid transition was made by seeking hys-
teresis along the 7" = 0.6, 0.7 and 0.8 isotherms at pressure in the range P* = 0 to
3 at intervals of AP* = 0.25. At each point two simulations were conducted, the first
initialised from the 1d-fcc density, and the second from the density of the liquid at the sh
melting line. The system of 500 atoms was allowed to equilibrate over 20, 000 time-steps
of At* = 0.0017. In all cases no statistically significant difference in the resulting vol-
ume was observed. No liquid-liquid transition exists in the supercooled regime of this

potential.

8.3 Melting Curve Maximum

Liquid anomalies in three dimensions due to a second critical point have been ruled out
by the above. For completeness, this investigation should address the possibility of a
density anomaly in the liquid close to the melting line in regions where the solid is less
dense than the liquid. Such anomalies in the two-dimensional shoulder model have been
discussed in chapter 6. In two dimensions the freezing transition is quasi-continuous.
There is no significant energy barrier to nucleation of the solid phase. As the liquid is
cooled toward the freezing temperature clusters can therefore form of lower density than

the liquid, generating a density anomaly.

In three dimensions the situation is somewhat different. For the potential studied in sec-
tion 7.7 a melting curve maximum is observed at high pressure, followed by a region in
which the liquid freezes to a lower density solid. This transition is however not contin-
uous. The latent heat of formation per particle (obtained from the Gibbs-Duhem series
computed in section 7.7.4) is 30 — 40e in the region at and beyond the melting curve max-
imum. The transition is therefore strongly first order implying a significant energy barrier
to solid nucleation which will dominate purely Boltzmann sampling of a finite-size simu-
lation. It is expected therefore that no density anomaly will be observable in simulations

near the melting curve maximum.

To confirm this expectation, a series of simulations have been conducted in the region of
this melting curve maximum. The mesh of sampled points is shown in figure 8.9. Note
that points which are supercooled with respect to both the sh and fcc phases have been
included. A system size of 500 atoms is used with a time-step of At* = 0.0017. At each
point the system is sampled for 40, 000 time-steps after equilibrating for 10, 000 A¢. The

isotropic constant pressure Langevin dynamics algorithm is used. Plots of density along
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Figure 8.9: Liquid density close to the sh melting line. Points sampled are shown in the left. These
sample the liquid in the region where the sh solid is less dense than the liquid. Density against
temperature along the four isobars is shown on the right.

each isobar are shown in figure 8.9 along with the calculated statistical error. No anomaly
in the density is observed as the melting line is approached. In addition bulk modulus
and heat capacity have been computed from these results using equations 2.23 and 2.24.
Diffusion coefficients have been calculated at each sampled point from the gradient of the
mean squared displacement curve (see e.g. Allen and Tildesley (1987)). No anomalies in

any of these quantities have been measured.

Advanced simulation and sampling methods may go some way to overcoming finite-size
suppression of nucleation and exhibit a density anomaly due to low density cluster for-
mation. This has not been pursued here. It should be noted that if present, anomalies of
this kind would not be unique to core-softened models, but would be expected close to

any melting where the solid is of lower density than the liquid.



Chapter 9
Conclusions

The utility of Langevin dynamics simulation for statistical sampling of the canonical en-
semble has been discussed in chapter 4. Sampling of this kind has been shown to be useful
in Einstein crystal free energy calculations (where the most popular thermostats fail) in

chapter 5 and has been employed in chapter 7 in all thermodynamic integration.

Justification that Langevin dynamics can be extended to sampling the isothermal-isobaric
ensemble has also been presented in chapter 4. This has involved consideration of a
point previously unaddressed in the literature. Specifically the validity of the Einstein
diffusion relation in non-Hamiltonian systems. Exploration of this issue has led to the
conclusion that Langevin dynamics in non-Hamiltonian systems is indeed a valid method
of sampling the NPT ensemble, provided no stochastic or friction forces are applied

along phase-space directions in which the system exhibits intrinsic probability gradients.

Implementation of this strategy has been shown to correctly sample both the Lennard-
Jones system and a model for bulk silicon with similar accuracy to a massive Nosé-Hoover
chain scheme in both fully flexible and fixed-shape simulations cells. In addition, the
sampling scheme has been shown to produce identical results to NPT Monte-Carlo when
employed in Gibbs-Duhem integration and has largely performed well in a study of phase
behaviour in core-softened pair-potentials. Some difficulties have however been encoun-

tered under combined extremes of low temperature and high pressure.

The stochastic component of the Langevin dynamics is essentially white noise and hence
influences the dynamics over a large frequency range. Choosing a barostat frequency
which does not disrupt this influence is key to correct sampling. At extremes of high
pressures and low temperature, the barostat forces can easily dominate over the stochastic
forces if this is not chosen carefully, leading to incorrect temperature control and sam-
pling. For one core-softened potential investigated in chapter 7 no suitable values could

be determined under these extremes. It is not clear if problems of this kind will appear in
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real systems, the choice of appropriate frequencies being heavily dependent on the model

in question.

Despite this potential concern, the method of Langevin dynamics within non-Hamiltonian
pressure regulating systems is clearly a viable alternative to purely deterministic schemes
for sampling the isothermal-isobaric ensemble. As has been stated, both approaches have
merits. Deterministic schemes require that no unexpected conservations laws are gen-
erated in order to sample correctly but can be shown to exactly sample the appropriate
ensemble. In contrast the Langevin dynamics method can only be justified at the level
of linear response, but guarantees that no extra conservation laws are generated. The
constant pressure Langevin dynamics method may therefore be most useful for checking

results obtained from purely deterministic molecular dynamics schemes.

In addition to the work reported here using GOLDILOCS, both variants of the constant
pressure Langevin dynamics methodology have been implemented by the author within
the CASTEP (Segall et al., 2002). This is a density functional based ab-initio simulation
package.

The analysis presented in chapter 4 has been extended to the case of dissipative particle
dynamics simulations by Jakobsen (2005). This work also shows that a finite particle
friction coefficient can be used in the Parrinello-Rahman style system in the special case

of a constrained orthorhombic cell.

In chapter 7 the phase behaviour of a family of core-softened pair potentials with pos-
sible relevance to liquid water has been mapped in detail using a combination of meta-
dynamics, free energy calculation, multi-canonical Monte-Carlo and Gibbs-Duhem in-
tegration. The potentials are constructed from a Lennard-Jones potential plus an outer
Gaussian minimum. As the outer Gaussian is introduced, a lowering of the fcc melting
temperature is observed, a result explained in terms of free energy derivatives in section

8.2.2, and in terms of Lindemann ratios in section 7.8.

At large values of A the low pressure phase diagram is dominated by the emergence of
a simple hexagonal phase. This structure benefits energetically from both minima in the
pair potential. No other structures which have this property have been identified by the
meta-dynamics, but cannot be ruled out. The phase diagrams presented assume that no
such energetically relevant structures have been omitted from the analysis. Transitions

under pressure to a high density fcc structure have been mapped.

At larger still values of A, a maximum in the melting temperature has been observed at
high pressure, a property in common with many elemental melts which exhibit liquid-
liquid transitions. In addition a meta-stable isostructural phase transition between two

fcc structures of different density has been located with possible relevance to modelling
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anomalies of liquid water.

Sublimation at low pressures has not been studied for any A value. No qualitatively new

physics is expected in this regime beyond that of the Lennard-Jones potential.

An important limitation of this work has been the inability to accurately locate fcc-hcp
phase boundaries. Free energy differences between these phases are small, and hence
transitions are difficult to locate by the methods employed here. Hexagonal close-packed
phases have hence been broadly omitted from the analysis, and assumed to occupy similar
regions of the face diagram to the face-centred cubic structure. As has been mentioned,

application of lattice-switching Monte-Carlo (see section 5.6.2) may clarify this situation.

On a methodological note, it has been shown in chapter 7 that both NPT and pseudo-NPH
two-phase melting simulations produce results consistent with free energy calculations.
This is contrary to the recent findings of Wang et al. (2005) who find substantial dis-
agreement with the free energy calculations of Vega ef al. (2005) when applying the NPH
method to the melting temperature of TIP4P and TIP5P ice. Wang ef al. employed an
Andersen barostat without consideration of enthalpy fluctuations. Investigating the effect

of this omission may be a useful topic for further study.

In chapter 8 the thermodynamic limitations of the isostructural phase transition have been
explored, and to some extent overcome by integrating along paths to alternate parame-
terisations of the pair-potential. The Gibbs-Duhem methodology employed is valid over
the parameter range for which phase behaviour is gualitatively the same as that mapped
in chapter 7. It is clear that increasing the outer-well distance ry much beyond 1.50 sta-
bilises extra solid phases, and that increasing w beyond approximately 80c 2 destabilises
the sh phase. Further calculations in these regions may significantly alter the conclusions

drawn but will require mapping of a new reference system.

Within the explorable parameter range, it has been shown that although the isostructural
transition can reach into the supercooled liquid, this does not result in a metastable liquid-
liquid phase transition. Furthermore, no randomly ordered phases are stable which do not

access the inner minimum of the core-softened potential.

The lack of a second liquid phase may be due a fundamental limitation of the functional
form used to construct the pair potential. The aim has been to generate a low density
liquid by heating the 1d-fcc phase (or an amorphous phase which explores only the outer
minimum) beyond its spinodal line. Destabilisation to a low density liquid requires that
the Lindemann criterion is satisfied in the 1d-fcc structure at energies much lower than the
depth of the outer minimum, such that exploration of the inner minima is highly improb-
able. It would seem that this is not possible with the parameters studied in this thesis.

Creating this situation requires decreasing either ry and hence the nearest neighbour dis-
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tance, or decreasing w to increase the magnitude of position fluctuations at low energies.
Both changes act to merge the Gaussian minimum into that of the Lennard-Jones potential
as seen in figure 7.1, removing any possibility of isostructural or liquid-liquid transitions.
Identification of parameters, for which the Lindemann criterion can be satisfied in a struc-

ture with nearest neighbour distance ry, may therefore be impossible.

An alternative argument can be made based on neighbour distances. Any particle in a
disordered phase will possess more particles in its second neighbour shell than the first if
interacting via an isotropic pair potential. In order for the inner Lennard-Jones minimum
to constitute a ‘shoulder’, the outer Gaussian well must lie at approximately the distance
of this second neighbour shell. Higher density disordered phases therefore benefit prefer-
entially from the outer minimum in a similar fashion to the simple hexagonal structure in
which twelve third nearest neighbours lie at ry (see section 7.2.2). Discrete interpretations
of the shoulder potential reported by Skibinsky ez al. (2004), which do exhibit two liquid
phases, contain a much higher energy shoulder. High density disordered phases therefore
suffer an energy penalty from particles in the first neighbour shell, which counteracts the
benefit from large numbers of second shell neighbours at the outer minimum. Such high
energy shoulders are not achievable with the Lennard-Jones plus Gaussian form. These
issue were not considered in the argument of Scala ez al. (2000) when predicting that such
potentials will generate a second critical point, but have emerged as important in light of
the findings in this thesis. Investigation of alternate forms for continuous shoulder poten-

tials may be in order.

With regard to liquid water, support for the second critical point hypothesis has contin-
ued to grow during the writing of this thesis. In particular Brovchenko er al. (2005)
have mapped a liquid-liquid transition in supercooled water for a variety of models using
Gibbs ensemble techniques and Paschek (2005) has studied the influence of the transition
on solubility of hydrophobic particles. The work presented in chapter 8 suggests that a
metastable second critical point is not reproducible with a core-softened Lennard-Jones
plus Gaussian shoulder potential, but does not exclude the possibility of the phenomenon
in other simple models. In light of the growing evidence favouring the presence of the

LLPT, this may be a valuable source of further investigation.

A further step to understanding liquid-liquid transitions may be possible by determining
if effective pair-potentials derived from experimental or ab-initio data can reproduce the
phenomenon in elemental melts, such as those surveyed in chapter 6. The extent to which

these potentials resemble the various forms of core-softened model is certainly promising.



Appendix A

Phase Diagram of the Force-Shifted
Lennard-Jones Potential

As previously stated, computational results presented in chapters 7 and 8 employ pair
potentials with the interaction truncated at 2.50. The force-shifting method is employed
as described in section 3.5.2. The resulting short-ranged model is self consistent, but dif-
fers substantially from the ‘full’ potential in which long range effects are included. Many
results in chapter 5 were calculated using various approximations to the ‘full’ Lennard-
Jones potential for validating methods against results in the literature. The complete
phase diagram of the truncated and force-shifted Lennard-Jones potential has not been
presented. This is rectified here, allowing direct comparison to the core-softened phase

diagrams in chapter 7.

A.1 Liquid-Gas Transition

This was traced using the multi-canonical Monte-Carlo method described in section 5.6.1,
where the first few histograms for the force-shifted Lennard-Jones case have already been
plotted. From the initial point at 7 = 0.958 the liquid-vapour curve was traced to 0.858
in steps of AT = —0.008. As with simulations of core-softened potentials, grand canon-
ical Monte-Carlo simulations at each step employed 600, 000 cycles after equilibrating for
40,000 cycles. The density difference along the coexistence curve as a function on tem-
perature is plotted in figure A. 1. Fits to the power law Ap* oc (T*—T)?, and to the law of
rectilinear diameters yields an estimate of the critical parameters as 7" = 0.961 £ 0.004,
pe = 0.316 = 0.005. As with the core-softened potentials no account has been made of
finite-size effects in the region of the critical point. The critical properties of Lennard-

Jones fluids are known to be heavily dependent on the truncation method. For studies of
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Figure A.1: Lennard-Jones liquid-vapour and melting transitions. The difference in liquid and
gaseous densities along the coexistence curve is shown on the left as extracted from multi-
canonical Monte-Carlo simulations. The two fits used to estimate the critical temperature are
shown. The melting curve for both the full and force-shifted potentials is shown on the right.

liquid-vapour coexistence and criticality, the most commonly studied form is that trun-
cated at 2.50 but not shifted. Wilding (1995) has accurately computed the critical pa-
rameters as 7™ = 1.1876 £ 0.0003, p} = 0.3197 £ 0.0004 in this case. The critical
temperature for the full potential (truncated at 40 plus long range corrections) has been
estimated from the Johnson ez al. (1993) equation for state as 7 = 1.246. Adaption to
truncation (at 2.50) and shifting (with no long range correction) yields 7™ = 1.00 &= 0.04.
No measurement of critical temperature for the force-shifted case has been found in the

literature. The estimate obtained above does not seem unreasonable.

Below 7™ = (0.858 the liquid-vapour curve was traced with Gibbs-Duhem integration. A
temperature step of AT* = —0.03 was employed. Simulation lengths and sizes matched

those used for the equivalent series in the A = €/4 core-softened case.

A.2 Melting Transition

This has been calculated by computing the solid and liquid free energies along the P* =
0.047 isobar. For the solid, Einstein crystal calculations were performed for temperatures
in the interval 7™ = 0.458 to 0.583 in steps of 0.042. Appropriate densities for the calcu-
lations were obtained from 100, 000 At constant pressure Langevin dynamics simulations
employing a time-step of At* = 0.0023 and an equilibration period of 5,000 At in a 256
atom system. The integration procedure itself utilised 50 sampled points along the path to
the harmonic crystal. Each point consisted of a 2,000 At equilibration before averaging
the free energy derivative over a further 3,000 At. The free energy was extrapolated to

the thermodynamic limit by repeating the calculation with system sizes of 256, 500 and
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Figure A.2: Phase diagram of the force-shifted Lennard-Jones potential. The pressure-

temperature projection is shown on the left. Projection into the density-temperature plane is shown

on the right. The low pressure region and sublimation have not been studied.

864 atoms. Finite-size corrections are of similar magnitude to those shown in figure 5.6.

For the liquid free energies, a reference point at 7 = 0.917 and p* = —7.368 was taken.
Grand canonical Monte-Carlo simulations at this point yield (N) = 376.2 + 0.4 and
(P*) = 1.77 + 0.03 in a cube of side 7.79¢. This leads to a Helmholtz free energy per

atom of f* = —9.58 + 0.04. From this reference point, thermodynamic integration was
used to compute the free energy at temperatures in the range 0.500 to 0.667. Required
densities along the P* = 0.047 isobar were computed from constant pressure Langevin
dynamics simulations as in the solid case. Each isochore/isotherm used in the thermody-

namic integration consisted of 10 simulations of 50, 000 time-steps each. An equilibration

period of 20, 000 steps was used with At* = 0.0012.

Interpolation between the resulting Gibbs free energies reveals the melting temperature
as T" = 0.55 £ 0.01. The error estimate is dominated by statistical uncertainty when

simulating at the liquid reference point.

Using this melting temperature as the first point, Gibbs-Duhem integration was then used

to trace the melting curve in the direction of increasing temperature. A step in temperature
of AT* = 0.025 was employed. At each step the Clapeyron equation is evaluated from
50,000 At constant pressure Langevin dynamics simulations of each phase following a
20,000 At equilibration period. A time-step of At* = 0.0028 was used. The resulting
series is shown in figure A.1 in comparison with the melting curve for the ‘full’ Lennard-
Jones potential computed in section 5.5.2. The effect of the truncation and force-shifting
is a lowering of the melting temperature by approximately AT* = 0.12 over the entire

pressure range. The phase diagram of this potential is shown in figure A.2.



Bibliography

Abell, G. C. (1985). Empirical chemical pseudopotential theory of molecular and metallic
bonding. Phys. Rev. B, 31, 6184-6196.

Agrawal, R. and Kofke, D. A. (1995). Thermodynamic and structural properties of model
systems at solid-fluid coexistence. ii. Melting and sublimation of Lennard-Jonesium.
Mol. Phys., 85, 43-59.

Alder, B. and Wainwright, T. E. (1957). Phase transition for a hard sphere system. J.
Chem. Phys., 27, 1208-1209.

Alfe, D. (2003). First-principles simulations of direct coexistence of solid and liquid
aluminium. Phys. Rev. B., 68, 064423.

Allen, M. P. and Tildesley, D. J. (1987). Computer Simulation of Liquids. Oxford Uni-
versity Press, New York.

Andersen, H. C. (1980). Molecular dynamics simulations at constant pressure and/or
temperature. J. Chem. Phys., 71, 2384.

Angilella, G. G. N., Leys, F. E., March, N. H., and Pucci, R. (2003). Phase transitions
wholly within the liquid state. Phys. Chem. Liq., 41, 211-226.

Ballone, P. and Jones, R. O. (2004). A reactive force field simulation of liquid-liquid
phase transitions in phosphorus. J. Chem. Phys., 121(16), 8147-8157.

Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. E., Dinola, A., and Haak, J. R.
(1984). Molecular-dynamics with coupling to an external bath. J. Chem. Phys., 81,
3684-3690.

Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. (1987). The missing term in
effective pair potentials. J. Phys. Chem., 91, 6269—6271.

Berg, B. and Neuhaus, T. (1991). Multicanonical algorithms for first order phase transi-
tions. Phys. Lett. B., 267(2), 249-253.

Boinepalli, S. and Attard, P. (2003). Grand canonical molecular dynamics. J. Chem.
Phys., 119(24), 12769-12775.

Bolhuis, P. and Frenkel, D. (1997). Isostructural solid-solid transitions in systems with a
repulsive ’shoulder’ potential. J. Phys.- Condens. Matter, 9, 381-387.

185



Bibliography 186

Bond, S. D., Leimkuhler, B. J., and Laird, B. B. (1999). The Nose-Poincare method for
constant temperature molecular dynamics. J. Comput. Phys., 151, 114-134.

Boney, S. A., Schwegler, E., Ogitsu, T., and Galli, G. (2004). A quantum fluid of metallic
hydrogen suggested by first-principles calculations. nature, 431, 669-672.

Branca, A. C. (2000). Nosé-Hoover chain method for nonequilibrium molecular dynamics
simulation. Phys. Rev. E, 61, 4767-4773.

Branka, A. C., Kowalik, M., and Wojciechowski, K. W. (2003). Generalization of the
Nose-Hoover approach. J. Chem. Phys, 119(4), 1929-1937.

Brazhkin, V. V., Voloshin, R. N., Popova, S. V., and Umnov, A. G. (1992). Pressure
temperature phase-diagram of solid and liquid te under pressures up to 10 gpa. J.
Phys.-Condes. Matter, 4, 1419—-1425.

Brazhkin, V. V., Popova, S. V., and Voloshin, R. N. (1999). Pressure-temperature phase
diagram of molten elements: selenium, sulfur and iodine. Physica B, 265, 64-71.

Brenner, D. W. (1990). Empirical potential for hydrocarbons for use in simulating the
chemical vapor-deposition of diamond films. Phys. Rev. B, 42, 9458-9471.

Brenner, D. W., Harrison, J. A., White, C. T., and Colton, R. J. (1991). Molecular-
dynamics simulations of the nanometer-scale mechanical-properties of compressed
buckminsterfullerene. Thin Solid Films, 206, 220-223.

Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B.
(2002). A second-generation reactive empirical bond order (REBO) potential energy
expression for hydrocarbons. J. Phys.-Condes. Matter, 14, 783-802.

Brovchenko, 1., Geiger, A., and Oleinikova, A. (2003). Multiple liquid-liquid transitions
in supercooled water. J. Chem. Phys., 118(21), 9473-9476.

Brovchenko, 1., Geiger, A., and Oleinikova, A. (2005). Liquid-liquid phase transitions in
supercooled water studied by computer simulations of various water models. J. Chem.
Phys., 123, 044515.

Bruce, A. D. and Wilding, N. B. (1992). Scaling fields and universality of the liquid-gas
critical point. Phys. Rev. Lett., 68(2), 193-196.

Bruce, A. D. and Wilding, N. B. (2003). Computational strategies for mapping equilib-
rium phase diagrams. Adv. Chem. Phys, 127, 1-64.

Bruce, A. D., Wilding, N., and Ackland, G. J. (1997). Free energy of crystalline solids:
A lattice-switch Monte-Carlo method. Phys. Rev. Lett., 79(16), 3002-3005.

Bruce, A. D., Jackson, A. N., Ackland, G. J., and Wilding, N. B. (2000). Lattice-switch
Monte-Carlo method. Phys. Rev. E., 61(1), 906-919.

Buldyreyv, S., Franzese, G., Giovambattista, N., Malescio, G., Sadr-Lahijany, M. R., Scala,
A., Skibinsky, A., and Stanley, H. E. (2002). Models for a liquid-liquid phase transition.
Physica A, 304, 23-42.



Bibliography 187

Bulgac, A. and Kusnezov, D. (1990). Canonical ensemble averages from pseudomicro-
canonical dynamics. Phys. Rev. A, 42, 5045-5048.

Bundy, F. P. (1989). Pressure-temperature phase-diagram of elemental carbon. Physica
A, 156, 169-178.

Bundy, F. P., Bassett, W. A., Weathers, M. S., Hemley, R. J., Mao, H. K., and Goncharov,
A. F. (1996). The pressure-temperature phase and transformation diagram for carbon;
updated through 1994. Carbon, 34, 141-153.

Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Mod.
Phys., 15(1), 1-89.

Cleveland, C. L. (1988). New equations of motion for molecular dynamics systems that
change shape. J. Chem. Phys., 89, 4987.

Crain, J., Clark, S. J., Ackland, G. J., Payne, M. C., Milman, V., Hatton, P. D., and Reid,
B. J. (1994). Theoretical study of high-density phases of covalent semiconductors. i.
ab-initio treatment. Phys. Rev. B., 49(8), 5329-5340.

Datchi, F., Loubeyre, P., and LeToullec, R. (2000). Extended and accurate determination
of the melting curves of argon, helium, ice (h20), and hydrogen (h2). Phys. Rev. B.,
61(1), 6535-6546.

Delaney, K. (2005). Private Communication.

Dettmann, C. P. and Morriss, G. P. (1997). Hamiltonian reformulation and pairing of
Lyapunov exponents for Nosé-Hoover dynamics. Phys. Rev. E, 55, 3693-3696.

Ensing, B., Laio, A., Gervasio, F. L., Parrinello, M., and Klein, M. L. (2004). A minimum
free energy reaction path for the E2 reaction between fluoro ethane and a fluoride ion.
J. Am. Chem. Soc., 126, 9492-9493,

Errington, J. R. (2003). Solid-liquid phase coexistence of the Lennard-Jones system
though phase-switch Monte Carlo simulation. J. Chem. Phys., 120(7), 3130-3141.

Evans, D. J., Hoover, W. G., Fallor, B. H., Moran, B., and Ladd, A. J. C. (1983). Nonequi-
librium molecular dynamics via Gauss’s principle of least constraint. Phys. Rev. A, 28,
1016-1021.

Feller, S. E., Zhang, Y., and W., P. R. (1995). Constant pressure molecular dynamics
simulation: The Langevin piston method. J. Chem. Phys, 103, 4613.

Ferrenberg, A. M. and Swendsen, R. H. (1988). New Monte-Carlo technique for studying
phase transitions. Phys. Rev. Lett., 61(23), 2635-2638.

Franzese, G., Malescio, G., Skibinsky, A., Buldyrev, S. V., and Stanley, H. E. (2001).
Generic mechanism for generating a liquid-liquid phase transition. Nature, 409, 692—
695.

Franzese, G., Malescio, G., Skibinsky, A., Buldyrev, S. V., and Stanley, H. E. (2002).
Metastable liquid-liquid phase transition in a single- component system with only one
crystal phase and no density anomaly. Phys. Rev. E, 66, 051206.



Bibliography 188

Frenkel, D. and Ladd, A. J. C. (1984). New Monte-Carlo method to compute the free
energy of arbitrary solids. application to the fcc and hcp phases of hard spheres. J.
Chem. Phys, 81(7), 3188-3193.

Frenkel, D. and Smit, B. (1996). Understanding Molecular Simulation: From Algorithms
to Applications. Academic Press, San Diego.

Funamori, N. and Tsuji, K. (2002). Structural transformation of liquid tellurium at high
pressures and temperatures. Phys. Rev. B, 65, 014105.

Galli, G., Martin, R. M., Car, R., and Parrinello, M. (1989). Carbon - the nature of the
liquid-state. Phys. Rev. Lett., 63, 988-991.

Gervasio, F. L., Laio, A., Iannuzzi, M., and Parrinello, M. (2004). Influence of dna
structure on the reactivity of the guanine radical cation. Chem.-Eur. J., 10, 4846—4852.

Ghiringhelli, L. M. and Meijer, E. (2005). Phosphorus: First principle simulation of a
liquid-liquid phase transition. J. Chem. Phys., 122, 184510.

Gibson, J. B., Goland, A. N., Milgram, M., and Vineyard, G. H. (1960). Dynamics of
radiation damage. Phys. Rev., 120, 1229-1253.

Glosli, J. N. and Ree, F. H. (1999). Liquid-liquid phase transformation in carbon. Phys.
Rev. Lett., 82, 4659-4662.

Glover, M. J. (2004). Path Integral Computer Simulations of Liquid Water. Ph.D. thesis,
Department of Physics, University of York.

Grumbach, M. P. and Martin, R. M. (1996). Phase diagram of carbon at high pressures
and temperatures. Phys. Rev. B, 54, 15730-15741.

Harrington, S., Poole, P. H., Sciortino, F., and Stanley, H. E. (1997a). Equation of state

of supercooled water simulated using the extended simple point charge intermolecular
potential. J. Chem. Phys., 107, 7443-7450.

Harrington, S., Zhang, R., Poole, P. H., Sciortino, F., and Stanley, H. E. (1997b). Liquid-
liquid phase transition: Evidence from simulations. Phys. Rev. Lett., 78, 2409-2412.

Hemmer, P. and Stell, G. (1970). Fluids with several phase transitions. Phys. Rev. Lett.,
24(23), 1284-1287.

Hernandez, E. (2001). Metric-tensor flexible-cell algorithm for isothermal- isobaric
molecular dynamics simulations. J. Chem. Phys., 115, 10282-10290.

Hohl, D. and Jones, R. O. (1994). Polymerization in liquid phosphorus - simulation of a
phase- transition. Phys. Rev. B, 50, 17047-17053.

Hoover, W. G. (1985). Canonical dynamics - equilibrium phase-space distributions. Phys.
Rev. A, 31, 1695-1697.

Hoover, W. G. and Holian, B. L. (1996). Kinetic moments method for the canonical
ensemble distribution. Phys. Lett. A, 211, 253.



Bibliography 189

Hoover, W. G., Evans, D. J., Hickman, R. B. Ladd, A. J. C., Ashurst, W. T., and Moran,
B. (1980). Lennard-Jones triple-point bulk and shear viscosities. green-kubo theory,

Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A, page
1690.

Hoover, W. G., Ladd, A.J. C., and Moran, B. (1982). High-strain-rate plastic flow studied
via nonequilibrium molecular dynamics. Phys. Rev. Lett., 48, 1818-1820.

Hoover, W. G., Aoki, K., Hoover, C. G., and v. de Groot, S. (2004). Time-reversible
deterministic thermostats. Physica D, 187, 253-267.

Hoshine, K., Leung, C. H., McLaughlin, I. L., Rahman, S. M. M., and Young, W. H.
(1987). Pair potential trends from the evidence of observed liquid-metal structure fac-
tors. J. Phys. F: Met Phys., 17, 787.

lannuzzi, M., Laio, A., and Parrinello, M. (2003). Efficient exploration of reactive po-

tential energy surfaces using car-parrinello molecular dynamics. Phys. Rev. Lett., 90,
238302.

Jackson, A., Bruce, A. D., and Ackland, G. J. (2002). Lattice-switch Monte Carlo method:
Application to soft potentials. Phys. Rev. E., 65(3), 036710.

Jagla, E. A. (1998). Phase behavior of a system of particles with core collapse. Phys. Rev.
E, 58, 1478-1486.

Jagla, E. A. (2001). Liquid-liquid equilibrium for monodisperse spherical particles. Phys.
Rev. E, 63, 061501.

Jakobsen, A. (2005). Constant-pressure and constant-surface tension simulations in dis-
sipative particle dynamics. J. Chem. Phys., 144, 124901.

Jedlovszky, P. and Mezei, M. (1999). The anisotropic virial-biased sampling for monte
carlo simulations in the isothermal-isobaric ensemble. Mol. Phys., 96(2), 293-296.

Johnson, J. K., Zollweg, J. A., and Gubbins, K. E. (1993). The Lennard-Jones equation
of state revisited. Mol. Phys., 78, 591-618.

Jorgensen, W. L. (1981). Quantum and statistical mechanical studies of liquids .10. trans-
ferable intermolecular potential functions for water, alcohols, and ethers - application
to liquid water. J. Am. Chem. Soc., 103, 335-340.

Katayama, Y. (2001). XAFS study on liquid selenium under high pressure. J. Synchrot.
Radiat., 8, 182—185.

Katayama, Y. (2002). In situ observation of a first-order liquid-liquid transition in phos-
phorus. J. Non-Cryst. Solids, 312, 8-14.

Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O., Yamakata, M., and Funakoshi,
K. (2000). A first-order liquid-liquid phase transition in phosphorus. Nature, 403,
170-173.



Bibliography 190

Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O., and Tsuji, K. (2001). X-ray
diffraction study on structural change in liquid selenium under high pressure. Phys.
Status Solidi B-Basic Res., 223, 401-404.

Katayama, Y., Yamakata, M., Utsumi, W., and Shimomura, O. (2004). Macroscopic
separation of dense fluid phase and liquid phase of phosphorus. Science, 306, 848—
851.

Kneller, G. R. and Hinsen, K. (2001). Computing memory functions from molecular
dynamics simulations. J. Chem. Phys., 115, 11097-11105.

Kofke, D. (1993). Direct evaluation of phase coexistence. J. Chem. Phys, 98(5), 4149.

Kolb, A. and Dunweg, B. (1999). Optimized constant pressure stochastic dynamics. J.
Chem. Phys., 111, 4453-4459.

Koslowski, T. and Stepanov, I. A. (2003). A tight-binding potential for the simulation of
solid and liquid iodine. J. Phys.-Condes. Matter, 15, 2951-2960.

Kubo, R. (1966). The fluctuation-dissipation theorem. Rep. Prog. Phys., 29, 255-284.

Kum, O., Ree, F. H., Stuart, S. J., and Wu, C. J. (2003). Molecular dynamics investigation
in liquid-liquid phase change in carbon with empirical bond-order potentials. J. Chem.
Phys., 119(12), 6053-6057.

Laio, A. and Parrinello, M. (2002). Escaping free energy minima. Proc. Natl. Acad. Sci.
U.S.A., 99(12), 562.

Laird, B. B. and Leimkuhler, B. J. (2003). Generalized dynamical thermostating tech-
nique. Phys. Rev. E., 68, 016704.

Landau, A. L. (2002). A new method of molecular dynamic computer simulation at con-
stant pressure. J. Chem. Phys., 117, 8607-8612.

Lee, H. K. and Swendsen, R. H. (2001). Simple model of liquid-liquid phase transitions.
Phys. Rev. B, 6421, 214102.

Leimkuhler, B. J. and Sweet, C. R. (2004). The canonical ensemble via symplectic inte-
grators using Nosé and Nosé-Poincare chains. J. Chem. Phys, 121(1), 108-116.

Lennard-Jones, J. E. (1924). Proc. R. Soc. London, Ser. A., 106, 463.
Likalter, A. A. (2002). Metallization of liquid iodine. Physica A, 308, 355-367.
Lindemann, F. A. (1910). Phys. Z., 11, 609.

Liu, Y. and Tuckerman, M. E. (2000). Generalized Gaussian moment thermostatting: A

new continuous dynamical approach to the canonical ensemble. J. Chem. Phys., 112,
1685-1700.

Mahoney, M. W. and Jorgensen, W. L. (2000). A five-site model for liquid water and
the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J.
Chem. Phys., 112, 8910-8922.



Bibliography 191

Martonak, R., Laio, A., and Parrinello, M. (2003). Predicting crystal structures: The
Parrinello-Rahman method revisited. Phys. Rev. Lett., 90(7), 075503.

Martyna, G. J., Klein, M. L., and Tuckerman, M. (1992). Nosé-Hoover chains - the
canonical ensemble via continuous dynamics. J. Chem. Phys., 97, 2635-2643.

Martyna, G. J., Tobias, J. T., and Klein, M. L. (1994). Constant pressure molecular
dynamics algorithms. J. Chem. Phys., 101(5), 4177-4189.

Martyna, G. J., Tuckerman, M. E., Tobias, D. J., and Klein, M. L. (1996). Explicit re-
versible integrators for extended systems dynamics. Mol. Phys., 87, 1117-1157.

Mausbach, P. and May, H. O. (2003). A MBWR equation of state of a core-softened fluid
in 3d. Fluid Phase Equil., 214, 1-9.

McBride, C., Vega, C., Sanz, E., Macdowell, L. G., and Abascal, J. L. F. (2005). The range
of meta stability of ice-water melting for two simple models of water. Mol. Phys., 103,
1-5.

Melchionna, S., Ciccotti, G., and Holian, B. L. (1993). Hoover NPT dynamics for systems
varying in shape and size. Mol. Phys., 78, 533-544.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A., and Teller, E. (1953).
Equation of state calculations by fast computing machines. J. Chem. Phys., 21(6),
1087-1092.

Mezei, M. (1980). Viral bias Monte-Carlo methods: efficient sampling in the (T,P,N)
ensemble. Mol. Phys., 40, 901-906.

Militzer, B., Magro, W., and Ceperley, D. (1999). Contrib. Plasma. Physics., 39, 151-154.

Minary, P., Martyna, G. J., and Tuckerman, M. E. (2003a). Algorithms and novel ap-

plications based on the isokinetic ensemble. i. Biophysical and path integral molecular
dynamics. J. Chem. Phys., 118, 2510-2526.

Minary, P., Martyna, G. J., and Tuckerman, M. E. (2003b). Algorithms and novel appli-
cations based on the isokinetic ensemble. 1i. Ab-initio molecular dynamics. J. Chem.
Phys., 118, 2527-2538.

Mishima, O. and Stanley, H. E. (1998a). Decompression-induced melting of ice-IV and
the liquid-liquid transition in water. Nature, 392, 364—168.

Mishima, O. and Stanley, H. E. (1998b). The relationship between liquid, supercooled
and glassy water. Nature, 396, 329-335.

Monaco, G., Falconi, S., Crichton, W. A., and Mezouar, M. (2003). Nature of the first-
order phase transition in fluid phosphorus at high temperature and pressure. Phys. Rev.
Lett., 90, 255701.

Morishita, T. (2001a). Liquid-liquid phase transitions of phosphorus via constant- pres-
sure first-principles molecular dynamics simulations. Phys. Rev. Lett., 8710, 105701.



Bibliography 192

Morishita, T. (2001b). Structure of liquid phosphorus: A liquid-liquid phase transition via
constant-pressure first-principles molecular dynamics. Comput. Phys. Commun., 142,
356-360.

Morishita, T. (2002). Phase transitions of liquid phosphorus: constant-pressure first-
principles molecular dynamics simulations. J. Non-Cryst. Solids, 312, 22-25.

Morris, J. R. and Song, X. (2002). The melting lines of model systems calculated from
coexistence simulations. J. Chem. Phys., 116(21), 9352-9358.

Morris, J. R., Wang, C. Z., and Ho, K. M. (1995). Relationship between structure and
conductivity in liquid carbon. Phys. Rev. B, 52, 4138-4145.

Netz, P., Raymundi, J., Camera, A., and Barbosa, M. (2003). Dynamic anomalies of fluids
with isotropic double-ranged potential. Physica A, 342, 48-53.

Nosé, S. (1984a). A molecular-dynamics method for simulations in the canonical ensem-
ble. Mol. Phys., 52, 255-268.

Nosé, S. (1984b). A unified formulation of the constant temperature molecular- dynamics
methods. J. Chem. Phys., 81, 511-519.

Ogata, S. and Shibutani, Y. (2003). Ideal tensile strength and band gap of single-walled
carbon nanotubes. Phys. Rev. B., 68, 165409.

Panagiotopoulos, A. Z. (1987). Direct determination of phase coexistence properties of
fluids by Monte Carlo simulation in a new ensemble. Mol. Phys., 61, 813-826.

Pangali, C. and Rao, M. Berne, B. J. (1978). On a novel monte carlo scheme for simulating
water and aqueous solutions. Chem. Phys. Lett., 55(3), 413—417.

Parrinello, M. and Rahman, A. (1980). Crystal structure and pair potentials: A molecular-
dynamics study. Phys. Rev. Lett., page 1196.

Parrinello, M. and Rahman, A. (1981). Polymorphic transitions in single-crystals - a new
molecular- dynamics method. J. Appl. Phys., 52, 7182-7190.

Paschek, D. (2005). How the liquid-liquid transition affects hydrophobic hydration in
deeply supercooled water. Phys. Rev. Lett., 94(21), 21780.

Pfaffenzeller, O. and Hohl, D. (1997). Structure and electrical conductivity in fluid high-
density hydrogen. J. Phys.: Cond. Matt., 9(50), 11023-11034.

Polson, J. M., Trizac, E., Pronk, S., and Frenkel, D. (2000). Finite-size corrections to the
free energies of crystalline solids. J. Chem. Phys, 112(12), 5339-5342.

Poole, P. H., Sciortino, F., Essman, U., and Stanley, H. E. (1992). Phase behaviour of
metastable water. nature, 360, 324-328.

Poole, P. H., Sciortino, F., Essman, U., and Stanley, H. E. (1993). Spinodal of liquid
water. Phys. Rev. E., 48(5), 3799-3817.



Bibliography 193

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1986). Numerical
Recipes. Cambridge University Press.

Quigley, D. and Probert, M. 1. J. (2004). Langevin dynamics in constant pressure extended
systems. J.Chem.Phys, 120(24), 11432—-11442.

Quigley, D. and Probert, M. 1. J. (2005). Constant pressure Langevin dynamics: Theory
and application. Comp. Phys. Comm., 169, 322-325.

Rahman, A. (1964). Correlation in the motion of atoms in liquid argon. Phys. Rev., pages
A204-A411.

Ray, J. R. and Rahman, A. (1984). Statistical ensembles and molecular dynamics studies
of anisotropic solids. J. Chem. Phys., 80(4423).

Rog, T., Murzyn, K., Hinsen, K., and Kneller, G. R. (2003). nmoldyn: A program pack-
age for a neutron scattering oriented analysis of molecular dynamics simulations. J.
Comput. Chem., 24, 657-667.

Rosso, L., Minary, P., and Zhu, Z. (2001). On the use of the adiabatic molecular dynamics
technique in the calculation of free energy profiles. J. Chem. Phys, 116, 4389—-4402.

Ryzhov, V. N. and Stishov, S. M. (2002). A liquid-liquid phase transition in the "collaps-
ing" hard sphere system. J. Exp. Theor. Phys., 95, 710-713.

Ryzhov, V. N. and Stishov, S. M. (2003). Repulsive step potential: A model for a liquid-
liquid phase transition. Phys. Rev. E, 67, 010201.

Sadr-Lahijany, M. R., Scala, A., Buldyrev, S. V., and Stanley, H. E. (1998). Liquid-state
anomalies and the Stell-Hemmer core-softened potential. Phys. Rev. Lett., 81, 4895—
4898.

Sanz, E., Vega, C., Abascal, J. L. F., and Macdowell, L. G. (2004a). Phase diagram of
water from computer simulation. Phys. Rev. Lett., 92, 255701.

Sanz, E., Vega, C., Abascal, J. L. F,, and Macdowell, L. G. (2004b). Tracing the phase
diagram of the four-site water potential (tip4p). J. Chem. Phys., 121, 1165-1166.

Sastry, S. and Angell, A. (2003). Liquid-liquid phase transition in supercooled silicon.
Nature. Mat., 2, 739-743.

Scala, A., Sadr-Lahijany, M. R., Giovambattista, N., Buldyrev, S. V., and Stanley, H. E.
(2000). Applications of the Stell-Hemmer potential to understanding second critical
points in real systems. J. Stat. Phys., 100, 97-106.

Scala, A., Sadr-Lahijany, M. R., Giovambattista, N., Buldyrev, S. V., and Stanley, H. E.
(2001). Waterlike anomalies for core-softened models of fluids: Two- dimensional
systems. Phys. Rev. E, 6304, 041202.

Scandolo, S. (2002). Liquid-liquid phase transition in compressed hydrogen from first-
principles simulations. Proc. Natl. Acad. Sci. U.S.A., 100(6), 3051-3053.



Bibliography 194

Segall, M. D., Lindan, P. L. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., and
Payne, M. C. (2002). First-principles simulation: Ideas, illustrations and the CASTEP
code. J. Phys.: Cond. Matt., 14(11), 2717-2743.

Senda, Y., Shimojo, F., and Hoshino, K. (2002a). The liquid-liquid phase transition of

liquid phosphorus studied by ab initio molecular-dynamics simulations. J. Non-Cryst.
Solids, 312, 80-84.

Senda, Y., Shimojo, F., and Hoshino, K. (2002b). The metal-nonmetal transition of liquid

phosphorus by ab initio molecular-dynamics simulations. J. Phys.-Condes. Matter, 14,
3715-3723.

Sergi, A. (2003). Non-Hamiltonian equilibrium statistical mechanics. Phys. Rev. E, 67,
021101.

Sergi, A., Ferrario, M., and Costa, D. (1999). Reversible integrators for basic extended
system molecular dynamics. Mol. Phys., 97, 825-832.

Siepmann, J. I., McDonald, I. R., and Frenkel, D. (1992). Finite-size corrections to the
chemical potential. J. Phys.: Cond. Matt., 4, 679-691.

Skibinsky, A., Buldyrev, S. V., Franzese, G., Malescio, G., and Stanley, H. E. (2004).
Liquid-liquid phase transitions for soft-core attractive potentials. Phys. Rev. E., 69,
061206.

Smargiassi, E. and Madden, P. A. (1995). Free-energy calculations in solids from first-
principles molecular dynamics: Vacancy formation in sodium. Phys. Rev. B, pages
117-128.

Smith, G. R. and Bruce, A. D. (1995). Multicanonical Monte Carlo study of solid-solid
phase coexistence in a model colloid. Phys. Rev. E., 53(6), 6530-6543.

Souza, I. and Martins, J. L. (1997). Metric tensor as the dynamical variable for variable-
cell- shape molecular dynamics. Phys. Rev. B, 55, 8733-8742.

Stanley, H. E. (1971). Introduction to phase transitions and critical phenomena. Oxford
University Press, New York.

Stillinger, F. and Rahman, A. (1974). Improved simulation of liquid water by molecular
dynamics. J. Chem. Phys., 40(4), 1545-1557.

Stillinger, F. H. and Weber, T. A. (1985). Computer simulation of local order in condensed
phases of silicon. Phys. Rev. B., 31, 5262-5271.

Stishov, S. M. (2002). On phase diagram of the system of "collapsing" hard spheres. J.
Exp. Theor. Phys., 95, 64—66.

Sturgeon, J. B. and Laird, B. B. (2000). Symplectic algorithm for constant-pressure
molecular dynamics using a Nosé-Poincare thermostat. J. Chem. Phys., 112, 3474—
3482.



Bibliography 195

Sugino, O. (1999). Semi-empirical molecular dynamics study of the phase diagram of
carbon at low pressure. New Diam. Front. Carbon Technol., 9, 93—105.

Sun, D. Y. and Gong, X. G. (2002). A new constant-pressure molcular dynamics algo-
rithm for finite systems. J. Phys.- Condens. Matter, 14, 487-493.

Tanaka, H. (1998). Fluctuation of local order and connectivity of water molecules in two
phases of supercooled water. Phys. Rev. Lett., 80, 113-116.

Tersoff, J. (1986). New empirical-model for the structural-properties of silicon. Phys.
Rev. Lett., 56, 632-635.

Tersoff, J. (1988). Empirical interatomic potential for silicon with improved elastic prop-
erties. Phys. Rev. B, 38, 9902-9905.

Tersoff, J. (1989). Modeling solid-state chemistry - interatomic potentials for multicom-
ponent systems. Phys. Rev. B, 39, 5566-5568.

Togaya, M. (1997). Pressure dependences of the melting temperature of graphite and the
electrical resistivity of liquid carbon. Phys. Rev. Lett., 79, 2474-2477.

Torrie, G. and Valleau, J. (1974). Monte Carlo free energy estimates using non-boltzmann
sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett., 28(4),
578-581.

Trebst, S., Huse, D., and Troyer, M. (2004). Optimizing the ensemble for equilibration in
broad-histogram Monte Carlo simulations. Phys. Rev. E., 70, 046701.

Tse, J. S. and Klug, D. D. (1999). Structure and dynamics of liquid sulphur. Phys. Rev.
B, 59, 34-37.

Tuckerman, M., Berne, B. J., and Martyna, G. J. (1992). Reversible multiple time scale
molecular-dynamics. J. Chem. Phys., 97, 1990-2001.

Tuckerman, M. E., Mundy, C. J., and Martyna, G. J. (1999). On the classical statistical
mechanics of non-Hamiltonian systems. Europhys. Lett., 45, 149—155.

Tuckerman, M. E., Liu, Y., Ciccotti, G., and Martyna, G. J. (2001). Non-Hamiltonian
molecular dynamics: Generalizing Hamiltonian phase space principles to non-
Hamiltonian systems. J. Chem. Phys., 115, 1678-1702.

Umnov, A. G., Brazhkin, V. V., Popova, S. V., and Voloshin, R. N. (1992). Pressure
temperature diagram of liquid bismuth. J. Phys.-Condes. Matter, 4, 1427-1431.

van der Hoef, M. A. (2000). Free energy of the Lennard-Jones solid. J. Chem. Phys,
113(18), 8142-8148.

Vanthiel, M. and Ree, F. H. (1989). Theoretical description of the graphite, diamond, and
liquid- phases of carbon. Int. J. Thermophys., 10, 227-236.

Vega, C. (2005). "If you have an NPT, you have a Gibbs-Duhem" - Private communica-
tion.



Bibliography 196

Vega, C., Sanz, E., and Abascal, J. L. F. (2005). The melting temperature of the most
common models of water. J. Chem. Phys., 122, 114507.

Verlet, L. (1967). Computer experiments on classical fluids. i. thermodynamical proper-
ties of Lennard-Jones molecules. Phys. Rev., 159, 98—103.

Wang, J. S, Y., Bai, J., Morris, J., and Zeng, X. C. (2005). Melting temperature of ice ih
calculated from coexisting solid-liquid phases. J. Chem. Phys., 123, 036101.

Weir, S. T. and Mitchell, A. C. Nellis, W. J. (1995). Metallization of fluid molecular
hydrogen at 140 GPa (1.4 mbar). Phys. Rev. Lett., 76(11), 1860—1863.

Wendt, H. R. and Abraham, F. (1978). Empirical criterion for the glass transition region
based on Monte-Carlo simulation. Phys. Rev. Lett., 41(18), 1244—1246.

Wentzcovitch, R. M. (1991). Invariant molecular-dynamics approach to structural phase
transitions. Phys. Rev. B., 44, 2358.

Widom, B. (1963). Some topics in the theory of fluids. J. Chem. Phys, 39(11), 2808-2812.

Wilding, N. B. (1995). Critical-point and coexistence-curve properties of the Lennard-
Jones fluid: A finite-size scaling study. Phys. Rev. E., 52(1), 602-611.

Wilding, N. B. (2001). Computer simulation of fluid phase transitions. Am. J. Phys., 69,
1147.

Wilding, N. B. and Bruce, A. D. (2000). Freezing by Monte-Carlo phase-switch. Phys.
Rev. Lett., 85, 5138.

Wilding, N. B. and Magee, J. E. (2002). Phase behavior and thermodynamic anomalies
of core-softened fluids. Phys. Rev. E, 66, 031509.

Wu, C.J., Glosli, J. N., Galli, G., and Ree, F. H. (2002). Liquid-liquid phase transition in
elemental carbon: A first- principles investigation. Phys. Rev. Lett., 89, 135701.

Yamada, M., Mossa, S., Stanley, H. E., and Sciortino, F. (2002). Interplay between time-
temperature transformation and the liquid-liquid phase transition in water. Phys. Rev.
Lett., 88, 195701.

Yokoyama, O. and Ono, S. (1985). Effective interatomic pair potentials in liquid polyva-
lent metals from observed structure data. J. Phys. F: Met Phys., 15, 1215.



	List of Figures
	Introduction
	Atomistic Simulation
	Basics
	Notation
	Phase Space
	Models

	Ensembles
	Microcanonical (NVE)
	Canonical (NVT)
	Isothermal-Isobaric (NPT)
	Grand Canonical Ensemble (VT)
	The Thermodynamic Limit

	Sampling
	Monte-Carlo
	Molecular Dynamics
	Detailed Balance
	Ergodicity
	Finite Size Effects

	Useful results
	Fluctuations
	Virial Estimators
	Free Energies and the Ideal Gas


	Methods
	Temperature Control in Molecular Dynamics
	Early Methods
	The Nosé-Hoover Thermostat
	Newer Methods

	Pressure Control in Molecular Dynamics
	Early Methods
	Andersen-Hoover Method
	The Parrinello-Rahman Method
	Anisotropic Stress
	Alternatives

	Integration Algorithms
	Ensemble Monte-Carlo
	Canonical Ensemble (NVT)
	Isobaric-Isothermal Ensemble (NPT)
	Grand Canonical Ensemble (VT)

	Computational Considerations
	Initial Conditions
	Efficient Calculations of Forces
	Parallel Computation


	Constant Pressure Langevin Dynamics
	Motivation
	Langevin Dynamics
	Langevin Equations for NPT Dynamics

	The Statistical Mechanics of Extended Systems
	Langevin Dynamics in Non-Hamiltonian Systems
	The Andersen-Hoover System
	The Parrinello-Rahman System

	Numerical Integration
	Parameters
	Particle Friction Coefficient using Memory Functions
	Choice of Cell Mass
	Choice of Cell Friction Coefficient

	Examples
	Lennard-Jonesium
	Silicon
	Carbon Nanotubes


	Phase Transitions
	Phase Transitions
	Stability
	Phase Coexistence
	Critical Phenomena
	Computer Simulation

	Single-Phase Methods
	Hysteresis and the Maxwell Construction

	Two-Phase Methods
	Melting transition

	Free Energy Calculations
	Fluids
	The Einstein Crystal Method for Solids
	Chemical Potential Methods
	Error Estimates

	Gibbs-Duhem Integration
	Calculation of f
	Implementation and Validation
	Error Estimates

	Monte-Carlo Methods
	Histogram Reweighting/Multi-canonical Sampling
	Other Methods

	Augmented Meta-dynamics
	Methodology
	Application to Crystal Structures
	Implementation and Validation


	Liquid-Liquid Phase Transitions
	Elemental Systems
	Phosphorus
	Hydrogen
	Carbon
	Others

	Core-Softened Model Systems
	Relevance to Water
	Aims for Studies of Model Systems
	The Lennard-Jones Plus Spin Model
	The Collapsing Hard Spheres Model
	The Ramp Potential
	The Shoulder Potential


	Phase Diagrams of Core-Softened Potentials
	Candidate Structures
	Choice of r0 and w
	r0=1.246
	r0=1.620
	r0=1.433

	Phase Behaviour for A=/4
	Liquid-Gas transition
	Solid
	Melting Curve

	Phase Behaviour for A=/2
	Liquid-Gas Transition
	Solid
	Melting Curve

	Phase Behaviour for A=0.55
	SH-FCC Transition
	Melting Curves
	SH-FCC-Liquid Triple Point

	Phase Behaviour for A=
	Liquid-Gas Transition
	Solid
	Melting Curves
	SH-FCC-Liquid Triple Point

	Phase Behaviour for A=3/2
	Liquid-Gas Transition
	Metastable FCC-FCC Transition
	SH-FCC Transition
	Melting Curves
	SH-FCC-Liquid Triple Point

	Summary

	Exploration of Unusual Phase Behaviour
	Isostructural Phase Transition
	LD-FCC Spinodal Line
	Glass Transition

	Adjustment of A, r0 and w
	Free Energy Derivatives
	Tracing Phase Boundaries
	Melting Curves
	Influence of A on Isostructural Phase Transition
	Influence of r0 on Isostructural Phase Transition
	w Parameter
	Optimal Parameters

	Melting Curve Maximum

	Conclusions
	Phase Diagram of the Force-Shifted Lennard-Jones Potential
	Liquid-Gas Transition
	Melting Transition

	Bibliography

